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1. Introduction 

1.1 Efficiency In the Medical Field 

The current medical system depends heavily on X-ray scan technology to accurately 

depict certain body portions. The reason behind this is to provide skilled medical professionals 

with the information needed to accurately diagnose any issues, allowing doctors to create a plan 

to combat any ailment or damage to the human body without the need for invasive surgery. The 

technology behind medical scan equipment is advanced, but there is still an area in the diagnosis 

process that can use improvement. Currently, diagnoses take 1-3 days. Although this may not 

seem like an issue, there are plenty of ailments that can become lethal within that time frame. 

One method that can be used to improve diagnosis times is the implementation of AI in the 

medical field. 

Surprisingly, many other teams have set out to formulate a solution to the same issue in 

diagnosis. However, what sets our team apart is that we have not only formulated code solutions 

to the issue, but we have created multiple different forms of our solution using different image 

analysis programs such as ViT (Visual Transform) and EfficientNet to find the best option based 

on updated software. Furthermore, once securing a more accurate program for diagnosis, our 

team moved to the 2nd stage of the project, which utilizes Kyber quantum-resistant lattice-based 

encryption to protect sensitive medical data. The motivation behind this extensive testing is due 

to the rapid pace at which programs improve. Therefore, the programs used in our research have 
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created updated models that may show different and more promising results than the research 

papers that our team used in our research phase.  
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1.2 Client of Team Tech-Health Project 

 

Professor Tuy Nguyen 

Professor Tuy Nguyen is currently an Assistant Professor at the School of Informatics, 

Computing, and Cyber Systems at Northern Arizona University. Previously, he held the positions 

of Lecturer at the School of Global Convergence Studies and Post-Doctoral Fellow at the 

Department of Electrical and Computer Engineering at Inha University, from May 2021 to 

August 2022. Prior to that, he worked as a Senior Research Engineer at Conextt Inc., 

contributing from September 2019 to April 2021. He earned his Ph.D. in Information and 

Communication Engineering from Inha University in August 2019.  
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1.3 Team Members of Team Tech-Health 

 

Leader: Tianyi (Bruce) Chen 

This is Tianyi (Bruce) Chen, a computer engineering student at Northern Arizona University. His 

primary academic focus is on machine learning (image processing), a field that deeply fascinates 

him. In his leisure time, he engages in small-scale IoT projects, where he finds great satisfaction 

in blending hardware and software to create tangible, functional devices. His programming 

experience casts through a vast array of Python, R, C, Javascript, Verilog, etc. 

His role involves rigorously training and testing various models with the TeleHealth dataset, 

meticulously analyzing the outcomes, composing the paper, incorporating encryption algorithms 

with the AI model into the system, and making interactive visualization software. 
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Secretary and Treasurer: Ian Philippi 

This is Ian Philippi, a Computer Engineer at Northern Arizona University. He enjoys working 

hard and playing video games during his free time (although there isn't much free time during 

school terms). He is proficient in and enjoys formulating code in C, Python, Assembly, and 

SystemVerilog.  

He finds project AI TeleHealth to be very important because it can greatly benefit those in need 

of an efficient/accurate diagnosis, which allows medical professionals more time to perform 

life-saving procedures. 
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1.4 User Manual  
(our project is a research project, and this manual is for the extra content developed in our 

project) 

Our designated system integrates two core components: AI-assisted diagnosis and homomorphic 

encryption for secure transmission. The process is delineated as follows: 

 

1.​ Public Key Generation Request: The server initiates the process by generating a pair of 

cryptographic keys. While the public key is transmitted to the client, the secret key is 

securely retained by the server. 

 

2.​ Local Data Encryption: Upon receiving the public key, the client encrypts the 

diagnostic image using this key, ensuring that the data remains secure during 

transmission. 

 

3.​ Transmission of Encrypted Data: The encrypted data, now termed ‘ciphertext’, is sent 

back to the server. The server, holding the secret key, decrypts the ciphertext to retrieve 

the original image. 

 

4.​ AI-Powered Diagnosis: The decrypted image is then analyzed using our proprietary AI 

model. This model, developed through rigorous research, performs the diagnostic tasks. 

 

5.​ Transmission of Diagnostic Results: Upon completion of the diagnosis, the server 

encrypts the prediction results using a new public key generated by the client. This step 

ensures that the transmitted results remain secure until they reach the client. 

 

6.​ Result Reception and Decryption by the Client: The client decrypts the received 

encrypted results using the corresponding private key. This decrypted data is then 

forwarded to healthcare professionals for validation and further action.  
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2. Problem Statement 
2.1 Needs of AI/Machine Learning in Diagnosing 

Modern diagnosis methods have developed significantly in recent years, but there are 

only a few hospitals fully utilizing machine learning. According to [1], only 24 percent of 

interviewed hospitals said they were experimenting with AI/machine learning techniques and 22 

percent of these hospitals said they were in the initializing stage of incorporating AI. Despite few 

hospitals adopting healing methods with AI/machine learning, lots of top hospitals around the 

world (like Mayo Clinic, Cleveland Clinic, and Massachusetts General Hospital) have invested 

millions into AI/machine learning construction according to [2], which indicates that AI/machine 

learning has a broad market with diagnostics. [3] also indicates the huge potential of AI/machine 

learning because it has extraordinary diagnosing abilities in some aspects in the Future 

Healthcare Journal (2019) [4]. Additionally, [3] points out that one of the main impedances to the 

implementation of AI/machine learning in the medical field is the instability of most existing 

AI/machine learning models. However, this statement is quickly becoming invalid due to the 

rapid improvement of AI neural networks. 

Moreover, after the explosion of the COVID-19 virus, many countries and regions are 

facing a lack of medical diagnosis resources. People further realize the importance of combining 

AI/machine learning techniques with tele-medical diagnosis. In conclusion, the market has broad 

prospects for high performance, accuracy, and stable machine learning methods (models) 

especially in COVID-19 diagnosing fields. In our project, we utilized a chest X-ray image 

dataset consisting of scans relating to healthy lungs as well as lungs inflicted with COVID-19, 
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viral pneumonia, and lung opacity, implementing existing machine learning models to classify 

different types of images, and compare the performance between each model to find the one that 

best matches our client’s expectations. 

2.2 Needs for Encryption in Telehealth 

​ With the possibility of telehealth in the medical field, people notice a possible privacy 

problem when transferring clients’ information. The current method for protecting the transferred 

data is end-to-end encryption which is safe enough but hard to backup and archive. However, 

with the development of quantum computing technologies, sensitive data in the form of medical 

scans used in our software can be intercepted and stolen. 

​ Given the significant risk of security in the first phase of our project, the second phase 

includes using Kyber, which is a lattice-based encryption method that utilizes multi-dimensional 

lattices to encrypt and decrypt data given vector keys [4]. In this process, an image array is 

located at a specific point in a multi-dimensional lattice. In the past, RSA encryption was the 

most popular method, in which semi-prime numbers (products of 2 prime numbers) were used as 

the public keys. Given that, the private keys are the prime factors of the semiprime public key. 

This is highly effective on regular and supercomputers because of the time it takes for them to 

run the calculations necessary to break this encryption after intercepting data. However, given 

that quantum bits can be in multiple states at once, RSA encryption becomes ineffective in 

quantum computing. However, given a Kyber encryption system that is multidimensional, even 

utilizing bits that can be in a state of superposition still takes a significant amount of time to 

decrypt intercepted information.  
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2.3 Statement of Objectives 

 

Figure 1: Project Phase 1 (Research: AI Diagnosis) 

This is a flow chart of the first phase tasks of our Tech Health Comparators. Our research 

is conducting experiments through various model structures with a focus on their accuracy and 

efficiency. After assessing these two performances by several evaluation metrics, we tune the 

parameter configurations and start the next rounds of experiments. First, Vast experiments are 
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executed to explore the optimized settings for each model. Then we elaborate on the most 

suitable structure which is traded off from accuracy and efficiency to conduct more meticulous 

tuning. Finalizing our proposed model, we use the visualization technique to verify it and explore 

the potential bias in the experimented dataset. 

 

Figure 2: Project Phase 2 (Homomorphic Encryption) 
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​ This graph represents the finalized version of the second phase of our project, which 

involves encryption. As said previously, the method of encryption that our project is going to use 

is based on quantum-resistant encryption methods, In short, this means that the encryption 

algorithm uses a lattice, hiding the picture at a specific point in said lattice. In order to decrypt 

the data, a computer needs to navigate the lattice only using 2 vectors. However, the best two 

vectors for efficient lattice navigation are given to the receiver as keys. However, any other 

systems attempting to intercept and steal this data now need to navigate the same lattice using 

highly inefficient vectors. This concept is what makes this type of encryption effective against 

quantum computing. Therefore, given code that already implements this encryption, but only 

with audio files, with simple modification this can be applied to images. Specifically, this is done 

by converting the images into a one-dimensional array, encrypting the data, decrypting the data, 

and then reconstructing the array into a 2-dimensional array format. As this has already been 

accomplished, the last implementations are regarding easy mass input of medical scans using an 

array of images. 
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3. Concept 

3.1 Accuracy and Efficiency of AI Learning 

​ Chest X-rays are a crucial tool for diagnosing various illnesses. However, their current 

use faces limitations in efficiency, particularly during critical situations like pandemics. The 

delay of 1-2 days between scans and diagnosis can significantly impact patient outcomes. This 

challenge is particularly evident with diseases like COVID-19, which has affected over 772 

million people globally, with over 7 million fatalities [1]. The COVID-19 pandemic resulted in a 

significant economic burden, with a 3.3 trillion dollar deficit in the US for 2020 and a peak 

unemployment rate of 14.7% [2, 3]. Medical institutions faced surging demand, leading to longer 

wait times and exacerbated disparities in access to care. Studies in [3, 4] found a concerning 

117% increase in wait time disparities. To address these challenges, a critical re-evaluation of 

current diagnostic approaches is essential. Embracing innovative solutions and integrating 

technology are key to improving efficiency, minimizing delays, and optimizing healthcare 

outcomes. 

Our study leverages machine learning to enhance the diagnostic accuracy of COVID-19 

using chest X-rays. The study evaluates various architectures, including efficient neural networks 

(EfficientNet) [7], multiscale vision transformers (MViT) [6], efficient vision transformers 

(EfficientViT) [8], and vision transformers (ViT) [9], against a comprehensive open-source 

dataset comprising 3616 COVID-19, 6012 lung opacity, 10192 normal, and 1345 viral 

pneumonia images. The analysis, focusing on loss functions and evaluation metrics, 
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demonstrates distinct performance variations among these models. Notably, multiscale models 

like MViT and EfficientNet tend toward overfitting. Conversely, our vision transformer model, 

innovatively fine-tuned (FT) on the encoder blocks, exhibits superior accuracy: 95.79% in 

four-class, 99.57% in three-class, and similarly high performance in binary classifications, along 

with a recall of 98.58%, precision of 98.87%, F1 score of 98.73%, specificity of 99.76%, and 

area under the receiver operating characteristic (ROC) curve (AUC) of 0.9993. The study 

confirms the vision transformer model’s efficacy through rigorous validation using qu* 

+antitative metrics and visualization techniques and illustrates its superiority over 

conventional models. The innovative fine-tuning method applied to vision transformers presents 

a significant advancement in medical image analysis, offering a promising avenue for improving 

the accuracy and reliability of COVID-19 diagnosis from chest X-ray images. 

 

Figure 3: Overview of Vision Transformer and Our Proposed Model 
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3.2 Versatility and Strength of Encryption  
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Figure 4 - 6: Homomorphic Encryption Code Based on Kyber 

 

The code that was used to apply homomorphic encryption to our project can be seen in 

Figures 4-6. The task given to us by our clients was to modify a previously formed solution to 

handle a new set of data. In this case, the original code was made to work with audio signals. 

Audio recordings are visually represented with peaks and valleys placed on a single axis. This 

visualization is quite accurate because audio files use a single-axis or 1D array format. For that 

reason, it is easy to do the same for an image. To accomplish this, the input image first needs to 

be read as a grayscale image that has a 2-axis format. From here, every row will be lined up back 

to back in a new 1D array. For example, for an image that is 214x214 pixels, you would have an 

array that follows the form of: 

 

[row_1_column_1-214_data || row_2_column_1-214_data || … || row_214_column_1-214_data] 
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​ Once in this form, the intended needs to create the necessary encryption keys, which 

include a public and private key. Once generated, the recipient sends their public key to the 

sender. Using the public key, the data representing the medical scan is encrypted in chunks, with 

each encrypted chunk becoming known as a cipher text, which can be sent back to the intended 

recipient that has the private key associated with the encrypted data. This private key can easily 

decrypt the encrypted data. Once decrypted, a simple resize function can be used on the 1D array 

to fit within the parameters of the image bounds once again. Testing out the final project with 

this code has led to identical images at the start and end of the encryption/decryption cycle every 

time. 

  

Figures 7 - 8: Working with Efficient private key vectors (left) versus inefficient public key vectors (right) 

The previous paragraphs explain the process of our code. However, the topic of 

lattice-based encryption is still unclear. Understanding lattice-based encryption is made simpler 

by comparing it to the Ron Rivest, Adi Shamir, and Leonard Adleman (RSA) encryption method. 

This method was effective for a reasonable amount of time, utilizing large prime numbers more 
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than 300 digits long as a public key. The two private keys needed to decrypt a given message are 

two smaller prime numbers that are multiplied together to equal the public key's value. The 

computational strain and time needed to decrypt data from an RSA encryption for both regular 

and supercomputers increased its recognition. However, with the development of quantum 

computers that can run mathematical computations in multiple-bit states at once, this method 

became ineffective Therefore, lattice-based encryption used lattices and vectors to secure data. It 

can be easier to think of a lattice similar to that of a graph. In a lattice, there are highly efficient 

and inefficient sets of vectors (shown in figures. In this case, the public key is a lattice that can 

have n dimensions (we will visualize it in only 2 dimensions for now) that give an individual a 

poor set of vectors to navigate the lattice. For the individual with the private key, that key holds a 

highly efficient set of vectors, making the task of finding the data much simpler to find to find 

the data. However, Kyber also introduces a “learning with errors” system to this scheme. In 

short, this modification adds intensional errors to the equation that designates where the data is 

held, causing the data to slightly drift away from the given point. With this implementation, now 

there is the added difficulty of navigating to the point closest to the data to find it. This method is 

extremely effective for all computer systems and therefore, a desired encryption scheme for our 

project. 
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3.3 Combination of AI Learning and Quantum-Resistant Encryption 

Artificial intelligence (AI) diagnosis-based telehealth systems have attracted lots of 

researcher’s interest in recent years, as a potential technique to mitigate the burden on the 

medical system. Diagnosis accuracy, as one of the most significant aspects in this field, is putting 

a lot of effort into devising specific models for each kind of disease by researchers, where bias is 

reported as a significant factor that impedes model training [10]. Aside from the accuracy of AI 

auxiliary diagnosis, the privacy of patient data during transmission also raises researchers’ 

concerns. Moreover, with the development of quantum computers, traditional encryption 

methods become vulnerable to threats from quantum cryptanalysis, as many experts worry [11].  

In this research, we start with designing a COVID-19 AI auxiliary diagnosing system that is 

experimented on a chest X-ray dataset. In our designated system, we use quantum-resistant 

homomorphic encryption as the protection of transmission between the clients and the 

diagnosing server. To assist the analysis and explore bias within image cases, we make an 

interactive software to display all the positive and negative predictions, the model’s confidence 

with its predictions, and how the model makes these predictions.  

●​ Accurate COVID-19-oriented AI diagnosing model: Our system utilizes the accurate 

and efficient fine-tuned vision transformer model from our phase-1 research. 

●​ Quantum-resistant homomorphic encryption: To enhance the confidentiality of patient 

data amidst potential interception by unauthorized entities, our system incorporates 

homomorphic encryption. This process initiates with the client requesting the generation 

of key pairs based on homomorphic encryption protocols from the server. Subsequently, 
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the client utilizes the acquired public key to encrypt the chest X-ray images, while the 

server retains the secret key, ensuring it remains undisclosed. Following this, the client 

transmits the encrypted images (ciphertexts) to the server, which then decrypts these 

ciphertexts utilizing the secret key. 

Upon successful decryption, the server applies a specifically fine-tuned model to 

conduct diagnostic evaluations (predictions), which are complemented by visual 

representations of the model’s predictive analytics (a detailed discussion is provided in 

the subsequent section). To complete the cycle, the server encrypts the diagnostic results 

using the public key initially provided by the client, mirroring the initial encryption 

process. These encrypted results are then dispatched to the client.  

The final stage involves decrypting the received results, which are then forwarded 

to medical professionals for validation and to research institutions. This step facilitates a 

critical evaluation of the model's inherent biases, paving the way for necessary 

refinements to enhance its accuracy and reliability. 

 

●​ Interactive visualization analysis: Discovering biases and implementing strategies to 

eliminate them is a crucial step in training machine learning with medical datasets. To 

have a more intuitive understanding of how experimented modes make predictions, we 

utilize the gradient-weighted class activation mapping (Grad-CAM) [12] method which 

calculates back-forwarded gradients from a specified class to draw a weighted heatmap. 

By overlapping the resized and projected heatmap with the origin image, researchers can 
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analyze patterns of models’ predictions. To make this analysis more intuitive, 

comprehensive, and informative, we devise this Animated2GradCAM software, which 

integrates our GradCAM visualization, data loading, and the powerful interactive 

visualization Animint2 R package [13] together, to display all tested images with the 

prediction results comparing to actual their corresponding GradCAM heatmap (2-D 

black-white), colormap, and overlapped images by just dragging and clicking the index 

bar. 

 

Figure 9: Our Proposed AI Telehealth System 
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4. Project Management 

4.1 Gantt Chart 

 

Figure 10: Gantt Chart 

​ This is the Gantt Chart for the 2nd phase of our capstone project, alongside our PERT 

diagram, this chart does an excellent job of showing the split between our team for the first 

portion of the 2nd term. This divide and conquer strategy is useful to complete the 2nd project 

research paper and encryption code simultaneously. In fact, trusting this approach has placed our 

project near completion months before the end of the current term. Currently, any further 

modifications to the code will be to improve accessibility, which is greatly received but not 

necessary to complete the project. 
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4.2 WBS 

Table 1: WBS 

 

​ This WBS chart is important for observing our project in a tabular format while also 

creating a medium that can assist our team with formulating and modifying the Gantt and PERT 

charts. Unlike the other charts, these charts allow for better visualization of how work is divided 

between team members. For example, it can be easily observed that Ian is working on data 

encryption (section 1) while Tianyi (Bruce) is working on the 2nd paper produced by this team 

(section 2), summarizing encryption. However, it is important to note that the publication of the 

2nd paper is not guaranteed and still going through the process of being accepted. After both 
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Tianyi (Bruce) and Ian finish with their portions of the project, the team will reassemble to work 

on the capstone class deliverables (section 3).  
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4.3 PERT Chart 

 

Figure 11: PERT Chart 

​ Figure 7 displays a PERT Chart, which is a diagram that graphically shows the flow of 

the 2nd phase of our project. For this phase of our project, our team of 2 is split into 2 sections. 

Specifically, Tianyi (Bruce) is working on our team's 2nd paper, which can be seen as orange 

nodes. Therefore, Ian was tasked to work on the green node tasks, which relate to implementing 

encryption code. Once both of these sections are complete, which is where our team is currently, 

our team will work as one unit to complete the necessary documentation for our capstone course 

and symposium presentation (seen as pink nodes). 
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4.4 Bill of Materials 

Table 2: Bills Of Materials 

 

​ Given that this project is specifically designed to be completed in an online environment, 

there are not many materials needed for this project. Additionally, given that this software is 

meant to be outsourced to medical institutions, the dataset that our code learns from is supplied 

by the user. Therefore, depending on the size of the team that would be either improving or 

recreating this project, they will need 1 laptop minimum and a Google Colab membership for 

multiple months if their team needs to outsource a powerful GPU for image processing. 

Additionally, labor costs at an average computer engineer’s pay grade will lead to an additional 

~$720 labor payment to be supplied. Therefore, as a startup, this project is estimated to cost 

$1,420-2,300 given a single individual is working on the project. Note that this value may 

fluctuate given a larger team.  
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5. Testing 

5.1 Research: Fine-tune Models 

1. Dataset and Preprocess 

The COVID-19 chest X-ray dataset used in this study was sourced from the publicly 

available COVID-19 Radiography Database [13,14,15]. This dataset comprises four distinct 

classes: 3,616 COVID-19 positive cases, 10,192 normal cases, 6,012 lung opacity (non-COVID 

lung infection) cases, and 1,345 viral pneumonia images, with an initial resolution of 299 by 299, 

as illustrated in Fig. 10. In our experiments, the dataset is fully shuffled and split into 80% for 

training, 10% for validation, and 10% for testing. To address potential data imbalances and 

enhance training efficiency, we preprocess the images in several ways. First, we normalize the 

original pixel values from [0, 255] to [0.0, 1.0]. This normalization step facilitates the training 

process by ensuring all pixel values are on a similar scale. Second, we resize the images to 224 

by 224 pixels to match the input requirements of the pre-trained models we employ for transfer 

learning. Inspired by the work in [14], which investigated various preprocessing techniques for 

chest X-ray images with CNNs, we conduct additional experiments with the following 

preprocessing methods: barely normalized images, (partially) segmented images based on 

provided masks in the dataset, and gamma-corrected images with different levels of constant 

settings. 
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Figure 12: Dataset Samples 

 

Table 3: Optimized training configuration for each experimented model after fine-tuning 
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2.  Model Configuration 

We employ transfer learning with pre-trained models on the COVID-19 chest X-ray 

dataset. Through fine-tuning on preprocessing methods (bare normalization, segmentation, and 

gamma correction), learning rate (range [1𝑒−3,1𝑒−6]), batch size (within 16, 32, 64, 128), and 

weight decay (range [1𝑒 − 1,1𝑒 − 6]), we obtain optimized settings (as reported in Table 3) and 

corresponding models. Additionally, the cross-entropy function [16] served as the loss function, 

and AdamW/Adam [17, 18] were utilized as optimizers for experimented models. Then, 

observing the superior performance of ViT-B16 compared with others in the early stage of 

experiments, we further fine-tuned it by setting different numbers of encoder blocks inside. The 

configurations and results on different numbers of block settings are shown in Table 4. 

Table 4: Training configuration and Test results after fine-tuning on ViT-16 

 (batch size: 64, learning rate: 1e-5, preprocessed with bare normalization) 
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3. Result Analysis 

To assess the training effectiveness of the experimented models, we monitor the loss 

function on both the training and validation datasets. The loss curves for each model (as depicted 

in Fig. 11) are obtained through the fine-tuning process detailed in Section 3.2. Notably, weight 

decay plays a crucial role in achieving optimal performance.  

Convergence Rate: Under the optimized settings reported in Table 1, EfficientNet-B0, 

ViT-Base-patch8, ViTBase-patch16, and ViT-Base-patch32 achieve minimum loss within 10 

iterations, demonstrating their superior convergence speed. MViTv2 and EfficientNet-B5 achieve 

minimum loss between 10 to 15 iterations, whereas EfficientViT-B3 requires nearly 30 iterations 

to reach its minimum.  

Overfitting: We employ the cross-entropy loss function and implement early stopping 

with patience of 30 epochs to mitigate overfitting. As observed in the training and validation loss 

curves depicted in Fig. 11, the extent of overfitting varies across models. Notably, 

EfficientViT-B3 exhibits a stable fitting behavior, while EfficientNet models demonstrate a 

tendency towards relatively unstable overfitting on our experimental dataset.  

Our experimented models demonstrate relatively promising results after fine-tuning, with 

validation loss values typically fluctuating in the range of 0 to 0.2. Trading off with the 

convergence rate, overfitting, and loss value, we select the ViT-Base-patch16 structure for further 

tuning, where our proposed model is generated. Table 4 shows the corresponding configurations 

and results. Compared to other models, our proposed model achieves lower training loss and 
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higher accuracy, although a slight overfitting gap is still present. A detailed analysis of the 

prediction performance is provided in the next subsection. 

 

Figure 13: Train and validation losses during training process 

After the training process, we proceed with testing on the test set, evaluating the results 

based on the specified criteria, and finally comparing them with existing models. Firstly, we 

observe that the training loss accurately reflects the achieved accuracy when the experimental 

models reach a high accuracy score (around 93% to 96%) as shown in Table 4. However, this is 

also balanced by the training time per epoch; models with higher accuracy often require more 

resources to train as the complexity of the model increases. For instance, the ViT-Base-patch8 

has excellent performance with accuracy (95.41%), recall (99.15%), precision (98.59%), and F1 

score (98.87%) among finetined models. However, with a trainable parameter of 85.81 M, the 
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training time taken in each iteration is several times longer than in other models (6.2 times longer 

in comparison to our model). Although it has a similar number of trainable parameters ((224∕8)2 

× 82 × 3) as ViT-Base-patch16’s ((224∕16)2 × 162 × 3), ViT-Base-patch8 has more tokens 

(patches) ((224∕8)2 ) which exhibits more computational cost than flattened features (8 2 ). 

EfficientNetB5, with the highest recall value of 99.43% among experimented models, shows its 

high sensitivity to detect COVID-19 cases, although it has a relatively bad classification ability 

in four-class classifying (accuracy of 93.34%). MViT2 and EfficientViTV3, although 

maintaining moderate performance in the experimented four-class classification COVID-19 chest 

X-ray dataset, demonstrate outstanding accuracy in multi-class classification with other 

high-complex datasets [19, 20].  

Table 5: Comparison with existing studies (Test Result, Binary: COVID-19 vs. non-COVID, Three-Class: 

COVID-19 vs. Normal + Lung Opacity vs. Pneumonia).  

 

Tech-Health Comparators, 33 



 
For our model, which is based on ViT-Base-patch16 with specific adjustments, we 

remove unnecessary layers and retain crucial layers for feature extraction, reducing the model 

size. This, coupled with reduced trainable parameters (from 85.81 M to 71.62 M) and training 

time (from 313.94 s to 264.79 s), results in our model achieving the highest accuracy of 95.79% 

by mitigating overfitting. On the other hand, when delving deeper into the confusion matrix of 

the proposed model, as depicted in Fig. 5, we can discern the model’s effectiveness. The most 

crucial class, COVID-19, achieves an accuracy of 98.58% based on 𝑇𝑃 and 𝐹𝑁. However, the 

lung opacity and normal class exhibit suboptimal performance, which can be attributed to their 

relatively large image count and potential challenges posed by image quality in the classification 

task. Thus, we hypothesize that the classification between lung opacity and normal images is the 

most challenging bias existing in this COVID-19 chest X-ray dataset. Additionally, by examining 

the ROC curves and AUCs (as shown in Fig. 12), we conclude that our proposed model is 

confident regarding the decision it makes, and an almost ideal ROC curve is plotted on the 

prediction of COVID-19 and pneumonia cases, with a COVID-19 AUC value of 0.9993, lung 

opacity AUC value of 0.988, normal AUC value of 0.9896, and pneumonia AUC value of 1. The 

slightly lower AUC value (0.988 and 0.9896) of lung opacity and normal classes can further 

prove their biases in our model training. To comprehensively assess the advancements offered by 

our proposed model, we compare its accuracy and other metrics with existing research studies, as 

shown in Table 5. A major focus in the existing literature has been the binary classification of 

COVID-19 and non-COVID-19 cases. While such approaches achieve high accuracy (up to 

97.83%), they lack the granularity needed for a more comprehensive diagnosis. Our multi-class 
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classification approach addresses this limitation by focusing on identifying specific classes 

within the spectrum of COVID-19 and related conditions. Remarkably, our model achieved an 

outstanding accuracy of 99.57% when classifying the COVID-19 class. Furthermore, the high 

recall (98.58%) and leading specificity (99.76%) demonstrate the model’s exceptional sensitivity 

in detecting COVID-19 features while accurately distinguishing other conditions. These results 

highlight the model’s potential to improve the precision of medical diagnosis using chest X-ray 

images. 

 

Figure 14: Confusion matrix (left) and ROC curves with AUC (right) for our proposed model. 

 

Research Conclusion: 

This study investigates the effectiveness of computer vision models, particularly vision 

transformers, for diagnosing COVID-19 from chest X-rays. We meticulously analyze and 

compare the performance of four diverse architectures: vision transformer, EfficientNet, MViT, 
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and EfficientViT. We assess overfitting behavior in both CNN and VT models by visualizing the 

training and validation loss curves. Our analysis reveals several techniques to mitigate 

overfitting, with weight decay emerging as a particularly impactful method. Additionally, we 

explore the influence of varying the number of encoder blocks within the transformer models. 

Through careful fine-tuning and modifications, we present our proposed fine-tuned ViT model 

(FT-ViT) as a leading performer, achieving exceptional accuracy. FTViT demonstrates not only 

outstanding accuracy in four-class classification (95.79%) but also a remarkable 99.57% 

accuracy in a clinically relevant three-class grouping, along with consistently high performance 

in binary classification scenarios. Stringent validation using quantitative metrics, ROC curves, 

and Grad-CAM visualizations solidifies FTViT’s effectiveness. Our validation process also 

identified potential biases within the dataset, particularly between lung opacity and normal 

images. We believe this challenge can be addressed through improved image segmentation and 

balancing techniques. This comparative analysis across various architectures highlights the 

superiority of our fine-tuned VT approach for COVID-19 diagnosis. We envision that FT-ViT, 

with its exceptional accuracy, could contribute to more efficient and potentially faster COVID-19 

diagnosis, particularly as a screening tool in clinical settings. Furthermore, our findings provide 

valuable insights for future research in medical image analysis tasks. Beyond specific 

instructions, this work opens doors for exploring transfer learning from other medical imaging 

datasets to broaden the applicability of vision transformer-based models in the healthcare 

domain.  
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5.2 Encryption Testing 

​ To accurately test the accuracy of our project, multiple steps were implemented into our 

code to ensure data integrity was upheld to our client’s expectations. Given that this project is 

handling image data, displaying the image and histograms showing the pixel values at each step 

in the process can be used to benchmark our results. Therefore, that is exactly what our team did 

to test our encryption algorithm. In Table 6 (shown on the following page), you will see many 

images. These images represent the medical scan before, during, and after the 

encryption/decryption process as well as histograms that show all the possible data values of 

each pixel in the image (0-1) and the number of pixels that have that specific pixel value. 

Analyzing the tables below shows that before and after the encryption and decryption process, 

the images and their associated histograms remain identical, showing no data loss and successful 

encryption. Therefore, having this process combined with our Visual Transformer deep-learning 

neural network, successful diagnoses as well as secure data transfer or ensured in the medical 

field.  
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Table 6: Image Development and Pixel Value Comparison Throughout Encryption/Decryption Process 

Image Before Encryption/Decryption 

 

Image After Encryption/Decryption

 

Graph Showing Pixel Values (x) and Quantity (y) 
before encryption 

 

Graph Showing Pixel Values (x) and Quantity (y) 
after decryption 

 

Encrypted Image 

 

Graph Showing Pixel Values (x) and Quantity (y) 
after encryption 
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6. Conclusion 

We have successfully completed all the assigned tasks in our capstone project, which 

included developing a model capable of predicting medical-related data and implementing 

encryption techniques to protect the privacy of transmitted medical data. 

Specifically, we have composed a paper that summarised our research on AI diagnosing 

models on the COVID-19 chest X-ray dataset. After meticulous revision, our paper was 

announced to be accepted for publication by Healthcare Analytics | Journal | ScienceDirect.com 

by Elsevier. In this research, we conducted experiments through a vast range of computer vision 

models, which include state-of-the-art transformer structures. We finally got our proposed 

fine-tuned Vision Transformer model which has an accuracy of 95.79% on four-class 

classification, and 99.57% on three-class classification and binary classification. To verify the 

efficiency of our model and explore potential biases within the dataset, we utilized several 

evaluation metrics like the F-1 score (98.73%), precision (98.87%), specificity (99.76%), and 

recall (98.85%), drew the confusion matrix and receiver operating characteristic (ROC) curve, 

and used the Grad-CAM visualization method. 

Moreover, after deploying the homomorphic encryption to encrypt and decrypt the chest 

X-ray images with the Kyber package, we extensively devised our AI Telehealth system, which 

demonstrated the whole working procedure online. Users can access this website to experience 

the products of our project. 
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Last but not least, discovering the lack of an intuitive demonstration of a dataset in the 

field of human-sense visualization in image classification, we created the Animint2GradCAM 

software by combining Python and Animint2 R package, which displayed our tested dataset (696 

cases, 1.5 GB) with index, confidence, prediction results, and GradCAM graphs, to help 

researchers better understand how classification models make decisions. 

​ COVID-19 diagnosis is just the starting point of AI Telehealth project. Currently, we are 

planning to publish our entire system (AI diagnosing + homomorphic encryption + interactive 

visualization feedback). We believe and hope this pattern can be applied to other fields of 

medical image diagnosis and make fewer people suffer pain from illness around the world. 
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