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1. Introduction

1.1 Efficiency In the Medical Field

The current medical system depends heavily on X-ray scan technology to accurately
depict certain body portions. The reason behind this is to provide skilled medical professionals
with the information needed to accurately diagnose any issues, allowing doctors to create a plan
to combat any ailment or damage to the human body without the need for invasive surgery. The
technology behind medical scan equipment is advanced, but there is still an area in the diagnosis
process that can use improvement. Currently, diagnoses take 1-3 days. Although this may not
seem like an issue, there are plenty of ailments that can become lethal within that time frame.
One method that can be used to improve diagnosis times is the implementation of Al in the
medical field.

Surprisingly, many other teams have set out to formulate a solution to the same issue in
diagnosis. However, what sets our team apart is that we have not only formulated code solutions
to the issue, but we have created multiple different forms of our solution using different image
analysis programs such as ViT (Visual Transform) and EfficientNet to find the best option based
on updated software. Furthermore, once securing a more accurate program for diagnosis, our
team moved to the 2nd stage of the project, which utilizes Kyber quantum-resistant lattice-based
encryption to protect sensitive medical data. The motivation behind this extensive testing is due

to the rapid pace at which programs improve. Therefore, the programs used in our research have
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created updated models that may show different and more promising results than the research

papers that our team used in our research phase.
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1.2 Client of Team Tech-Health Project

Professor Tuy Nguyen

Professor Tuy Nguyen is currently an Assistant Professor at the School of Informatics,
Computing, and Cyber Systems at Northern Arizona University. Previously, he held the positions
of Lecturer at the School of Global Convergence Studies and Post-Doctoral Fellow at the
Department of Electrical and Computer Engineering at Inha University, from May 2021 to
August 2022. Prior to that, he worked as a Senior Research Engineer at Conextt Inc.,
contributing from September 2019 to April 2021. He earned his Ph.D. in Information and

Communication Engineering from Inha University in August 2019.
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1.3 Team Members of Team Tech-Health

Leader: Tianyi (Bruce) Chen

This is Tianyi (Bruce) Chen, a computer engineering student at Northern Arizona University. His
primary academic focus is on machine learning (image processing), a field that deeply fascinates
him. In his leisure time, he engages in small-scale IoT projects, where he finds great satisfaction
in blending hardware and software to create tangible, functional devices. His programming

experience casts through a vast array of Python, R, C, Javascript, Verilog, etc.

His role involves rigorously training and testing various models with the TeleHealth dataset,
meticulously analyzing the outcomes, composing the paper, incorporating encryption algorithms

with the Al model into the system, and making interactive visualization software.
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Secretary and Treasurer: Ian Philippi

This is Ian Philippi, a Computer Engineer at Northern Arizona University. He enjoys working
hard and playing video games during his free time (although there isn't much free time during
school terms). He is proficient in and enjoys formulating code in C, Python, Assembly, and

SystemVerilog.

He finds project Al TeleHealth to be very important because it can greatly benefit those in need
of an efficient/accurate diagnosis, which allows medical professionals more time to perform

life-saving procedures.
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1.4 User Manual

(our project is a research project, and this manual is for the extra content developed in our

project)

Our designated system integrates two core components: Al-assisted diagnosis and homomorphic

encryption for secure transmission. The process is delineated as follows:

1. Public Key Generation Request: The server initiates the process by generating a pair of
cryptographic keys. While the public key is transmitted to the client, the secret key is

securely retained by the server.

2. Local Data Encryption: Upon receiving the public key, the client encrypts the
diagnostic image using this key, ensuring that the data remains secure during

transmission.

3. Transmission of Encrypted Data: The encrypted data, now termed ‘ciphertext’, is sent
back to the server. The server, holding the secret key, decrypts the ciphertext to retrieve

the original image.

4. Al-Powered Diagnosis: The decrypted image is then analyzed using our proprietary Al

model. This model, developed through rigorous research, performs the diagnostic tasks.

5. Transmission of Diagnostic Results: Upon completion of the diagnosis, the server
encrypts the prediction results using a new public key generated by the client. This step

ensures that the transmitted results remain secure until they reach the client.

6. Result Reception and Decryption by the Client: The client decrypts the received
encrypted results using the corresponding private key. This decrypted data is then

forwarded to healthcare professionals for validation and further action.
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2. Problem Statement

2.1 Needs of Al/Machine Learning in Diagnosing

Modern diagnosis methods have developed significantly in recent years, but there are
only a few hospitals fully utilizing machine learning. According to [1], only 24 percent of
interviewed hospitals said they were experimenting with Al/machine learning techniques and 22
percent of these hospitals said they were in the initializing stage of incorporating Al. Despite few
hospitals adopting healing methods with Al/machine learning, lots of top hospitals around the
world (like Mayo Clinic, Cleveland Clinic, and Massachusetts General Hospital) have invested
millions into Al/machine learning construction according to [2], which indicates that Al/machine
learning has a broad market with diagnostics. [3] also indicates the huge potential of Al/machine
learning because it has extraordinary diagnosing abilities in some aspects in the Future
Healthcare Journal (2019) [4]. Additionally, [3] points out that one of the main impedances to the
implementation of Al/machine learning in the medical field is the instability of most existing
Al/machine learning models. However, this statement is quickly becoming invalid due to the
rapid improvement of Al neural networks.

Moreover, after the explosion of the COVID-19 virus, many countries and regions are
facing a lack of medical diagnosis resources. People further realize the importance of combining
Al/machine learning techniques with tele-medical diagnosis. In conclusion, the market has broad
prospects for high performance, accuracy, and stable machine learning methods (models)
especially in COVID-19 diagnosing fields. In our project, we utilized a chest X-ray image

dataset consisting of scans relating to healthy lungs as well as lungs inflicted with COVID-19,
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viral pneumonia, and lung opacity, implementing existing machine learning models to classify
different types of images, and compare the performance between each model to find the one that
best matches our client’s expectations.

2.2 Needs for Encryption in Telehealth

With the possibility of telehealth in the medical field, people notice a possible privacy
problem when transferring clients’ information. The current method for protecting the transferred
data is end-to-end encryption which is safe enough but hard to backup and archive. However,
with the development of quantum computing technologies, sensitive data in the form of medical
scans used in our software can be intercepted and stolen.

Given the significant risk of security in the first phase of our project, the second phase
includes using Kyber, which is a lattice-based encryption method that utilizes multi-dimensional
lattices to encrypt and decrypt data given vector keys [4]. In this process, an image array is
located at a specific point in a multi-dimensional lattice. In the past, RSA encryption was the
most popular method, in which semi-prime numbers (products of 2 prime numbers) were used as
the public keys. Given that, the private keys are the prime factors of the semiprime public key.
This is highly effective on regular and supercomputers because of the time it takes for them to
run the calculations necessary to break this encryption after intercepting data. However, given
that quantum bits can be in multiple states at once, RSA encryption becomes ineffective in
quantum computing. However, given a Kyber encryption system that is multidimensional, even
utilizing bits that can be in a state of superposition still takes a significant amount of time to

decrypt intercepted information.
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Figure 1: Project Phase 1 (Research: AI Diagnosis)

This is a flow chart of the first phase tasks of our Tech Health Comparators. Our research
is conducting experiments through various model structures with a focus on their accuracy and
efficiency. After assessing these two performances by several evaluation metrics, we tune the

parameter configurations and start the next rounds of experiments. First, Vast experiments are
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executed to explore the optimized settings for each model. Then we elaborate on the most
suitable structure which is traded off from accuracy and efficiency to conduct more meticulous
tuning. Finalizing our proposed model, we use the visualization technique to verify it and explore

the potential bias in the experimented dataset.
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Figure 2: Project Phase 2 (Homomorphic Encryption)
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This graph represents the finalized version of the second phase of our project, which
involves encryption. As said previously, the method of encryption that our project is going to use
is based on quantum-resistant encryption methods, In short, this means that the encryption
algorithm uses a lattice, hiding the picture at a specific point in said lattice. In order to decrypt
the data, a computer needs to navigate the lattice only using 2 vectors. However, the best two
vectors for efficient lattice navigation are given to the receiver as keys. However, any other
systems attempting to intercept and steal this data now need to navigate the same lattice using
highly inefticient vectors. This concept is what makes this type of encryption effective against
quantum computing. Therefore, given code that already implements this encryption, but only
with audio files, with simple modification this can be applied to images. Specifically, this is done
by converting the images into a one-dimensional array, encrypting the data, decrypting the data,
and then reconstructing the array into a 2-dimensional array format. As this has already been
accomplished, the last implementations are regarding easy mass input of medical scans using an

array of images.
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3. Concept

3.1 Accuracy and Efficiency of AI Learning

Chest X-rays are a crucial tool for diagnosing various illnesses. However, their current
use faces limitations in efficiency, particularly during critical situations like pandemics. The
delay of 1-2 days between scans and diagnosis can significantly impact patient outcomes. This
challenge is particularly evident with diseases like COVID-19, which has affected over 772
million people globally, with over 7 million fatalities [1]. The COVID-19 pandemic resulted in a
significant economic burden, with a 3.3 trillion dollar deficit in the US for 2020 and a peak
unemployment rate of 14.7% [2, 3]. Medical institutions faced surging demand, leading to longer
wait times and exacerbated disparities in access to care. Studies in [3, 4] found a concerning
117% increase in wait time disparities. To address these challenges, a critical re-evaluation of
current diagnostic approaches is essential. Embracing innovative solutions and integrating
technology are key to improving efficiency, minimizing delays, and optimizing healthcare
outcomes.

Our study leverages machine learning to enhance the diagnostic accuracy of COVID-19
using chest X-rays. The study evaluates various architectures, including efficient neural networks
(EfficientNet) [7], multiscale vision transformers (MViT) [6], efficient vision transformers
(EfficientViT) [8], and vision transformers (ViT) [9], against a comprehensive open-source
dataset comprising 3616 COVID-19, 6012 lung opacity, 10192 normal, and 1345 viral

pneumonia images. The analysis, focusing on loss functions and evaluation metrics,
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demonstrates distinct performance variations among these models. Notably, multiscale models
like MVIT and EfficientNet tend toward overfitting. Conversely, our vision transformer model,
innovatively fine-tuned (FT) on the encoder blocks, exhibits superior accuracy: 95.79% in
four-class, 99.57% in three-class, and similarly high performance in binary classifications, along
with a recall of 98.58%, precision of 98.87%, F1 score of 98.73%, specificity of 99.76%, and
area under the receiver operating characteristic (ROC) curve (AUC) of 0.9993. The study
confirms the vision transformer model’s efficacy through rigorous validation using qu*
+antitative metrics and visualization techniques and illustrates its superiority over
conventional models. The innovative fine-tuning method applied to vision transformers presents
a significant advancement in medical image analysis, offering a promising avenue for improving

the accuracy and reliability of COVID-19 diagnosis from chest X-ray images.
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Figure 3: Overview of Vision Transformer and Our Proposed Model

Tech-Health Comparators, 14



NA NORTHERN ARIZONA
LUNIVERSITY

<~ of Informatics, Computing, and Cyber Systems

3.2 Versatility and Strength of Encryption

° image_number = 1
root_path = *

for file in os.listdir(root_path):

image_path = root_path + ‘Norm: + str{image_number) +
print(image_path)
image = Image.open({image_path)

ze, Image.BICUBIC)

norm_img = plt.imread(
plt.hist(norm_img.rave
plt.show()

r le_image bytes = io.BytesIO()

r le image.save(rescale image bytes, format="
image bytes = rescale image bytes.getvalue()
display(rescale_image)

public_key, secret_key = Kyberie24.keygen()
chunk_size
encryption_start_time = time.time()

ciphertexts = []
cipher_number = []
decrypted_chunks = []

for i in range(®, len(image bytes), chunk size):

chunk = image bytes[i:i+chunk_:

remainder = len(chunk) ?
if remainder != @:

padding_length = 32 - remainder
®

chunk += b’ padding length

ciphertext = Kyber1824. cpapke_enc(public_key, chunk, coins-os.urandom(32))
number_string = bytes_to_number_string(ciphertext)
ciphertexts.append(ciphertext)

cipher_number.append({number_string)

encryption_end_time = time.time()

ciphertext_string = b'".join(ciphertexts)
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encrypted_image string = base64.bédencode(ciphertext_string).decode( utf-28")

enc_img = Image.new('L’, (299, 209))
enc_img.frombytes(basebd.bbddecode(encrypted_image_string),

enc_img.save( encrypted _image.png’}
display(enc_img)

enc_hist = plt.imread( encrypted_image.png’)
plt.hist{enc_hist.ravel(), bins=256, range=(8.8, 1.8), fc="k', ec="k")
plt.show()

decryption_start_time = time.time()

decrypted_chunks = []

for ciphertext in ciphertexts:
decrypted_chunk_bytes = Kyber1824._ cpapke_dec(secret_key, ciphertext)
decrypted_chunk_bytes = decrypted chunk_bytes[:len(chunk)]
decrypted_chunk = np.frombuffer(decrypted_chunk_bytes, dtype=np.float32)

decrypted_chunks.append(decrypted_chunk)

decrypted_img_array = np.concatenate(decrypted_chunks)
decrypted_img_array = decrypted_img_array[:len{image_bytes)]
decrypted_img_bytes = io.BytesIO()
decrypted_img_bytes.write(decrypted_img array.tobytes())
decrypted_img_bytes.seek(8)

decrypted_img_bytes = decrypted_img_bytes.read()

decryption_end_time = time.time()

encryption_elapsed time = encryption_end_time - encryption_start_time

decryption_elapsed_time = decryption_end_time - decryption_start_time

print{f"Encryption time: {encryption_elapsed time} seconds™)
{decryption_elapsed_time} seconds™)

decrypted_img = Image.open(io.BytesIO(decrypted_img_bytes))

display(decrypted_img)

rescaled final_image = decrypted_img.resize(rescale_size, Image.BICUBIC)
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rescale_image.save(
final img = plt.imread(’
plt.hist(final_img.rav

plt.show()

decrypted_img bytes):
Ful™)

data mismatch.")

image number = image number + 1

Figure 4 - 6: Homomorphic Encryption Code Based on Kyber

The code that was used to apply homomorphic encryption to our project can be seen in
Figures 4-6. The task given to us by our clients was to modify a previously formed solution to
handle a new set of data. In this case, the original code was made to work with audio signals.
Audio recordings are visually represented with peaks and valleys placed on a single axis. This
visualization is quite accurate because audio files use a single-axis or 1D array format. For that
reason, it is easy to do the same for an image. To accomplish this, the input image first needs to
be read as a grayscale image that has a 2-axis format. From here, every row will be lined up back
to back in a new 1D array. For example, for an image that is 214x214 pixels, you would have an

array that follows the form of:

[row 1 column 1-214 data||row 2 column 1-214 data|...||row_ 214 column 1-214 data]
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Once in this form, the intended needs to create the necessary encryption keys, which
include a public and private key. Once generated, the recipient sends their public key to the
sender. Using the public key, the data representing the medical scan is encrypted in chunks, with
each encrypted chunk becoming known as a cipher text, which can be sent back to the intended
recipient that has the private key associated with the encrypted data. This private key can easily
decrypt the encrypted data. Once decrypted, a simple resize function can be used on the 1D array
to fit within the parameters of the image bounds once again. Testing out the final project with
this code has led to identical images at the start and end of the encryption/decryption cycle every

time.

[ ) [ [} [ ] ([ ] ([ ] ® ®  uawithadded @

Data with added
error

Figures 7 - 8: Working with Efficient private key vectors (left) versus inefficient public key vectors (right)

The previous paragraphs explain the process of our code. However, the topic of
lattice-based encryption is still unclear. Understanding lattice-based encryption is made simpler
by comparing it to the Ron Rivest, Adi Shamir, and Leonard Adleman (RSA) encryption method.

This method was effective for a reasonable amount of time, utilizing large prime numbers more
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than 300 digits long as a public key. The two private keys needed to decrypt a given message are
two smaller prime numbers that are multiplied together to equal the public key's value. The
computational strain and time needed to decrypt data from an RSA encryption for both regular
and supercomputers increased its recognition. However, with the development of quantum
computers that can run mathematical computations in multiple-bit states at once, this method
became ineffective Therefore, lattice-based encryption used lattices and vectors to secure data. It
can be easier to think of a lattice similar to that of a graph. In a lattice, there are highly efficient
and inefficient sets of vectors (shown in figures. In this case, the public key is a lattice that can
have n dimensions (we will visualize it in only 2 dimensions for now) that give an individual a
poor set of vectors to navigate the lattice. For the individual with the private key, that key holds a
highly efficient set of vectors, making the task of finding the data much simpler to find to find
the data. However, Kyber also introduces a “learning with errors” system to this scheme. In
short, this modification adds intensional errors to the equation that designates where the data is
held, causing the data to slightly drift away from the given point. With this implementation, now
there is the added difficulty of navigating to the point closest to the data to find it. This method is
extremely effective for all computer systems and therefore, a desired encryption scheme for our

project.
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3.3 Combination of AI Learning and Quantum-Resistant Encryption

Artificial intelligence (Al) diagnosis-based telehealth systems have attracted lots of
researcher’s interest in recent years, as a potential technique to mitigate the burden on the
medical system. Diagnosis accuracy, as one of the most significant aspects in this field, is putting
a lot of effort into devising specific models for each kind of disease by researchers, where bias is
reported as a significant factor that impedes model training [10]. Aside from the accuracy of Al
auxiliary diagnosis, the privacy of patient data during transmission also raises researchers’
concerns. Moreover, with the development of quantum computers, traditional encryption
methods become vulnerable to threats from quantum cryptanalysis, as many experts worry [11].
In this research, we start with designing a COVID-19 Al auxiliary diagnosing system that is
experimented on a chest X-ray dataset. In our designated system, we use quantum-resistant
homomorphic encryption as the protection of transmission between the clients and the
diagnosing server. To assist the analysis and explore bias within image cases, we make an
interactive software to display all the positive and negative predictions, the model’s confidence
with its predictions, and how the model makes these predictions.

o Accurate COVID-19-oriented Al diagnosing model: Our system utilizes the accurate
and efficient fine-tuned vision transformer model from our phase-1 research.

o Quantum-resistant homomorphic encryption: To enhance the confidentiality of patient
data amidst potential interception by unauthorized entities, our system incorporates
homomorphic encryption. This process initiates with the client requesting the generation

of key pairs based on homomorphic encryption protocols from the server. Subsequently,
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the client utilizes the acquired public key to encrypt the chest X-ray images, while the
server retains the secret key, ensuring it remains undisclosed. Following this, the client
transmits the encrypted images (ciphertexts) to the server, which then decrypts these
ciphertexts utilizing the secret key.

Upon successful decryption, the server applies a specifically fine-tuned model to
conduct diagnostic evaluations (predictions), which are complemented by visual
representations of the model’s predictive analytics (a detailed discussion is provided in
the subsequent section). To complete the cycle, the server encrypts the diagnostic results
using the public key initially provided by the client, mirroring the initial encryption
process. These encrypted results are then dispatched to the client.

The final stage involves decrypting the received results, which are then forwarded
to medical professionals for validation and to research institutions. This step facilitates a
critical evaluation of the model's inherent biases, paving the way for necessary

refinements to enhance its accuracy and reliability.

Interactive visualization analysis: Discovering biases and implementing strategies to
eliminate them is a crucial step in training machine learning with medical datasets. To
have a more intuitive understanding of how experimented modes make predictions, we
utilize the gradient-weighted class activation mapping (Grad-CAM) [12] method which
calculates back-forwarded gradients from a specified class to draw a weighted heatmap.

By overlapping the resized and projected heatmap with the origin image, researchers can
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analyze patterns of models’ predictions. To make this analysis more intuitive,
comprehensive, and informative, we devise this Animated2GradCAM software, which
integrates our GradCAM visualization, data loading, and the powerful interactive
visualization Animint2 R package [13] together, to display all tested images with the
prediction results comparing to actual their corresponding GradCAM heatmap (2-D

black-white), colormap, and overlapped images by just dragging and clicking the index

bar.
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Figure 9: Our Proposed Al Telehealth System
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4. Project Management

4.1 Gantt Chart

>—< o—AEe
|
— A" I T T T T T T T T T T T T T T
w eska eeks ek ek ecks eeks eckc 10 ek 11 ek 12 eek 13 sk 14 ek 15 eek 16 sk 1
Name | Begindate | Enddate |,

project

Picture Array 624 1130124
Picture Security 324 213124
Picture Array Input 21424 202024
Read Resource 1624 1123124
Formulate Paper & Presenta, 24124 26124

Finalize Paper 217124 2113124

Partial Design Report 22124 31124

Final Design Report 3/4124 3/119/24

Finalize Video Pitch & Website  3/20/24 412124

4124124 4124124 *

Figure 10: Gantt Chart

This is the Gantt Chart for the 2nd phase of our capstone project, alongside our PERT
diagram, this chart does an excellent job of showing the split between our team for the first
portion of the 2nd term. This divide and conquer strategy is useful to complete the 2nd project
research paper and encryption code simultaneously. In fact, trusting this approach has placed our
project near completion months before the end of the current term. Currently, any further
modifications to the code will be to improve accessibility, which is greatly received but not

necessary to complete the project.
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4.2 WBS
Table 1: WBS
1 Encryption
Code
11 Picture Cpnven code Finished Code 2 weeks lan Laptop / Google
Array into array Collab
12 Picture Encryptand | iiched Code | 2 weeks lan Laplop / Google 11
Security Decrypt Collab
13 Picture Array | Allow for Mass Finished Code 1 week lan Laptop / Google 12
Input Image Input Collab
2 Research
Read Read research - Research
21 1 week Tianyi
Resource source Sources
Formulate
2.2 Paper & Create research Rough Draft 1-2 weeks Tianyi Research 21
N paper Sources
Presentation
2.3 Finalize Paper Review and Final Draft 2-7 days Entire team Paper Review 22
’ finalize Paper Software ’
Report &
3 Presentation
Material
Partial Design Create
31 R Updated Report 1 week lan & Tianyi Google Docs
eport
Report
Final Design | Finalize Partial Finalized .
32 Report Design Report Report 2 weeks lan & Tianyi Google Docs 3.1
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This WBS chart is important for observing our project in a tabular format while also
creating a medium that can assist our team with formulating and modifying the Gantt and PERT
charts. Unlike the other charts, these charts allow for better visualization of how work is divided
between team members. For example, it can be easily observed that Ian is working on data
encryption (section 1) while Tianyi (Bruce) is working on the 2nd paper produced by this team
(section 2), summarizing encryption. However, it is important to note that the publication of the

2nd paper is not guaranteed and still going through the process of being accepted. After both
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Tianyi (Bruce) and Ian finish with their portions of the project, the team will reassemble to work

on the capstone class deliverables (section 3).
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4.3 PERT Chart
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Figure 11: PERT Chart

Figure 7 displays a PERT Chart, which is a diagram that graphically shows the flow of
the 2nd phase of our project. For this phase of our project, our team of 2 is split into 2 sections.
Specifically, Tianyi (Bruce) is working on our team's 2nd paper, which can be seen as orange
nodes. Therefore, lan was tasked to work on the green node tasks, which relate to implementing
encryption code. Once both of these sections are complete, which is where our team is currently,
our team will work as one unit to complete the necessary documentation for our capstone course

and symposium presentation (seen as pink nodes).
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4.4 Bill of Materials
Table 2: Bills Of Materials
) _— ’ Discount
Vendor Name Link to Item Description Iltem/Catalog #  Size/Color  Qty Code Total Cost
Del/HP/MS/etc. Depend on User Requirements Laptop lo create, madify, N/A N/A 1 N/A $700-1500
and run code
N/A N/A Labor Cost in Hours N/A N/A 12 N/A ~$720
Optional: Monthly
" . Google Colab Pro
Google https://colab.research.google.com/signup Subscription for Pythan N/A N/A 7 N/A $80
Code
Total: $1,420-2,300

Given that this project is specifically designed to be completed in an online environment,
there are not many materials needed for this project. Additionally, given that this software is
meant to be outsourced to medical institutions, the dataset that our code learns from is supplied
by the user. Therefore, depending on the size of the team that would be either improving or
recreating this project, they will need 1 laptop minimum and a Google Colab membership for
multiple months if their team needs to outsource a powerful GPU for image processing.
Additionally, labor costs at an average computer engineer’s pay grade will lead to an additional
~$720 labor payment to be supplied. Therefore, as a startup, this project is estimated to cost

$1,420-2,300 given a single individual is working on the project. Note that this value may

fluctuate given a larger team.
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S. Testing

5.1 Research: Fine-tune Models

1. Dataset and Preprocess

The COVID-19 chest X-ray dataset used in this study was sourced from the publicly
available COVID-19 Radiography Database [13,14,15]. This dataset comprises four distinct
classes: 3,616 COVID-19 positive cases, 10,192 normal cases, 6,012 lung opacity (non-COVID
lung infection) cases, and 1,345 viral pneumonia images, with an initial resolution of 299 by 299,
as illustrated in Fig. 10. In our experiments, the dataset is fully shuffled and split into 80% for
training, 10% for validation, and 10% for testing. To address potential data imbalances and
enhance training efficiency, we preprocess the images in several ways. First, we normalize the
original pixel values from [0, 255] to [0.0, 1.0]. This normalization step facilitates the training
process by ensuring all pixel values are on a similar scale. Second, we resize the images to 224
by 224 pixels to match the input requirements of the pre-trained models we employ for transfer
learning. Inspired by the work in [14], which investigated various preprocessing techniques for
chest X-ray images with CNNs, we conduct additional experiments with the following
preprocessing methods: barely normalized images, (partially) segmented images based on
provided masks in the dataset, and gamma-corrected images with different levels of constant

settings.
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Table 3: Optimized training configuration for each experimented model after fine-tuning

Model Preprocess Learning Rate | Batch Size | Weight Decay
EfficientNet-B0 gamma correction (-0.8) 1.00e-03 16 1.00e-05
EfficientNet-B5 bare normalization 1.00e-03 16 1.00e-05
EfficientViT-B3 bare normalization 2.00e-06 32 1.00e-02

MVIT2 bare normalization 2.00e-06 16 1.00e-02

ViT-Base-patchg bare normalization 2.00e-06 16 1.00e-01
ViT-Base-patchlf bare normalization 1.00e-05 64 1.00e-02
ViT-Base-patch32 bare normalization 1.00e-05 64 1.00e-01
Proposed model bare normalization 1.00e-05 64 5.00e-03
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We employ transfer learning with pre-trained models on the COVID-19 chest X-ray

dataset. Through fine-tuning on preprocessing methods (bare normalization, segmentation, and

gamma correction), learning rate (range [le—3,1e—6]), batch size (within 16, 32, 64, 128), and

weight decay (range [le — 1,1e — 6]), we obtain optimized settings (as reported in Table 3) and

corresponding models. Additionally, the cross-entropy function [16] served as the loss function,

and AdamW/Adam [17, 18] were utilized as optimizers for experimented models. Then,

observing the superior performance of ViT-B16 compared with others in the early stage of

experiments, we further fine-tuned it by setting different numbers of encoder blocks inside. The

configurations and results on different numbers of block settings are shown in Table 4.

Table 4: Training configuration and Test results after fine-tuning on ViT-16

(batch size: 64, learning rate: 1e-5, preprocessed with bare normalization)

Number of Weight Decay Accuracy | Recall Precision(%) | F1 Score(%)
Encoder Blocks (%) (%)
5 1.00e-02 94.37 98.31 98.58 98.44
7 1.00e-02 95.50 99.15 98.87 99.01
8 1.00e-02 95.55 98.87 98.59 98.73
9 1.00e-03 95.41 98.87 99.15 99.01
10 (proposed) 5.00e-03 95.79 98.58 98.86 08.72
11 1.00e-02 95.64 99.15 98.87 99.01
12 (original) 1.00e-02 95.22 98.31 08.86 98.58
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3. Result Analysis

To assess the training effectiveness of the experimented models, we monitor the loss
function on both the training and validation datasets. The loss curves for each model (as depicted
in Fig. 11) are obtained through the fine-tuning process detailed in Section 3.2. Notably, weight
decay plays a crucial role in achieving optimal performance.

Convergence Rate: Under the optimized settings reported in Table 1, EfficientNet-BO,
ViT-Base-patch8, ViTBase-patchl6, and ViT-Base-patch32 achieve minimum loss within 10
iterations, demonstrating their superior convergence speed. MViTv2 and EfficientNet-BS5 achieve
minimum loss between 10 to 15 iterations, whereas EfficientViT-B3 requires nearly 30 iterations
to reach its minimum.

Overfitting: We employ the cross-entropy loss function and implement early stopping
with patience of 30 epochs to mitigate overfitting. As observed in the training and validation loss
curves depicted in Fig. 11, the extent of overfitting varies across models. Notably,
EfficientViT-B3 exhibits a stable fitting behavior, while EfficientNet models demonstrate a
tendency towards relatively unstable overfitting on our experimental dataset.

Our experimented models demonstrate relatively promising results after fine-tuning, with
validation loss values typically fluctuating in the range of 0 to 0.2. Trading off with the
convergence rate, overfitting, and loss value, we select the ViT-Base-patch16 structure for further
tuning, where our proposed model is generated. Table 4 shows the corresponding configurations

and results. Compared to other models, our proposed model achieves lower training loss and
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higher accuracy, although a slight overfitting gap is still present. A detailed analysis of the

prediction performance is provided in the next subsection.
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Figure 13: Train and validation losses during training process
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After the training process, we proceed with testing on the test set, evaluating the results

based on the specified criteria, and finally comparing them with existing models. Firstly, we

observe that the training loss accurately reflects the achieved accuracy when the experimental

models reach a high accuracy score (around 93% to 96%) as shown in Table 4. However, this is

also balanced by the training time per epoch; models with higher accuracy often require more

resources to train as the complexity of the model increases. For instance, the ViT-Base-patch8

has excellent performance with accuracy (95.41%), recall (99.15%), precision (98.59%), and F1

score (98.87%) among finetined models. However, with a trainable parameter of 85.81 M, the
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training time taken in each iteration is several times longer than in other models (6.2 times longer
in comparison to our model). Although it has a similar number of trainable parameters ((224/8)2
x 82 x 3) as ViT-Base-patchl6’s ((224/16)2 x 162 x 3), ViT-Base-patch8 has more tokens
(patches) ((224/8)2 ) which exhibits more computational cost than flattened features (8 2 ).
EfficientNetBS5, with the highest recall value of 99.43% among experimented models, shows its
high sensitivity to detect COVID-19 cases, although it has a relatively bad classification ability
in four-class classifying (accuracy of 93.34%). MViT2 and EfficientViTV3, although
maintaining moderate performance in the experimented four-class classification COVID-19 chest
X-ray dataset, demonstrate outstanding accuracy in multi-class classification with other

high-complex datasets [19, 20].

Table 5: Comparison with existing studies (Test Result, Binary: COVID-19 vs. non-COVID, Three-Class:

COVID-19 vs. Normal + Lung Opacity vs. Pneumonia).

Prediction Model Classification Type | Accuracy (%) | Recall (%) | Precision (%) | F1 score (%) | Specificity (%)
Basic CNN [35] Binary 93.99 89.16 95.63 87.41 88.28
Cycle GAN [35] Binary 93.75 84.00 90.00 - 97.00
CovXmle Binary 95.00 95.00 96.00 95.00 96.00
(VGG16 + SVM) [37]

Hybrid Deep Binary 92.00 92.00 93.00 92.00 98.68

Learning Mdoel [38]

Multi-Model [39] Binary 97.83 95.45 100.00 97.67 100.00

DenseMet201 [28] Three-Class 95.11 94.55 94.56 94.53 95.59

DenseMet121 [40] Three-Class 93.5 92.59 93.44 93.00 -

Resnet50-BiLSTM [41] Three-Class 98.51 98.51 98.52 98.51 -

ViT-B32 [12] Three-Class 96.00 96.00 - - 96.00

Binary 99.57

This work Three-Class 99.57 98.58 98.87 98.73 99.76

Four-Class 95.79
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For our model, which is based on ViT-Base-patchl6 with specific adjustments, we
remove unnecessary layers and retain crucial layers for feature extraction, reducing the model
size. This, coupled with reduced trainable parameters (from 85.81 M to 71.62 M) and training
time (from 313.94 s to 264.79 s), results in our model achieving the highest accuracy of 95.79%
by mitigating overfitting. On the other hand, when delving deeper into the confusion matrix of
the proposed model, as depicted in Fig. 5, we can discern the model’s effectiveness. The most
crucial class, COVID-19, achieves an accuracy of 98.58% based on 7P and FN. However, the
lung opacity and normal class exhibit suboptimal performance, which can be attributed to their
relatively large image count and potential challenges posed by image quality in the classification
task. Thus, we hypothesize that the classification between lung opacity and normal images is the
most challenging bias existing in this COVID-19 chest X-ray dataset. Additionally, by examining
the ROC curves and AUCs (as shown in Fig. 12), we conclude that our proposed model is
confident regarding the decision it makes, and an almost ideal ROC curve is plotted on the
prediction of COVID-19 and pneumonia cases, with a COVID-19 AUC value of 0.9993, lung
opacity AUC value of 0.988, normal AUC value of 0.9896, and pneumonia AUC value of 1. The
slightly lower AUC value (0.988 and 0.9896) of lung opacity and normal classes can further
prove their biases in our model training. To comprehensively assess the advancements offered by
our proposed model, we compare its accuracy and other metrics with existing research studies, as
shown in Table 5. A major focus in the existing literature has been the binary classification of
COVID-19 and non-COVID-19 cases. While such approaches achieve high accuracy (up to

97.83%), they lack the granularity needed for a more comprehensive diagnosis. Our multi-class
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classification approach addresses this limitation by focusing on identifying specific classes
within the spectrum of COVID-19 and related conditions. Remarkably, our model achieved an
outstanding accuracy of 99.57% when classifying the COVID-19 class. Furthermore, the high
recall (98.58%) and leading specificity (99.76%) demonstrate the model’s exceptional sensitivity
in detecting COVID-19 features while accurately distinguishing other conditions. These results

highlight the model’s potential to improve the precision of medical diagnosis using chest X-ray

images.
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Figure 14: Confusion matrix (left) and ROC curves with AUC (right) for our proposed model.

Research Conclusion:

This study investigates the effectiveness of computer vision models, particularly vision
transformers, for diagnosing COVID-19 from chest X-rays. We meticulously analyze and

compare the performance of four diverse architectures: vision transformer, EfficientNet, MViT,
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and EfficientViT. We assess overfitting behavior in both CNN and VT models by visualizing the
training and validation loss curves. Our analysis reveals several techniques to mitigate
overfitting, with weight decay emerging as a particularly impactful method. Additionally, we
explore the influence of varying the number of encoder blocks within the transformer models.
Through careful fine-tuning and modifications, we present our proposed fine-tuned ViT model
(FT-ViT) as a leading performer, achieving exceptional accuracy. FTViT demonstrates not only
outstanding accuracy in four-class classification (95.79%) but also a remarkable 99.57%
accuracy in a clinically relevant three-class grouping, along with consistently high performance
in binary classification scenarios. Stringent validation using quantitative metrics, ROC curves,
and Grad-CAM visualizations solidifies FTViT’s effectiveness. Our validation process also
identified potential biases within the dataset, particularly between lung opacity and normal
images. We believe this challenge can be addressed through improved image segmentation and
balancing techniques. This comparative analysis across various architectures highlights the
superiority of our fine-tuned VT approach for COVID-19 diagnosis. We envision that FT-ViT,
with its exceptional accuracy, could contribute to more efficient and potentially faster COVID-19
diagnosis, particularly as a screening tool in clinical settings. Furthermore, our findings provide
valuable insights for future research in medical image analysis tasks. Beyond specific
instructions, this work opens doors for exploring transfer learning from other medical imaging
datasets to broaden the applicability of vision transformer-based models in the healthcare

domain.
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5.2 Encryption Testing

To accurately test the accuracy of our project, multiple steps were implemented into our
code to ensure data integrity was upheld to our client’s expectations. Given that this project is
handling image data, displaying the image and histograms showing the pixel values at each step
in the process can be used to benchmark our results. Therefore, that is exactly what our team did
to test our encryption algorithm. In Table 6 (shown on the following page), you will see many
images. These images represent the medical scan before, during, and after the
encryption/decryption process as well as histograms that show all the possible data values of
each pixel in the image (0-1) and the number of pixels that have that specific pixel value.
Analyzing the tables below shows that before and after the encryption and decryption process,
the images and their associated histograms remain identical, showing no data loss and successful
encryption. Therefore, having this process combined with our Visual Transformer deep-learning
neural network, successful diagnoses as well as secure data transfer or ensured in the medical

field.
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Table 6: Image Development and Pixel Value Comparison Throughout Encryption/Decryption Process

Image Before Encryption/Decryption

Image After Encryption/Decryption

Graph Showing Pixel Values (x) and Quantity (y)
before encryption

1600

1400

1200

1000

8001

600

400

200 1

Graph Showing Pixel Values (x) and Quantity (y)
after decryption

1600 +
1400 4
1200 4
1000 +
800
600
400 +
200 A
o
0.0 0.2 0.4 0.6 0.8 10

Encrypted Image

Graph Showing Pixel Values (x) and Quantity (y)
after encryption

400

350 A
300 -
250 A
200 -
150 1
100 4
50 -
0-
0.0 0.2 0.4 0.6 0.8 10
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6. Conclusion

We have successfully completed all the assigned tasks in our capstone project, which
included developing a model capable of predicting medical-related data and implementing
encryption techniques to protect the privacy of transmitted medical data.

Specifically, we have composed a paper that summarised our research on Al diagnosing
models on the COVID-19 chest X-ray dataset. After meticulous revision, our paper was
announced t a ted for lication by Healthcare Analytics | Journal | ScienceDirect.com
by Elsevier. In this research, we conducted experiments through a vast range of computer vision
models, which include state-of-the-art transformer structures. We finally got our proposed
fine-tuned Vision Transformer model which has an accuracy of 95.79% on four-class
classification, and 99.57% on three-class classification and binary classification. To verify the
efficiency of our model and explore potential biases within the dataset, we utilized several
evaluation metrics like the F-1 score (98.73%), precision (98.87%), specificity (99.76%), and
recall (98.85%), drew the confusion matrix and receiver operating characteristic (ROC) curve,
and used the Grad-CAM visualization method.

Moreover, after deploying the homomorphic encryption to encrypt and decrypt the chest
X-ray images with the Kyber package, we extensively devised our Al Telehealth system, which
demonstrated the whole working procedure online. Users can access this website to experience

the products of our project.
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Last but not least, discovering the lack of an intuitive demonstration of a dataset in the

field of human-sense visualization in image classification, we created the Animint2GradCAM

software by combining Python and Animint2 R package, which displayed our tested dataset (696
cases, 1.5 GB) with index, confidence, prediction results, and GradCAM graphs, to help
researchers better understand how classification models make decisions.

COVID-19 diagnosis is just the starting point of Al Telehealth project. Currently, we are
planning to publish our entire system (Al diagnosing + homomorphic encryption + interactive
visualization feedback). We believe and hope this pattern can be applied to other fields of

medical image diagnosis and make fewer people suffer pain from illness around the world.
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