
EC463 - BOSTON UNIVERSITY ELECTRICAL & COMPUTER ENGINEERING CAPSTONE SENIOR DESIGN PROJECT​

Workshop Finance: The Art of Valuation
Prithika Ganesh, Ignacio Nunez Gomez, Suyash Bhatia, and Zen Mae Lee

Abstract—Workshop Finance is a deal idea generation tool, allowing users to quickly build valuations. The application
provides a recommendation engine leveraging a broad set of third-party fundamental data to identify the best levers (e.g.
similar companies, trading multiples, time periods) for a given company. Workshop then performs the necessary calculations
and presents results through a visualization called a football field, a graphic which typically appears in investment banking
pitch books. The mobile application allows users to view, refine, and share this football field directly through the app.
Workshop will enable deal idea generation, client communication (i.e. pitching to clients, initializing cases), and deal execution.
Workshop Finance will become the primary medium through which users “tell the story” of a company’s valuation—the key
point in any corporate finance discussion. This first-of-its-kind application will power the art of valuation through a combination
of strict corporate finance theory and innovative user experience.

Index Terms—Company Valuation, Market Data, Football Fields.

—————————— ◆ ——————————

1​ INTRODUCTION

WHILE there are already tools and methods to value

companies using a football field chart, none of them are
fast, dynamic, and responsive. Additionally, such tools
rarely evaluate both private and public companies, yet
financial corporations typically require valuations of both
types of companies. The core of Workshop Finance is to
create a mobile application for comprehensive corporate
finance valuation. Workshop Finance aims to make
generating football fields more efficient by providing
initial valuations at the consumer’s fingertips while
modernizing the old practice of using numerous Excel
sheets and math formulas.

The application’s ability to calculate and deliver
comparable valuations in a football field within minutes
enables workers in the financial sector to make informed
business decisions much faster with baseline metrics.
Within the application, the user will select the target
company to value. If the company is public, the
application will automatically fetch its public financial
data from an API using customer relationship
management integration. This API will provide all of the
public market data needed to precisely calculate
valuations. If the user decides to value a private company,
the user will need to manually input its fundamental
financial data.

Once the desired company to value is chosen, the
app produces valuation models through both relative and
intrinsic value methodology. The user will then be able to
adjust the company’s value calculations and visual output
by adjusting financial variables, such as by adding several
companies from the specific industry to create a financial
comparison (COMP) or by editing the index’s multiplier.
It is a priority that the valuation is dynamic and fast. The
user will be able to share this visualization on social
media platforms, send it via email, or export and save it
as a JPEG document. Workshop Finance will be the first of
its kind, determining how much a company is worth
today, or at some point in the past.

2​ CONCEPT DEVELOPMENT
2.1 Engineering Understanding of Client’s Problem
The client’s fundamental problem is their need to create a
convenient way for users to draw football fields in a short
span of time, such that a user would be able to analyze
these visualizations on the go. Workshop Finance has
been the client’s passion project for several years to date,
and they have created a web-based prototype which
accurately models the necessary financial calculations for
company valuations. To achieve convenience of the
application, the team needs to create a mobile application
accessible to both iOS and Android users which would be
able to perform all the required functions modeled by the
client’s web application prototype. From an application
development and software engineering perspective, the
team needed a cloud-hosting software, APIs, and to
develop a fully functional frontend with a logical user
flow (UX) from the ground up based on wireframes
provided by the client. Users would then be able to
wirelessly create company valuations on their mobile
phones.

2.2 Conceptual Approach
Because a web application did not fulfill the client’s
requirements, the team’s initial and sole conceptual
approach was to develop an iOS and Android mobile
application by using ReactNative as the primary frontend
framework as it caters to both softwares. A
comprehensive list of the engineering requirements for
Workshop Finance including metrics for ideal local data
storage and stretch goal features is listed below under the
Appendix in Section 7.1.

2​ EC463 - BOSTON UNIVERSITY ELECTRICAL & COMPUTER ENGINEERING CAPSTONE SENIOR DESIGN PROJECT

3​ SYSTEM DESCRIPTION

The overall project system is divided into two main parts:
a Javascript user-interface frontend and a multi-block
backend. The backend has two main components: the
computation engine developed in Python, and the SQL
data storage hosted in IEX Cloud. The data storage is
divided into two parts: raw market data and local data on
the application. To establish communication between
these different blocks, we will use CRM integration with
APIs. The APIs which connect the data storage with the
rest of the application (API 1, API 3 and API 4), will be
provided by IEX Cloud. The API that connects the
computation engine to the user interface (API 2) will be
generated using Flask, a Python framework which was
used to develop the computation engine.​
​ In order for the user interface to fulfill its main
purpose of visualizing the football fields to value a
specific target, the frontend first needs to obtain its
calculation data. However, the financial metrics needed to
generate those valuations (such as the PE ratios or the
EV/EBITDA metric) are calculated in the computation
engine. Therefore, once these are calculated, the user
interface obtains them via API 2. At the same time, for the
computation engine to be able to make those calculations,
it needs access to market data to obtain the companies’
raw financial data. For example, if the computation
engine needs to calculate the PE ratio of a company, it first
has to obtain the price and earnings data of that company.
The computation engine will obtain that data from IEX
Cloud using API 1. ​
​ Additionally, the app needs direct
communication between the user interface and the
application database. For example, when a new user is
created in the sign up page, they will be directly added to
the app’s database. When a user tries to log in, we will
need to verify whether they are already in the app’s
database or not. If that user already has an account, they
will need to access their football fields, with their
respective valuations, set of comparables and targets. The
information about each user’s football field has to be
stored in the app’s database, and provided back to the
user interface whenever the user needs it. ​
​ Moreover, the application will have the ability to
set a private company as a football field’s target. In that
case, the user will have to introduce the necessary
financial data manually, since IEX Cloud does not have
the ability to provide private enterprises’ information.
Therefore, if the user introduces a private’s company data,
the application will store it in the local database. This data
will be private, therefore, the user will be the only one
able to access the company they manually introduced. All
of this communication between the user interface and the

local database will be handled by API 3 and API 4.
Whenever the user introduces data into the database, API
3 is called, and whenever he obtains information from it,
API 4 is used. ​
​ To summarize, API 1 (provided by IEX Cloud)
will transfer raw market data, such as enterprise value or
enterprise earnings from IEX Cloud to the computation
engine. API 2 (generated with Flask framework) will
transfer calculated financial metrics such as P/E or
EV/EBITDA from the computation engine to the
frontend. It will have a structure similar to the following:

API 3 and API 4 (provided by IEX Cloud) will
bidirectionally transfer information about user’s
authentication and authorization, football fields and
valuations, and private data information, between the
user interface and the app’s local database.​
​ For an individual to use the app, they first have
to log in or to sign up. They will select the football field
they want to visualize or generate a new one. If the user
generates a new one, they will have to decide the football
field features such as what type of valuation they want to
make, the date in which they want to value, and the
football field’s target or the set of comparables. Then, the
frontend will request the needed values to the
computation engine to be able to display this information
in the football field chart.​
​ The computation engine provides the
calculations layer. It gets the market data and generates
some calculations. Some of the basic ones are shown in
the code below:

These calculations are sent to the frontend. Moreover, we
have also mentioned the two parts that the data storage
contains: the raw market data and the application’s local
data storage. The local database has six tables, with the
following structure:

GANESH ET AL.: WORKSHOP FINANCE - THE ART OF VALUATION​ 3

The ‘Accounts’ table stores personal data about
the users. The ‘Football Fields’, ‘Valuations’ and
‘Valuation Comps’ are tables which contain the necessary
information for a user to visualize their valuations in the
football field chart. The ‘Targets’ table contains financial
information about the private companies users introduce
manually. Additionally, Workshop Finance users will
have the ability of sending and sharing football fields and
valuations to other users. If a football field owner sends
their football field to another user, this one will be able to
edit it as if it belonged to them. The football field will
automatically be added to their list of football fields.
However, if an owner shares their football field with a
viewer, the viewer will only be able to see (not edit) it.
Therefore, we will have a table of ‘Viewers’. This way, a
user whose ID appears in the table ‘Viewers’ under the
column ‘viewerId’, will not be able to edit the football
field/valuation with ID ‘viewId’. The variable ‘type’ will
determine if the object the user is not able to edit is a
football field or a valuation.

4​ FIRST SEMESTER PROGRESS

The first semester was centered around the planning and
design of the application. The team had to make design
choices catering to the functionality of a financial
application. This semester began with fulfilling many of
these design choices, including adhering to the client’s
design vision and the server side of the application. ​
​ Chronologically, the team’s first few meetings
with the client were centered around absorbing the task at
hand and understanding the minutest of requirements of
the application. The team discussed what financial
functions the application must perform, the models or
calculations necessary to achieve specified functions, and

how to display the output of the financial functions or
calculations performed. A few other questions the team
needed to answer were: What are the features and
functions of the application? How should the output of
these functions be displayed?​
​ An important aspect of the team’s first semester
progress was logistical planning. The team planned their
goals for every sprint over the next few months and set
individual deliverables. The team discussed important
bi-weekly goals needed to achieve until the due date of
the final product, with the exception of some flexible
goals.​
​ The team also discussed manpower
management, such as dividing work amongst team
members on the basis of prior experience and knowledge.
Each member was assigned work with some degree of
familiarity. Based on strategic planning the team split
their workforce into two groups: the frontend developers
and the backend developers. Lastly, the team discussed
best practices of agile development and sprint planning. ​
​ Apart from spending a significant amount of
time on design choice, planning, and understanding the
application, the team accomplished a significant amount
in terms of programming the application. The specifics of
the backend and frontend development progress is as
follows:​

4.1​Frontend
The approach to developing the frontend has changed
drastically from the initial stages of development through
trial and error this semester—, for example, initially using
a total of eighteen different screens with ReactNative’s
stack navigator and imitating the client’s basic wireframe
designs from scratch, to now only using a total of seven
screens and generating ReactNative code using a plug-in
extension on Figma based on the client’s updated
wireframes. ​
​ Over the course of the semester, the frontend
team was able to create a basic app framework, consisting
of several different app screens, including: a sign in/sign
up page, coverage page, a football field page, and an
about page. Additionally, the front end team was able to
set up text input for the user interface. Utilizing the text
input feature, the frontend team was able to set up a sign
in/sign up process for the mobile application. The
frontend team also gained intimate knowledge about the
interworking of ReactNative as they experimented with
instantiating different methods as functions or class
objects, discovered limitations of instantiating hooks, and
attempted to fetch data from a JSON file. Ultimately, the
frontend team laid the groundwork and testing
capabilities for a functional app to work on both Android
and iOS systems, testing the code on both a XCode iOS
emulator and an AndroidStudios emulator.​
​ Given the team’s inexperience in frontend
development, the client was able to connect them with an
iOS/Android developer who provided helpful pointers
on using ReactNative, given it was not their specialty
language. The knowledge gained during this semester
will allow the team to work on the frontend more
seamlessly over the break and during next semester.

4​ EC463 - BOSTON UNIVERSITY ELECTRICAL & COMPUTER ENGINEERING CAPSTONE SENIOR DESIGN PROJECT

4.2​Backend
The team has successfully designed the databases for the
application. After discussion and thought given to the
functional capabilities and requirements, the team was
able to create a database design for the application, with a
total of six SQL data tables ranging from user profiles to
company data. After designing the database, the team
was able to successfully set it up in IEX Cloud. The setup
required specification of each data type in each data table.
Lastly, the team was able to use an IEX Cloud API to
modify the datatables. ​
​ For the computation engine, the team made a
design choice of employing Python along with its Numpy
library. The team decided to run the computation engine
solely on the backend. A significant progress was made
on programming the computation engine. The team was
able to create a script which would take three inputs: the
ticker symbol of a target company, the ticker symbols of
all the companies in the basket of comparable companies,
and lastly a valuation method. Given these inputs the
script was successfully able to return a valuation for the
target company. ​
​ The team was also able to create sign in
functionality for the application. The “sign in script”
would require the user to input a username and a
password. It would then be able to validate if a user exists
in the app’s database. Lastly, it would cross check the
password against the app’s database after the user is
validated. This process was made using IEX Cloud’s
database API features. ​
​ The team was successfully able to complete sign
up functionality on the backend, and to facilitate account
creation for new users of the application. The script was
able to take a user's first name, last name, email, and
password to create an account, using IEX Cloud’s API
features.

5​ TECHNICAL PLAN
To complete the overall application, the team has
developed a technical plan and schedule consisting of the
following eight stages. These stages are also visualized in
the Gantt chart in the appendix (Fig 8).

5.1 Phase I: Core Individual Feature Completion
12/10/2022 - 12/24/2022​
Task 1. Integrating File Saving​
​ The frontend of the app needs a system to save
football field diagrams to their account, to later be
reopened. This required file saving must be local data
stored in the app. Lead: Prithika, Assisting: Zen and
Ignacio.

Task 2: User Login​
​ The team needs to set up a google-authentication
for the app, as well as internal registration and sign-in
systems. This involves integrating a text input and
display system for the user interface, and appropriate
prompts when unmatching data is received. Lead: Zen,
Assisting: Suyash.

Task 3: User Data Authentication and Fetching​
​ The backend must be able to verify that a
username entered is a valid username with login
credentials, and must be able to call up associated user
data. Lead: Suyash, Assisting: Ignacio.

5.2 Phase II: Full Front & Backend Integration
12/25/2022 - 1/2/2023​
Task 4: API Integration​
​ Integrating the IEX Cloud data and API into the
frontend of the app for username authentication (taking
in text input from log-in), and displaying verified results.
Lead: Suyash, Assisting: Zen.

Task 5: Calculation Engine Integration​
​ The resultant data of the financial calculations
must be displayed on the app. This involves integrating
the calculation engine to feed its output into the football
field data display system. Lead: Prithika, Assisting:
Ignacio.

5.3 Phase III: Recommendation Engine 1/3/2023 -
2/10/2023​
Task 6: Researching Clustering Algorithms​
​ The overall recommendation engine will suggest
“comparison” (COMPs) and other evaluation techniques
based on a user’s previous preferences and market data
for the company. To do so, we must research different
ways of clustering data points and other machine learning
techniques to group data for recommendation, and then
pick top 2 algorithms to implement for further testing.
Lead: Suyash, Assisting: Prithika.

Task 7: Implementing Algo 1​
​ This is the implementation of the python code for
the first machine learning algorithm to recommend
specific evaluations/COMPs for the users. Lead: Suyash,
Assisting: Ignacio.

Task 8: Implementing Algo 2​
​ This is the implementation of the python code for
the second machine learning algorithm to recommend
specific evaluations/COMPs for the users. Lead: Prithika,
Assisting: Ignacio.

Task 9: Testing Algorithm Accuracy​
​ To determine which algorithm is better suited for
our app, a series of tests and metrics need to be designed,
tested, and measured to compare both algorithms. These
quantified test results allow for best algorithm selection.
Lead: Ignacio, Assisting: Suyash.

Task 10: Integrating Algorithm into Recommendation Engine​
​ A recommendation engine needs to be created
with the selected algorithm. Lead: Suyash, Assisting:
Ignacio.

Task 11: Displaying Recommendations on UI​
​ The user interface needs to be updated to reflect
the ability to suggest/recommend valuation components
as provided by the recommendation engine, and finally
integrated with the recommendation engine. Lead: Zen,
Assisting: Prithika.

GANESH ET AL.: WORKSHOP FINANCE - THE ART OF VALUATION​ 5

5.4 Phase IV: Finalization and Optimization
2/11/2023 - 2/28/2023​
Task 12: Backend Search and Fetching Optimization​
​ This is a finishing touch of further optimizing the
API calls and recommendation engines to be as fast and
efficient as possible and adhere to industry standards.
Lead: Ignacio, Assisting: Suyash.

Task 13: UI Beautification​
​ This task involves updating graphics, text, color
and other aspects to look polished and seamless. Lead:
Zen, Assisting: Prithika.

Task 14: Smoothing Out UX​
​ This involves testing the user experience making
edits to create a more intuitive and seamless user
experience. Lead: Prithika, Assisting: Zen.

Task 15: File Sharing and Exportation​
​ This involves exporting the football field result as
a pdf or picture format (jpg/png) file that can be shared
via email or text. And this involves allowing other users
of the app to access a current football field, which would
mean one needs to upload football field data to the app’s
database under the user’s account, and then share
accessibility with that information with another user.
Frontend needs to be updated to display this capability
with appropriate buttons and display. Lead: Ignacio,
Assisting: Zen.

5.5 Phase V: Functional Testing and Debugging
Buffer 3/1/2023 - 3/31/2023

Task 16: Debugging Buffer​
​ This is a period of time that acts as a time buffer
in case any issues arise in the previous processes. If there
is an “emergency task” of a problem arising that cannot
be solved within the allotted time for previous phases.
General Lead: Team Lead of the Period, Problem Lead:
Whoever’s area of expertise this problem falls under, in
accordance to the Team Contract, Assisting: Appropriate
other team members.

Task 17: Functional Testing​
​ This is a test plan and execution for testing each
aspect of the application, including execution on both iOS
and Android, testing UI error-catching, backend data
fetching, and recommendation engine capabilities. Lead:
Ignacio for backend and Zen for frontend, Assisting: All
team members.

Task 18: Server Hosting Research​
​ This is a period of time dedicated to researching
hosting support with Amazon Web Services (AWS) and
developing an integration plan. This may involve
discussions with our client about what kind of support
they would prefer. Lead: Ignacio, Assisting: Suyash.

Task 19: Host Integration​
​ Conversion of local servers to be run on AWS.
Updating local app connections to work with new AWS
links. Lead: Suyash, Assisting: Ignacio.

Task 20: Finalization and Sign-Off​
​ Ensuring all final edits of the app are made and
any fixes are finalized. All members approve of the final
product. Lead: Team Lead of the Period, Assisting: All
team members.

5.6 Phase VI: App Hosting/Customer Integration
4/1/2023- 4/30/2023​
Task 21: Handing Final Product Over to Client​
​ Presenting the final product to the client,
receiving feedback, and making subsequent minor edits.
Lead: Team Lead of the Period, Assisting: All team
members.

Task 22: Debugging Buffer​
​ This is a few days that act as a time buffer in case
any issues arise in the client integration process. If there is
an “emergency task” of a problem arising that cannot be
solved within the allotted time. General Lead: Team Lead
of the Period, Problem Lead: Whoever’s area of expertise
the problem falls under, in accordance to the Team
Contract, Assisting: Appropriate other team members.

5.7 Phase VII: Presentation and Report Prep
5/1/2023 - 5/4/2023​
Task 23: Finalize Reports​
​ This is time to prepare our final reports and other
technical documents before ECE Day. Lead: Team Lead of
the Period, Assisting: All team members.

Task 24: Finalize Presentation​
​ This is time to prepare our presentation and pitch
for ECE Day. Powerpoint presentation must be finished,
and the QR code to download and display the app must
be available and working. Lead: Team Lead of the Period,
Assisting: All team members.

5.8 Phase VIII: ECE Day 5/5/2023​
Task 25: Present Final Product​
​ This is the final presentation and display of our
work and product to the general ECE staff and judges in a
symposium-style presentation. The team will all be
answering questions about the app and working together
to engage the audience. Lead: Team Lead of the Period,
Assisting: All team members.

6​ BUDGET ESTIMATE
The following table states our estimated budget starting
November 2022 to April 2023.

6​ EC463 - BOSTON UNIVERSITY ELECTRICAL & COMPUTER ENGINEERING CAPSTONE SENIOR DESIGN PROJECT

IEX Cloud: $50 for IEX cloud is a subscription
cost. IEX cloud is our financial data API provider as well
as a cloud storage provider. IEX cloud gives real time
access to market data as well as customized database
storage on the cloud.

Anima: $39 for Anima is a subscription cost.
Service to convert Figma wireframes to ReactNative code.
Figma wireframes are used for UI/UX designing. Anima
converts these UX designs to react native code which
facilitates seamless frontend development.

AWS (Amazon Web Services): $102 subscription
cost for a high-volume production app. Amazon web
services provides hosting services for mobile application
applications. Hosting an application on a cloud platform
enables millions of users to be able to access the
application worldwide.

7​ ATTACHMENTS
7.1​Appendix 1 – Engineering Requirements Chart
Fig 7: Feature, Objectives, Functions, Constraints chart
of engineering requirements

Feature Objectives Functions Constraints

User Experience For the app to run
smoothly and
reliably produce
visuals and
results.

Efficiently
generate view of
valuations with
quick data
fetching facilitated
by an optimized
backend. Ideal
page load time of
<3 seconds [5].

Team’s limited
knowledge on UX
development.

User Interface Enable users to
control the
application and
view the football
field graphics.

Include basic
navigation
features and a
holistic range of
levers for the user
to customize their
valuations;
functional scope of
application to
have ~70 elements
e.g. “Add New
Valuation” and
“Change Target”.

Team’s limited
knowledge on UI
development.

Local Data Storage To preserve user
search and
valuation history
to be retrieved

Store user data
locally on the
device to provide
users with an

Limited to device
storage
application is
operating on.

when the user
returns to
application after
use.

instant startup
experience.
Productivity apps
on iOS typically
take up about
~400MB of space
e.g. Excel [6].

Computation
Engine

Reduce workload
on the frontend to
reduce storage
load on the device.

Define the
frontend payload
to perform actions
such as users
changing their
valuation criteria.

Running several
calculations can be
computationally
intensive.

API Integration To minimize use
of local storage
and allow users to
efficiently access a
wide range of
updated market
data for
valuations.

Implement API
optimization
techniques such as
caching and
ensuring sufficient
cloud
infrastructure.

Limited by the
abilities of the API
used and the
amount of cloud
storage available.

Identity Service To have safe,
synchronous
multi-user access
for customers.

Authenticate user
profiles for each
user logging into
the application
and keep user
information
confidential.

Team’s limited
knowledge on
cybersecurity;
may encounter
data leaks.

Market Database To reliably and
efficiently fetch
data from the
market database
(i.e. based on the
date the user
chooses).

Employ a range of
third-party
databases to be
accessed through
APIs with a daily
refresh rate.

Limited by
financial resources
and the
magnitude of data
needed.

Recommendation
Engine*

To provide a
personalized user
experience and
buffer as a user
searches for a
company to value.

Using machine
learning models
such as clustering
on a range of user
inputs over time.

Limited by the
capabilities of the
ML model chosen
to deploy.

Cloud-based
Hosting

Scalable access to
computing
resources for the
functioning of the
application.

Employing
advanced, reliable
cloud services
such as IEX.

Limited by
financial
resources.

Note: Project stretch goals are marked with an asterisk (*).

GANESH ET AL.: WORKSHOP FINANCE - THE ART OF VALUATION​ 7

7.2​Appendix 2 – Gantt Chart
Fig 8: Detailed task Gantt Chart for project overview

	1​INTRODUCTION
	2​CONCEPT DEVELOPMENT
	2.1 Engineering Understanding of Client’s Problem
	2.2 Conceptual Approach

	3​SYSTEM DESCRIPTION
	4​FIRST SEMESTER PROGRESS
	4.1​Frontend
	4.2​Backend

	5​TECHNICAL PLAN
	6​BUDGET ESTIMATE
	7​ATTACHMENTS
	7.1​Appendix 1 – Engineering Requirements Chart
	
	7.2​Appendix 2 – Gantt Chart

