Segment 1: Wheats and Chaffs

// Two versions of function to determine if first
// number is strictly larger than the second
boolean isLarger (int numl, int num2) {

return numl > num?2;

boolean isLarger (int numl, int num2) {
if (numl > num?2) return true;
else 1f (numl == num2?2) return false;
else return true // <— oops!

Segment 2: Reviewing filter and map

e public IFuncList<T> filter (Function<T,Boolean> pred); // select
e public <R> IFuncList<R> map (Function<T,R> transform); // transform
e public IFuncList<T> takeWhile (Function<T,Boolean> pred); //select prefix
e public FuncList<T> distinct(); // remove duplicates
Function Input Type | Output Type [Output Length Notes
filter type A type A no larger than input output elements are from the input list, in order
map type A type B same as input type A and type B could be the same
takeWhile | type A type A no larger than input output list is a prefix of the input list
distinct type A type A no larger than input output elements are from the input list, no duplicates

Capture the following using map, filter, or a combination of these operations

transformation 1:

input: [-5, 8, 10, 0, -3]
output: [8, 10]

transformation 2:

input: [5, 4, 2]

output: [25, 16, 4]
transformation 3:

input: [“cAt”, “dog”, “DInosaur”
output: [“dog”, “armadillo”]

, “armadillo”,

\\BOAII]

Segment 3: Other List Functions

Consider the following four problems:
1. Compute the product of a list of numbers
2. Compute the total number of characters in a list of words
3. Check whether there are any words longer than 10 characters in a list of words
4. Insert the word “brown” before every use of “bear” in a list of words

Which can we do with our list operations? How do we know?

Here’s an additional constructor for your FunclList class (if you are working in code) — don’t worry about how it works.

// a short-hand constructor for creating FuncLists just from elements
// e.g., new FuncList<Integer> (5, 8, 2, 3)
public FuncList (Object... args) {
this.thelList = new LinkedList<>();
for (int i = 0; i <= args.length - 1; i++) {
this.thelist.add((T)args[i]):;

Put this in your Lec1Test file

<E> FuncList<E> toFuncList(E... args) {
return new FuncList<E>(args);

Writing Aggregation Functions on FuncLists

// write a method called product that takes in a Funclist of ints and
// returns the product of those numbers

public static Integer product (FuncList<Integer> 1lst) {

// begin by writing a series of Assert expressions for product
Assert.assertEquals(5 * 3 * 10 * 2, LecO3.product (toFuncList (5, 3, 10,

// write a method called anylLong that takes in a Funclist of Strings and
// returns a boolean indicating whether any words have more than 10 letters

public static boolean anylLong (FuncList<String> words) {

// begin by writing a series of Assert expressions for anyLong

// write a method called remFirst that takes in a Funclist of Strings and
// returns a Funclist of the same strings without the first occurrence of dropWord

public static FunclList<String> remFirst (String dropWord, FuncList<String> words) {

// begin by writing a series of Assert expressions for remFirst

	Segment 1: Wheats and Chaffs
	
	
	Segment 2: Reviewing filter and map
	
	Segment 3: Other List Functions
	Writing Aggregation Functions on FuncLists

