
 
Chapitre 9 

Matrices et opérations élémentaires 
 

I. Un peu d’histoire et définition d’une matrice 
 
Afin de simplifier la résolution de systèmes linéaires du type 

(𝑆){𝑎
1,1

𝑥
1
 + 𝑎

1,2
𝑥

2
 + … + 𝑎

1,𝑝
𝑥

𝑝
 = 𝑏

1
 𝑎

2,1
𝑥

1
 + 𝑎

2,2
𝑥

2
 + … + 𝑎

2,𝑝
𝑥

𝑝
 = 𝑏

2
 ⋮  ⋮  ⋮  ⋮  ⋮  𝑎

𝑛,1
𝑥

1
 + 𝑎

𝑛,2
𝑥

2
 + … +

où les nombres  et les nombres  sont des constantes données et les nombres  sont des inconnues, 𝑎
𝑖,𝑗

𝑏
𝑖

𝑥
𝑖

Gottfried Wilhelm Leibniz (1646-1706) introduit la notation indicielle. Gabriel Cramer (1704-1752), 
Théophile Vandermonde (1735-1796) et Pierre Simon Laplace (1749-1827) vont par la suite utiliser la 
notation matricielle qui nous est parvenue sous la forme 

 𝑎
1,1

 𝑎
1,2

 ...  𝑎
1,𝑝

 𝑎
2,1

 𝑎
2,2

 ...  𝑎
2,𝑝

 ⋮  ⋮  ⋱ ⋮  𝑎
𝑛,1

 𝑎
𝑛,2

 ...  𝑎
𝑛,𝑝

 ( ) = 𝑎
𝑖,𝑗( )

𝑖∈⟦1,𝑛⟧,𝑗∈⟦1,𝑝⟧
pour calculer le déterminant de la matrice  dans le cas où . 𝑎

𝑖,𝑗( ) 𝑛 = 𝑝
Par la suite, Joseph Louis Lagrange (1736-1813) et Carl Friedrich Gauss (1777-1855) utilisent des matrices 
pour étudier les transformations linéaires. 
Augustin-Louis Cauchy (1789-1857) définit ensuite le produit matriciel. 
James Sylvester (1814-1897) utilise pour la première fois le mot matrice pour désigner cet objet et Arthur 
Cayley (1821-1895) vient diffuser cette notion. 
 
II. Propriétés et opérations 
 
Dans la suite du cours, tous les nombres utilisés seront des réels mais les règles sont rigoureusement identiques 
dans . 𝐶
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Définition 1 

Soient .  est l’ensemble des matrices de  lignes et de  colonnes. 𝑛, 𝑝∈𝑁* 𝑀
𝑛,𝑝

𝑅( ) 𝑛 𝑝
 ∀ 𝑖, 𝑗( ) ∈ ⟦1, 𝑛⟧ × ⟦1, 𝑝⟧, 𝑎

𝑖,𝑗
∈𝑅

▪​   est une matrice colonne. 𝑎
𝑖,1( )

𝑖∈⟦1,𝑛⟧
= 𝑎

1,1
 𝑎

2,1
 ⋮  𝑎

𝑛,1
 ( ) ∈ 𝑀

𝑛,1
𝑅( )

▪​   est une matrice ligne. 𝑎
1,𝑗( )

𝑗∈⟦1,𝑝⟧
= 𝑎

1,1
 𝑎

1,2
 ...  𝑎

1,𝑝
 ( ) ∈ 𝑀

1,𝑝
𝑅( )

▪​ Si , 𝑛 = 𝑝
 est une 𝑎

𝑖,𝑗( )
𝑖,𝑗( )∈⟦1,𝑛⟧2

= 𝑎
1,1

 𝑎
1,2

 ...  𝑎
1,𝑛

 𝑎
2,1

 𝑎
2,2

 ...  𝑎
2,𝑛

 ⋮  ⋮  ⋱ ⋮  𝑎
𝑛,1

 𝑎
𝑛,2

 ...  𝑎
𝑛,𝑛

 ( ) ∈ 𝑀
𝑛,𝑛

𝑅( ) = 𝑀
𝑛

𝑅( )

matrice carrée. 
▪​ Si ,  est la matrice identité de taille . 𝑛 = 𝑝 𝐼

𝑛
= 1 0 ...  0 0 1 ⋱ ⋮  ⋮  ⋱ ⋱ 0 0 ...  0 1 ( ) ∈ 𝑀

𝑛
𝑅( ) 𝑛

▪​ Si ,  est une matrice 𝑛 = 𝑝 𝑑𝑖𝑎𝑔 𝑎
1
, 𝑎

2
, …, 𝑎

𝑛( ) = 𝑎
1
 0 ...  0 0 𝑎

2
 ⋱ ⋮  ⋮  ⋱ ⋱ 0 0 ...  0 𝑎

𝑛
 ( ) ∈ 𝑀

𝑛
𝑅( )

diagonale de taille . 𝑛

 
 
 
 
Exemples 
▪​   est une matrice de taille . 𝑀 = 1 3 5 2 − 2 0 5 0 0 − 4 7 − 6 ( ) ∈ 𝑀

4,3
𝑅( ) 4×3

▪​   est une matrice colonne de taille . 𝐴 = 1 3 − 1 4 ( ) ∈ 𝑀
4,1

𝑅( ) 4×1
▪​   est une matrice ligne de taille . 𝐵 = 2 − 5 − 1 3 ( ) ∈ 𝑀

1,4
𝑅( ) 1×4

▪​  est une matrice 𝐶 = 2 − 5 − 1 3 6 − 15 − 3 9 − 2 5 1 − 3 8 − 20 − 4 12 ( ) ∈ 𝑀
4,4

𝑅( ) = 𝑀
4

𝑅( )
carrée de taille . 4

▪​  est la matrice nulle de taille . 𝑁 = 0 0 0 0 0 0 ( ) ∈ 𝑀
2,3

𝑅( ) 2×3
Quand cela ne prête pas à confusion, la matrice nulle sera notée 0 (notation en général utilisée lorsque l’on 
manipule des matrices carrées). 

▪​  est la matrice identité de taille . 𝐼
3

= 1 0 0 0 1 0 0 0 1 ( ) ∈ 𝑀
3

𝑅( ) 3
▪​  est une matrice diagonale de taille . 𝐷 = 1 0 0 0 3 0 0 0 − 2 ( ) ∈ 𝑀

3
𝑅( ) 3

Remarque 

On peut identifier  à  l’ensemble des vecteurs d’un espace à  dimensions. 𝑀
𝑛,1

𝑅( ) 𝑅𝑛 𝑛
 

Propriété 1 (somme et produit par un scalaire) 

Soient  et . Soient . Posons  et  𝑛, 𝑝∈𝑁* λ∈𝑅 𝐴, 𝐵∈𝑀
𝑛,𝑝

𝑅( ) 𝐴 = 𝑎
𝑖,𝑗( ) 𝐵 = 𝑏

𝑖,𝑗( )
 𝐴 + 𝐵 = 𝑎

𝑖,𝑗
+ 𝑏

𝑖,𝑗( )
 λ𝐴 = λ𝑎

𝑖,𝑗( )
Exemples 
Reprenons les matrices précédentes. 
▪​  𝐼

3
+ 𝐷 = 1 0 0 0 1 0 0 0 1 ( ) + 1 0 0 0 3 0 0 0 − 2 ( ) = 1 + 1 0 0 0 1 + 3 0 0 0 1 − 2 ( ) = 2 0 0 0 4 0 0 0 − 1 ( )

▪​ 𝐸 + 𝐹 = 4 3 1 − 2 0 9 ( ) + 5 − 6 7 − 8 10 11 ( ) = 4 + 5 3 − 6 1 + 7 − 2 − 8 0 + 10 9 + 11 ( ) = 9 − 3 8(
▪​  5𝐴 = 5 1 3 − 1 4 ( ) = 5×1 5×3 5× − 1( ) 5×4 ( ) = 5 15 − 5 20 ( )
▪​  − 2𝐷 =− 2 1 0 0 0 3 0 0 0 − 2 ( ) = − 2×1 0 0 0 − 2×3 0 0 0 − 2× − 2( ) ( ) = − 2 0 0 0 − 6 0 0 0 4 ( )
▪​  3𝑀 = 3 1 3 5 2 − 2 0 5 0 0 − 4 7 − 6 ( ) = 3 9 15 6 − 6 0 15 0 0 − 12 21 − 18 ( )
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Propriété 2 (associativité et commutativité de la somme) 

Soient  et . Soient . 𝑛, 𝑝, 𝑞, 𝑟∈𝑁* λ, μ∈𝑅 𝐴, 𝐵, 𝐶( ) ∈ 𝑀
𝑛,𝑝
3 𝑅( )

 𝐴 + 𝐵( ) + 𝐶 = 𝐴 + (𝐵 + 𝐶)
 𝐴 + 𝐵 = 𝐵 + 𝐴

 λ 𝐴 + 𝐵( ) = λ𝐴 + λ𝐵
 λ + μ( )𝐴 = λ𝐴 + μ𝐴

Démonstration 
La démonstration découle de manière évidente de l’associativité, de la commutativité et de la distributivité dans 

. 𝑅
Propriété 3 (produit de deux matrices) 

Soient . Soient  et . Posons  et . 𝑛, 𝑝, 𝑞∈𝑁* 𝐴∈𝑀
𝑛,𝑝

𝑅( ) 𝐵∈𝑀
𝑝,𝑞

𝑅( ) 𝐴 = 𝑎
𝑖,𝑗( ) 𝐵 = 𝑏

𝑖,𝑗( )
Le produit  est une matrice de . D’autre part, si l’on pose , 𝐶 = 𝐴×𝐵 𝑀

𝑛,𝑞
𝑅( ) 𝐶 = 𝑐

𝑖,𝑗( )
 ∀ 𝑖, 𝑗( ) ∈ ⟦1, 𝑛⟧ × ⟦1, 𝑞⟧, 𝑐

𝑖,𝑗
=

𝑘=1

𝑝

∑ 𝑎
𝑖,𝑘

× 𝑏
𝑘,𝑗

Exemples 
Reprenons les matrices précédentes. 
▪​  est une matrice de  𝐵×𝐴 𝑀

1,1
𝑅( )≈𝑅

 𝐵×𝐴 = 2 − 5 − 1 3 ( ) 1 3 − 1 4 ( ) = 2×1 − 5×3 − 1× − 1( ) + 3×4( ) = 0( ) = 0
▪​  est une matrice de  𝐴×𝐵 𝑀

4,4
𝑅( )

𝐴×𝐵 = 1 3 − 1 4 ( ) 2 − 5 − 1 3 ( ) = 1×2 1 × − 5( ) 1 × − 1( ) 1 × 3 3×2 3 × − 5( ) 3 × − 1( ) 3 × 3 − 1×2 −(
▪​  est une matrice de  𝐷×𝐼

3
𝑀

3,3
𝑅( )

 𝐷×𝐼
3

= 1 0 0 0 3 0 0 0 − 2 ( ) 1 0 0 0 1 0 0 0 1 ( ) = 1 0 0 0 3 0 0 0 − 2 ( ) = 𝐷
Remarquons que 

 𝐼
3
×𝐷 = 𝐷

▪​  est une matrice de  𝑀×𝐸 𝑀
4,2

𝑅( )
𝑀×𝐸 = 1 3 5 2 − 2 0 5 0 0 − 4 7 − 6 ( ) 4 3 1 − 2 0 9 ( ) = 1×4 + 3×1 + 5×0 1 × 3 + 3 × − 2( ) + 5 × 9 2×4(

 𝑀×𝐸 = 7 42 6 10 20 15 − 9 − 80 ( )
Remarquons que l’on ne peut pas calculer le produit  car leurs dimensions ne sont pas compatibles. 𝐸×𝑀
▪​ Posons 

 𝐺 = − 1 2 − 2 2 − 4 4 1/2 − 1 1 ( ) 𝑒𝑡 𝐻 = 2 − 2 − 1 − 1 0 1/2 − 2 1 1 ( ) 
 𝐺×𝐻 = − 1 2 − 2 2 − 4 4 1/2 − 1 1 ( ) 2 − 2 − 1 − 1 0 1/2 − 2 1 1 ( ) = 0 0 0 0 0 0 0 0 0 ( )

𝐻×𝐺 = 2 − 2 − 1 − 1 0 1/2 − 2 1 1 ( ) − 1 2 − 2 2 − 4 4 1/2 − 1 1 ( ) = − 13/2 13 − 13 5/4 − 5/2 5/2 9/2(
Remarquons que  𝐺×𝐻≠𝐻×𝐺
Par ailleurs,  sans que ni  ni  ne soient la matrice nulle. L’ensemble  n’est pas intègre 𝐺×𝐻 = 0 𝐺 𝐻 𝑀

𝑛
𝑅( )

contrairement à  ou  munis de la multiplication usuelle. 𝑅 𝐶
 

Propriété 4 (distributivité et associativité de la multiplication) 

Soient  et . Soient . - 𝑛, 𝑝, 𝑞, 𝑟∈𝑁* λ∈𝑅 𝐴, 𝐴', 𝐵, 𝐵', 𝐶( ) ∈ 𝑀
𝑛,𝑝
2 𝑅( ) × 𝑀

𝑝,𝑞
2 𝑅( ) × 𝑀

𝑞,𝑟
𝑅( )

 𝐴 𝐵 + 𝐵'( ) = 𝐴𝐵 + 𝐴𝐵'
 𝐴 + 𝐴'( )𝐵 = 𝐴𝐵 + 𝐴'𝐵

 𝐴𝐵( )𝐶 = 𝐴 𝐵𝐶( )
Preuve 
Les deux premières égalités découlent directement de la distributivité de la multiplication par rapport à 
l’addition dans . Posons maintenant  et  𝑅 𝐴 = 𝑎

𝑖,𝑗( ), 𝐵 = 𝑏
𝑖,𝑗( ) 𝐶 = 𝑐

𝑖,𝑗( )
Posons aussi ,  et  𝐷 = 𝐴𝐵 = 𝑑

𝑖,𝑗( ) 𝐸 = 𝐵𝐶 = 𝑒
𝑖,𝑗( ) 𝑃 = 𝐴𝐵( )𝐶 = 𝑝

𝑖,𝑗( )
 ∀ 𝑖, 𝑘( ) ∈ ⟦1, 𝑛⟧ × ⟦1, 𝑞⟧, 𝑑

𝑖,𝑘
=

𝑚=1

𝑝

∑ 𝑎
𝑖,𝑚

× 𝑏
𝑚,𝑘

 ∀ 𝑖, 𝑗( ) ∈ ⟦1, 𝑛⟧ × ⟦1, 𝑟⟧, 𝑝
𝑖,𝑗

=
𝑘=1

𝑞

∑ 𝑑
𝑖,𝑘

× 𝑐
𝑘,𝑗

=
𝑘=1

𝑞

∑
𝑚=1

𝑝

∑ 𝑎
𝑖,𝑚

× 𝑏
𝑚,𝑘

× 𝑐
𝑘,𝑗

=
𝑚=1

𝑝

∑
𝑘=1

𝑞

∑ 𝑎
𝑖,𝑚

× 𝑏
𝑚,𝑘

× 𝑐
𝑘,𝑗
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On a pu inverser les deux sommations car les sommes sont finies et les indices de sommation sont 
indépendants. 

 ne dépend ni de  ni de , on peut donc le factoriser dans la deuxième somme 𝑎
𝑖,𝑚

𝑘 𝑞

 𝑝
𝑖,𝑗

=
𝑚=1

𝑝

∑ 𝑎
𝑖,𝑚

𝑘=1

𝑞

∑ 𝑏
𝑚,𝑘

× 𝑐
𝑘,𝑗

=
𝑚=1

𝑝

∑ 𝑎
𝑖,𝑚

× 𝑒
𝑚,𝑗

Ainsi, 

 ∀ 𝑖, 𝑗( ) ∈ ⟦1, 𝑛⟧ × ⟦1, 𝑟⟧, 𝑝
𝑖,𝑗

=
𝑘=1

𝑞

∑ 𝑑
𝑖,𝑘

× 𝑐
𝑘,𝑗

=
𝑚=1

𝑝

∑ 𝑎
𝑖,𝑚

× 𝑒
𝑚,𝑗

⟺ 𝐴𝐵( )𝐶 = 𝐴 𝐵𝐶( )

Méthode 
Utiliser la calculatrice pour effectuer des calculs matriciels 
🖥 Vidéo TI https://youtu.be/8c4WDe1PSZk  
🖥 Vidéo Casio https://youtu.be/zq5OHgdTw34  
🖥 Vidéo HP https://youtu.be/9a_rRHabIF8 
🖥 Vidéo NumWorks https://youtu.be/6js_beljebI?si=g_nEoIXy6D_kjh__ 
On veut calculer le carré de la matrice  𝐴 = 2 3 − 3 2 4 5 − 1 5 − 5 ( )
 

Avec une TI 
Entrer dans le mode Matrice (MATRIX) puis EDIT. 
Saisir la taille de la matrice puis ses coefficients. 
Quittez (QUIT) puis entrer à nouveau dans le mode 
Matrice, sélectionner la matrice A et enfin compléter 
la formule pour élever A au carré. 

 
Avec une CASIO 
Entrer dans le menu RUN.MAT puis choisir MAT 
(Touche F1). 
Choisir une matrice et saisir sa taille dans la fenêtre 
qui s'ouvre. 
Saisir ensuite les coefficients de la matrice. 
Quitter le mode d'édition (QUIT), enfoncer la touche MAT puis saisir le calcul. 
On obtient le résultat. 

 
Application : puissance d’une matrice 
Soit la matrice triangulaire supérieure 

 𝐴 = 1 1 0 0 1 2 0 0 1 ( )
Soit n veut calculer  en fonction de . 𝑛∈𝑁*.  𝑂 𝐴𝑛 𝑛
Solution 

Soit On décompose  sous la forme  où  est une matrice diagonale et  est une matrice 𝑛∈𝑁*.  𝐴 𝐴 = 𝐷 + 𝑁 𝐷 𝑁
nilpotente (dont les puissances s’annulent à partir d’un certain rang). On pose 

 𝐷 = 1 0 0 0 1 0 0 0 1 ( ) = 𝐼
3
 𝑒𝑡 𝑁 = 0 1 0 0 0 2 0 0 0 ( ) 

Remarquons que 

𝐷𝑁 = 𝑁𝐷 = 𝑁 𝑁2 = 0 1 0 0 0 2 0 0 0 ( ) 0 1 0 0 0 2 0 0 0 ( ) = 0 0 2 0 0 0 0 0 0 ( ) 𝑁3 = 0 1 0 0 0 2 0 0 0 ( ) 0 0 2 0 0 0 0 0 (
 

D’après la formule du binôme de Newton, en remarquant que  est nulle si , 𝑁𝑘 𝑛≥3

 𝐴𝑛 = 𝐼 + 𝑁( )𝑛 =
𝑘=0

𝑛

∑ 𝑛 𝑘 ( )𝑁𝑘𝐼
3
𝑛−𝑘 =

𝑘=0

𝑛

∑ 𝑛 𝑘 ( )𝑁𝑘 = 𝑛 0 ( )𝑁0 + 𝑛 1 ( )𝑁 + 𝑛 2 ( )𝑁2 = 𝐼
3

+ 𝑛𝑁 + 𝑛(𝑛−1)
2 𝑁2

Soit 

 𝐴𝑛 = 1 𝑛 𝑛(𝑛 − 1) 0 1 2𝑛 0 0 1 ( )
 
III. Inverse d’une matrice carrée 
Dans toute la suite du cours, on ne considérera que des matrices carrées de . 𝑀

𝑛
𝑅( )
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1. Transposée d’une matrice 
 

Définition 2 

Soit . Soient . Posons  et . La matrice  est la transposée de  si 𝑛∈𝑁* 𝐴, 𝐵∈𝑀
𝑛

𝑅( ) 𝐴 = 𝑎
𝑖,𝑗( ) 𝐵 = 𝑏

𝑖,𝑗( ) 𝐵 𝐴

 ∀ 𝑖, 𝑗( ) ∈ ⟦1, 𝑛⟧2, 𝑏
𝑖,𝑗

= 𝑎
𝑗,𝑖

On note 

 𝐵𝑇 = 𝐴
Remarques 

▪​  𝐵𝑇( )
𝑇

= 𝐵 = 𝐴𝑇

▪​ La définition de la transposée reste valable avec des matrices non carrées mais la taille d’une matrice et de 

sa transposée ne sont pas identiques : si , alors . 𝐴∈𝑀
𝑛,𝑝

𝑅( ) 𝐴𝑇 ∈ 𝑀
𝑝,𝑛

𝑅( )

▪​ Si , on parle de matrice symétrique. 𝐴𝑇 = 𝐴
Exemple 
La transposée de la matrice  est 𝑀 = 0, 25 0 1 − 1 1 − 2 1 − 2 − 4 ( )

 𝑀𝑇 = 0, 25 − 1 1 0 1 − 2 1 − 2 − 4 ( )
 
2. Déterminant d’une matrice 
 

Définition 3 

Soit . Une permutation  est une application de  dans  telle que 𝑛∈𝑁* σ ⟦1; 𝑛⟧ ⟦1; 𝑛⟧
 ∀ 𝑖, 𝑗( ) ∈ ⟦1, 𝑛⟧2, 𝑖≠𝑗⟺σ(𝑖)≠σ(𝑗)

L’ensemble des permutations de  est noté  ⟦1; 𝑛⟧ 𝑆
𝑛

 
Remarque 

 𝑐𝑎𝑟𝑑(𝑆
𝑛
) = 𝑛!

 
Définition 4 

Soient  et . Soient  tels que . On dit que la paire  est une inversion pour la 𝑛∈𝑁* σ∈𝑆
𝑛

𝑖, 𝑗∈⟦1; 𝑛⟧ 𝑖 < 𝑗 𝑖, 𝑗{ }
permutation  si σ

 σ 𝑖( ) > σ(𝑗)
 

Définition 5 

Soient  et . La signature  de la permutation  égale 𝑛∈𝑁* σ∈𝑆
𝑛

ε(σ) σ
▪​ 1 si le nombre d’inversions pour  est pair σ
▪​  si le nombre d’inversions pour  est impair − 1 σ

 
Exemple 
Considérons la permutation 

 σ = 1 2 3 4 5 1 3 4 5 2 ( )
Ainsi 

 σ 1( ) = 1 σ 2( ) = 3 σ 3( ) = 4 σ 4( ) = 5 σ 5( ) = 2 
On dénombre trois inversions ,  et  donc  2, 5{ } 3, 5{ } 4, 5{ } ε σ( ) =− 1
 

Définition 6 

Soit . Soit . Posons . Le déterminant de la matrice , noté  ou  est donné par la 𝑛∈𝑁* 𝐴∈𝑀
𝑛

𝑅( ) 𝐴 = 𝑎
𝑖,𝑗( ) 𝐴 𝑑𝑒𝑡⁡(𝐴) 𝐴| |

formule 

 det 𝑑𝑒𝑡 𝐴( ) = 𝐴| | =
σ∈𝑆

𝑛

∑ ε(σ)
𝑖=1

𝑛

∏ 𝑎
𝑖,σ(𝑖)( )

Où 
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𝑖=1

𝑛

∏ 𝑎
𝑖,σ(𝑖)

= 𝑎
1,σ(1)

× 𝑎
2,σ(2)

×…×𝑎
𝑛,σ(𝑛)

 
Exemples 
▪​ Pour , on retrouve le déterminant vu en seconde 𝑛 = 2 

 𝑎 𝑏 𝑐 𝑑 | | = 𝑎𝑑 − 𝑏𝑐
 − 2 1 3 4 | | =− 2×4 − 1×3 =− 11

 
▪​ Pour , on obtient 𝑛 = 3

 𝑎
11

 𝑎
12

 𝑎
13

 𝑎
21

 𝑎
22

 𝑎
23

 𝑎
31

 𝑎
32

 𝑎
33

 | | = 𝑎
11

𝑎
22

𝑎
33

+ 𝑎
12

𝑎
23

𝑎
31

+ 𝑎
13

𝑎
21

𝑎
32

− 𝑎
11

𝑎
23

𝑎
32

− 𝑎
12

𝑎
21

𝑎
33

− 𝑎
13

𝑎
22

𝑎
31

Remarquons que 
 𝑎

11
 𝑎

12
 𝑎

13
 𝑎

21
 𝑎

22
 𝑎

23
 𝑎

31
 𝑎

32
 𝑎

33
 | | = 𝑎

11
𝑎

22
 𝑎

23
 𝑎

32
 𝑎

33
 | | − 𝑎

21
𝑎

12
 𝑎

13
 𝑎

32
 𝑎

33
 | | + 𝑎

31
𝑎

12
 𝑎

13
 𝑎

22
 𝑎

23
 | |

 
Mais aussi 

 𝑎
11

 𝑎
12

 𝑎
13

 𝑎
21

 𝑎
22

 𝑎
23

 𝑎
31

 𝑎
32

 𝑎
33

 | | = 𝑎
11

𝑎
22

 𝑎
23

 𝑎
32

 𝑎
33

 | | − 𝑎
12

𝑎
21

 𝑎
23

 𝑎
31

 𝑎
33

 | | + 𝑎
13

𝑎
21

 𝑎
22

 𝑎
31

 𝑎
32

 | |
Dans le premier cas, on dit que l’on a développé selon les lignes et dans le deuxième cas, on a développé 
selon les colonnes. On utilisera plutôt l’un ou l’autre cas selon que la première ligne ou la première colonne 
contient des zéros. 

2 3 − 4 0 5 8 1 7 9 | | = 2 5 8 7 9 | |⏞ 2 3 −4 0 5 8 1 7 9 | | − 0× 3 − 4 7 9 | |⏞ 2 3 −4 0 5 8 1 7 9 | | + 1× 3 − 4 5 8 | |⏞ 2 3 −4 0 5 8 1 7 9 | | =
On aurait pu aussi développer selon les colonnes 

 2 3 − 4 0 5 8 1 7 9 | | = 2 5 8 7 9 | | − 3× 0 8 1 9 | | − 4× 0 5 1 7 | | = 2× − 11( ) − 3× − 8( ) − 4× − 5( ) = 22
Dans le premier cas, le calcul est cependant plus simple. Cette formule se généralise à toutes les dimensions. 
 

Propriété 5 

Soit . Soit . Posons . Soit , posons 𝑛∈𝑁* 𝐴∈𝑀
𝑛

𝑅( ) 𝐴 = 𝑎
𝑖,𝑗( ) 𝑖, 𝑗( ) ∈ ⟦1, 𝑛⟧2

 𝐴
𝑖,𝑗

= 𝑎
𝑘,𝑙( )

𝑘,𝑙( )∈⟦1,𝑛⟧2, 𝑘≠𝑖,𝑙≠𝑗

 ∀𝑗∈⟦1, 𝑛⟧, det 𝑑𝑒𝑡 𝐴( ) = 𝐴| | =
𝑖=1

𝑛

∑ − 1( )𝑖+𝑗𝑎
𝑖,𝑗

𝐴
𝑖,𝑗| | (𝑑é𝑣𝑒𝑙𝑜𝑝𝑝𝑒𝑚𝑒𝑛𝑡 𝑠𝑒𝑙𝑜𝑛 𝑙𝑎 𝑐𝑜𝑙𝑜𝑛𝑛𝑒 𝑗)

 ∀𝑖∈⟦1, 𝑛⟧, det 𝑑𝑒𝑡 𝐴( ) = 𝐴| | =
𝑗=1

𝑛

∑ − 1( )𝑖+𝑗𝑎
𝑖,𝑗

𝐴
𝑖,𝑗| | (𝑑é𝑣𝑒𝑙𝑜𝑝𝑝𝑒𝑚𝑒𝑛𝑡 𝑠𝑒𝑙𝑜𝑛 𝑙𝑎 𝑙𝑖𝑔𝑛𝑒 𝑖)

 
Remarque 
La matrice  est la matrice  à laquelle on a retiré la i-ème ligne et la j-ème colonne. 𝐴

𝑖,𝑗
𝐴

 
Propriété 6 

Soit . Soit . Si une des lignes de  est une combinaison linéaire des autres lignes de la matrice ou 𝑛∈𝑁* 𝐴∈𝑀
𝑛

𝑅( ) 𝐴
si une des colonnes de  est une combinaison linéaire des autres colonnes de la matrice alors 𝐴

 det 𝑑𝑒𝑡 𝐴( ) = 𝐴| | = 0
Autrement dit, si les lignes ou les colonnes de la matrices sont liées, le déterminant est nul. 

 
Exemples 
▪​  car  1 5 2 3 6 6 − 2 0 − 4 | | = 0 2 6 − 4 ( ) = 2 1 3 − 2 ( )

En effet, 
 1 5 2 3 6 6 − 2 0 − 4 | | = 1× 6 6 0 − 4 | | − 3 5 2 0 − 4 | | − 2 5 2 6 6 | | =− 24 + 60 − 36 = 0

▪​  car  0 4 − 3 2 − 1 2 − 3 1, 5 − 3 | | = 0 − 3 1, 5 − 3 ( ) = 1, 5 2 − 1 2 ( )
En effet, 

 0 4 − 3 2 − 1 2 − 3 1, 5 − 3 | | =− 2× 4 − 3 1, 5 − 3 | | − 3 4 − 3 − 1 2 | | =− 2 − 12 + 4, 5( ) − 15 = 0
▪​  car  1 1 2 2 1 3 3 1 4 | | = 0 1 2 3 ( ) + 1 1 1 ( ) = 2 3 4 ( )

En effet, en développant selon la 2e colonne, 
 1 1 2 2 1 3 3 1 4 | | =− 2 3 3 4 | | + 1 2 3 4 | | − 1 2 2 3 | | = 1 − 2 + 1 = 0
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Définition 7 

Soit . Soit . Posons . 𝑛∈𝑁* 𝑇∈𝑀
𝑛

𝑅( ) 𝑇 = 𝑎
𝑖,𝑗( )

 est une matrice triangulaire supérieure si 𝑇
 ∀ 𝑖, 𝑗( ) ∈ ⟦1, 𝑛⟧2, 𝑖 > 𝑗⟹𝑎

𝑖,𝑗
= 0

 est une matrice triangulaire inférieure si 𝑇

 ∀ 𝑖, 𝑗( ) ∈ ⟦1, 𝑛⟧2, 𝑖 < 𝑗⟹𝑎
𝑖,𝑗

= 0

Exemples 
▪​  est une matrice triangulaire supérieure. 1 5 2 0 6 6 0 0 − 4 ( )
▪​  est une matrice triangulaire inférieure. 1 0 1 − 2 ( )
 

Propriété 7 

Soit . Soit . Posons . Si  est une matrice triangulaire, alors 𝑛∈𝑁* 𝑇∈𝑀
𝑛

𝑅( ) 𝑇 = 𝑎
𝑖,𝑗( ) 𝑇

 det 𝑑𝑒𝑡 𝑇( ) = 𝑇| | =
𝑖=1

𝑛

∏ 𝑎
𝑖,𝑖

Exemples 
▪​  1 5 2 0 6 6 0 0 − 4 | | = 1×6× − 4( ) =− 24
▪​  1 0 1 − 2 | | = 1× − 2( ) =− 2
▪​  1 0 0 0 2 0 0 0 − 3 | | = 1×2× − 3( ) =− 6
▪​  1 0 0 0 1 0 0 0 1 | | = 1
 

Propriété 8 

Soit . Soit . 𝑛∈𝑁* 𝐴∈𝑀
𝑛

𝑅( )

 𝐴| | = 𝐴𝑇| |
 

Propriété 9 

Soit . Soient . 𝑛∈𝑁* 𝐴, 𝐵∈𝑀
𝑛

𝑅( )
 𝐴𝐵| | = 𝐴| | × 𝐵| | = 𝐵𝐴| |

 
Propriété 10 

Soit . Soient  et . 𝑛∈𝑁* 𝐴∈𝑀
𝑛

𝑅( ) λ∈𝑅

 λ𝐴| | = λ𝑛 𝐴| |
 
Cas particuliers 
▪​ Matrice définie par blocs 

Soient  tels que . Soient  telles que 𝑛, 𝑘, 𝑝∈𝑁* 𝑛 = 𝑘 + 𝑝 𝐴∈𝑀
𝑛

𝑅( ), 𝐵∈𝑀
𝑘

𝑅( ), 𝐶∈𝑀
𝑘,𝑝

𝑅( ), 𝐷∈𝑀
𝑝

𝑅( )
 𝐴 = 𝐵 𝐶 0 𝐷 ( )

Le bloc de zéros (0) correspond à une matrice de taille . Dans ce cas, 𝑝×𝑘
 𝐴| | = 𝐵| | × 𝐷| |

▪​ Déterminant de Vandermonde 
Soit .  𝑛∈𝑁* ∀𝑖∈⟦1, 𝑛⟧, 𝑎

𝑖
∈𝑅

 1 1 ...  1 𝑎
1
 𝑎

2
 ...  𝑎

𝑛
 ⋮  ⋮  ⋱ ⋮  𝑎

1
𝑛−1 𝑎

2
𝑛−1 ...  𝑎

𝑛
𝑛−1 |||

||| =
1≤𝑖<𝑗≤𝑛

∏ 𝑎
𝑗

− 𝑎
𝑖( )

🖥 Vidéo de la preuve https://youtu.be/8gr97pJSqrk?si=OrKVZ0QX3TTreUgw 
 
3. Inverse d’une matrice inversible 
 

Définition 7 

Soit . Soit .  est inversible s’il existe une matrice  telle que 𝑛∈𝑁* 𝐴∈𝑀
𝑛

𝑅( ) 𝐴 𝐵∈𝑀
𝑛

𝑅( )
 𝐴𝐵 = 𝐼

𝑛
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On note alors 

 𝐵 = 𝐴−1

L’ensemble des matrices inversibles de  se note  (GL pour groupe linéaire) 𝑀
𝑛

𝑅( ) 𝐺𝐿
𝑛

𝑅( )

Exemples 

▪​  donc  est son propre inverse. 𝐼
𝑛

× 𝐼
𝑛

= 𝐼
𝑛

𝐼
𝑛

= 𝐼
𝑛
−1

▪​ Soient  tels que . L’inverse de  est 𝑎, 𝑏, 𝑐, 𝑑∈𝑅 𝑎𝑑 − 𝑏𝑐≠0 𝐴 = 𝑎 𝑏 𝑐 𝑑 ( )
 𝐴−1 = 1

𝑎𝑑−𝑏𝑐 𝑑 − 𝑏 − 𝑐 𝑎 ( )

Ainsi, si  alors  𝐴 = 11 8 4 3 ( ) 𝐴−1 = 3 − 8 − 4 11 ( )
 

Propriété 11 

Soit . Soit . 𝑛∈𝑁* 𝐴∈𝐺𝐿
𝑛

𝑅( )

 𝐴𝐴−1 = 𝐴−1𝐴 = 𝐼
𝑛

Remarques 

▪​ On verra par la suite que  est un polynôme en  que l’on peut obtenir à l’aide du polynôme 𝐴−1 𝐴
caractéristique  qui s’annule en  (  est la lettre grecque minuscule ). χ

𝐴
𝑋( ) = 𝑋𝐼

𝑛
− 𝐴| | 𝐴 χ 𝑘ℎ𝑖

▪​ Dans l’expression de , on reconnaît le déterminant de la matrice  égal à . Cette remarque 𝐴−1 𝐴 𝐴| | = 𝑎𝑑 − 𝑏𝑐
se généralise à . Il y aura équivalence entre  inversible et  𝑀

𝑛
𝑅( ) 𝐴 𝐴| |≠0

 
Propriété 12 

Soit . Soit . 𝑛∈𝑁* 𝐴∈𝑀
𝑛

𝑅( )
 𝐴∈𝐺𝐿

𝑛
𝑅( )⟺ 𝐴| |≠0

 

Pour exprimer  en fonction des coefficients de , on utilisera alors la comatrice dont les coefficients sont les 𝐴−1 𝐴
déterminants des matrices  définies à la propriété 5. − 1( )𝑖+𝑗𝐴

𝑖,𝑗
 

Propriété 13 

Soit . Soit . Posons . Soit , posons 𝑛∈𝑁* 𝐴∈𝐺𝐿
𝑛

𝑅( ) 𝐴 = 𝑎
𝑖,𝑗( ) 𝑖, 𝑗( ) ∈ ⟦1, 𝑛⟧2

 𝐴
𝑖,𝑗

= 𝑎
𝑘,𝑙( )

𝑘,𝑙( )∈⟦1,𝑛⟧2, 𝑘≠𝑖,𝑙≠𝑗
La comatrice de A est définie par 

 𝐴( ) = − 1( )𝑖+𝑗 𝐴
𝑖,𝑗| |( )

𝑖,𝑗( )∈⟦1,𝑛⟧2

La matrice inverse de A est donnée par 

 ∀𝑗∈⟦1, 𝑛⟧, 𝐴−1 = 1
𝐴| | 𝐴( ) 𝑇

Exemple 
Soit 

 𝑀 = 0, 25 0 1 − 1 1 − 2 1 − 2 − 4 ( )
𝑐𝑜𝑚 𝑀( ) = 1 − 2 − 2 − 4 | | − − 1 − 2 1 − 4 | | − 1 1 1 − 2 | | − 0 1 − 2 − 4 | | 0, 25 1 1 − 4 | | − 0, 25 0 1 |(

 𝑀| | = 0, 25 0 1 − 1 1 − 2 1 − 2 − 4 | | = 0, 25 1 − 2 − 2 − 4 | | + 1 − 1 1 1 − 2 | | = 0, 25× − 8( ) + 1×1 =− 1
Donc 

 𝑀−1 = 1
𝐴| | 𝐴( ) 𝑇 = 1

−1 − 8 − 2 − 1 − 6 − 2 − 0, 5 1 0, 5 0, 25 ( ) = 8 2 1 6 2 0, 5 − 1 − 0, 5 − 0, 25 ( )
Remarque 

Soit . Soit . L’égalité suivante est toujours vraie même si  n’est pas inversible. 𝑛∈𝑁* 𝐴∈𝑀
𝑛

𝑅( ) 𝐴

 𝐴 𝐴( ) 𝑇 = 𝐴| |𝐼
𝑛

 
Application : solution d’un système 
On veut résoudre le système 

 (𝑆){0, 25𝑥 + 𝑧 = 2 − 𝑥 + 𝑦 − 2𝑧 = 3 𝑥 − 2𝑦 − 4𝑧 =− 1 
Remarquons que 

� 8 🙞 



 𝑆( )⟺ 0, 25 0 1 − 1 1 − 2 1 − 2 − 4 ( ) 𝑥 𝑦 𝑧 ( ) = 2 3 − 1 ( )
 𝑆( )⟺𝑀 𝑥 𝑦 𝑧 ( ) = 2 3 − 1 ( )⟺𝑀−1𝑀 𝑥 𝑦 𝑧 ( ) = 𝑀−1 2 3 − 1 ( )

 𝑆( )⟺ 𝑥 𝑦 𝑧 ( ) = 8 2 1 6 2 0, 5 − 1 − 0, 5 − 0, 25 ( ) 2 3 − 1 ( ) = 21 17, 5 − 3, 25 ( )
On peut généraliser en reprenant l’exemple introductif et en supposant . 𝑛 = 𝑝
{𝑎

1,1
𝑥

1
 + 𝑎

1,2
𝑥

2
 + … + 𝑎

1,𝑛
𝑥

𝑛
 = 𝑏

1
 𝑎

2,1
𝑥

1
 + 𝑎

2,2
𝑥

2
 + … + 𝑎

2,𝑛
𝑥

𝑛
 = 𝑏

2
 ⋮  ⋮  ⋮  ⋮  ⋮  𝑎

𝑛,1
𝑥

1
 + 𝑎

𝑛,2
𝑥

2
 + … + 𝑎

𝑛,𝑛
Le système admettra une solution si  est inversible (c’est-à-dire si ) et on aura 𝐴 = 𝑎

𝑖,𝑗( ) 𝐴| |≠0

 𝑥
1
 𝑥

2
 ⋮  𝑥

𝑛
 ( ) = 𝐴−1 𝑏

1
 𝑏

2
 ⋮  𝑏

𝑛
 ( )

 
 
Méthode : calculer l’inverse à l’aide du polynôme caractéristique 

Définition 8 

Soit . Soit . Le polynôme caractéristique de la matrice , noté  est défini par 𝑛∈𝑁* 𝐴∈𝑀
𝑛

𝑅( ) 𝐴 χ
𝐴

 χ
𝐴

𝑋( ) = 𝑋𝐼
𝑛

− 𝐴| |
 

Théorème de Cayley-Hamilton 

Soit . Soit . 𝑛∈𝑁* 𝐴∈𝑀
𝑛

𝑅( )
 χ

𝐴
𝐴( ) = 0

Remarque 
La démonstration de ce théorème est moins simple qu’il n’y paraît. On ne peut pas remplacer directement  par 𝑋
A dans la définition et dire que  est le déterminant de la matrice nulle et donc 0. Les propriétés des χ

𝐴
𝐴( )

polynômes à valeurs dans  ne sont pas celles des polynômes à valeurs dans . Cela dit, une démonstration 𝑅 𝑀
𝑛

𝑅( )
donnée sur Wikipédia exploite un peu cette idée. 
 
Considérons la matrice  précédente 𝑀

 𝑀 = 0, 25 0 1 − 1 1 − 2 1 − 2 − 4 ( )
On calcule le polynôme caractéristique en développant suivant la première ligne. 
χ

𝑀
𝑋( ) = 𝑋𝐼

3
− 𝑀| | = 𝑋 − 0, 25 0 − 1 1 𝑋 − 1 2 − 1 2 𝑋 + 4 | | = 𝑋 − 0, 25( ) 𝑋 − 1( ) 𝑋 + 4( ) − 4[ ] − 1 2 + 𝑋 − 1[

 χ
𝑀

𝑋( ) = 𝑋 − 0, 25( ) 𝑋2 + 3𝑋 − 8( ) − 𝑋 − 1 = 𝑋3 + 2, 75𝑋2 − 9, 75𝑋 + 1
Or, d’après le théorème de Cayley-Hamilton, 

 χ
𝑀

𝑀( ) = 𝑀3 + 2, 75𝑀2 − 9, 75𝑀 + 𝐼
3

= 0

 ⟺ − 𝑀3 − 2, 75𝑀2 + 9, 75𝑀 = 𝐼
3

 ⟺𝑀 − 𝑀2 − 2, 75𝑀 + 9, 75𝐼
3( ) = 𝐼

3
On en déduit que 

 𝑀−1 =− 𝑀2 − 2, 75𝑀 + 9, 75𝐼
3

Or, 
𝑀2 = 0, 25 0 1 − 1 1 − 2 1 − 2 − 4 ( ) 0, 25 0 1 − 1 1 − 2 1 − 2 − 4 ( ) = 1, 0625 − 2 − 3, 75 − 3, 25 5 5 −(

 2, 75𝑀 = 2, 75 0, 25 0 1 − 1 1 − 2 1 − 2 − 4 ( ) = 0, 6875 0 2, 75 − 2, 75 2, 75 − 5, 5 2, 75 − 5, 5 − 11 ( )
Donc 
𝑀−1 =− 𝑀2 − 2, 75𝑀 + 9, 75𝐼

3
= − 1, 0625 − 0, 6875 + 9, 75 2 3, 75 − 2, 75 3, 25 + 2, 75 − 5 − 2, 75 + 9, 75 (

 𝑀−1 = 8 2 1 6 2 0, 5 − 1 − 0, 5 − 0, 25 ( )
On retrouve le résultat trouvé précédemment. 
 
Remarque 
Si l’on écrit le polynôme caractéristique de  sous la forme 𝐴 = (𝑎

𝑖,𝑗
)∈𝑀

𝑛
𝑅( )

 χ
𝐴

𝑋( ) = 𝑎
𝑛
𝑋𝑛 + 𝑎

𝑛−1
 𝑋𝑛−1 + … + 𝑎

1
𝑋 + 𝑎

0
=

𝑘=0

𝑛

∑ 𝑎
𝑘
𝑋𝑘

Alors, en définissant la trace de , notée , comme la somme des coefficients diagonaux 𝐴 𝑡𝑟(𝐴)
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 𝑡𝑟 𝐴( ) =
𝑘=0

𝑛

∑ 𝑎
𝑘,𝑘

 𝑎
𝑛−1

=− 𝑡𝑟(𝐴) 𝑒𝑡 𝑎
0

= − 1( )𝑛𝑑𝑒𝑡(𝐴) 
Ainsi, aux dimensions 2 et 3, 

 𝑛 = 2⟹χ
𝐴

𝑋( ) = 𝑋2 − 𝑡𝑟 𝐴( )𝑋 + 𝑑𝑒𝑡⁡(𝐴)

 𝑛 = 3⟹χ
𝐴

𝑋( ) = 𝑋3 − 𝑡𝑟 𝐴( )𝑋2 + 1
2 𝑡𝑟2 𝐴( ) − 𝑡𝑟 𝐴2( )( )𝑋 − 𝑑𝑒𝑡⁡(𝐴)

Dans ce dernier cas, le coefficient en , souvent noté , est la trace de la comatrice. 𝑋 𝑍 𝐴( )
Méthode : calculer l’inverse à l’aide de la méthode du pivot de Gauss 
On transforme la matrice de départ en effectuant des opérations sur les lignes ou les colonnes pour obtenir la 
matrice identité. Dans le même temps, on applique les mêmes opérations à la matrice identité. A la fin du 
processus, la matrice inverse est celle obtenue à partir de la matrice identité. 
 
Exemples 
▪​ On veut déterminer l’inverse de 

 𝐴 = 0 1 2 1 1 2 0 2 3 ( )
Solution 
0 1 2 1 1 2 0 2 3 ( )| 1 0 0 0 1 0 0 0 1 ( )𝐿

1
 𝐿

2
 𝐿

3
 0 1 2 1 0 0 0 0 1 ( )| 1 0 0 − 1 1 0 2 0 − 1 ( )𝐿

1
⟵𝐿

1
 𝐿

2
⟵𝐿

2
− 𝐿

1
 𝐿

3
⟵2𝐿

1
Donc 

 𝐴−1 = − 1 1 0 − 3 0 2 2 0 − 1 ( )
▪​ On veut déterminer l’inverse de 

 𝐴 = 1 2 3 2 2 3 3 3 3 ( )
Solution 
1 2 3 2 2 3 3 3 3 ( )| 1 0 0 0 1 0 0 0 1 ( )𝐿

1
 𝐿

2
 𝐿

3
 1 2 3 0 2 3 0 3 6 ( )| 1 0 0 2 − 1 0 3 0 − 1 ( )𝐿

1
⟵𝐿

1
 𝐿

2
⟵2𝐿

1
− 𝐿

2
 𝐿

3
⟵3𝐿

1
Donc 

 𝐴−1 = − 1 1 0 1 − 2 1 0 1 − 2/3 ( )
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