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Chapitre 9
Matrices et opérations élémentaires

I. Un peu d’histoire et définition d'une matrice

Afin de simplifier la résolution de systemes linéaires du type

S)a x +a x + .. +a1'pxp =b a x +a x + .. +a2,pxp =b2: i ba +an'2x2 + ..

1,171 1,272 172171 2,272
ou les nombres al,j et les nombres bl, sont des constantes données et les nombres X, sont des inconnues,

Gottfried Wilhelm Leibniz (1646-1706) introduit la notation indicielle. Gabriel Cramer (1704-1752),
Théophile Vandermonde (1735-1796) et Pierre Simon Laplace (1749-1827) vont par la suite utiliser la
notation matricielle qui nous est parvenue sous la forme

a  wia . a._ . a =(a
2,p nl n2 n,p) ( i.j)

pour calculer le déterminant de la matrice (aij) danslecasoun = p.

Par la suite, Joseph Louis Lagrange (1736-1813) et Carl Friedrich Gauss (1777-1855) utilisent des matrices
pour étudier les transformations linéaires.

Augustin-Louis Cauchy (1789-1857) définit ensuite le produit matriciel.

James Sylvester (1814-1897) utilise pour la premiere fois le mot matrice pour désigner cet objet et Arthur
Cayley (1821-1895) vient diffuser cette notion.

i€e[1,n],jellpr]

II. Propriétés et opérations

Dans la suite du cours, tous les nombres utilisés seront des réels mais les régles sont rigoureusement identiques
dans C.
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Définition 1
Soientn, peN . an(R) est’ensemble des matrices de n lignes et de p colonnes.
V(i) € [Ln] x [1,p]a,€R

. (ai’l)ie[[l . = (a1,1 a,, ia, ) € Mn,l(R) est une matrice colonne.

S OO i = (al’1 a, - al,p) € Ml,p(R) est une matrice ligne.

= Si n=mp
(ai'j)(ij)E[[l ]’ - (al.l a1.2 al.n a2,1 aZ,Z aZ,n A an,l an,Z an,n) € Mn,n(R) - Mn(R) est une
matrice carrée.

* Sin=pl =10 .. 001~ : ¢ ~~00 .. 01)€M (R)estlamatrice identité de taille n.

= Si n=np, diag(al, Ay oo an) = (a1 0. 00 a, i i 00 .. 0 an) € Mn(R) est une matrice

diagonale de taille n.

Exemples
= M=(1352 —20500 —47 —6)€ M43(R) est une matrice de taille 4x3.

= A=(13 —14)€ M“(R) est une matrice colonne de taille 4x1.
= B=(2 —-5-13)€ M1 4(R) est une matrice ligne de taille 1x4.
=2 -5-136 -15 -39 —251 —38 —20 —412)eM, (R)=M,(R) est une matrice

carrée de taille 4.
= N=(000000)€ M2 3(R) est la matrice nulle de taille 2x3.

Quand cela ne préte pas a confusion, la matrice nulle sera notée 0 (notation en général utilisée lorsque I'on
manipule des matrices carrées).
- L= (100010001)€ M3(R) est la matrice identité de taille 3.

= D=(10003000 —2)€e M3(R) est une matrice diagonale de taille 3.
Remarque

On peut identifier Mn 1(R) 2 R" 'ensemble des vecteurs d’un espace a n dimensions.

Propriété 1 (somme et produit par un scalaire)
Soientn, pEN et A€R. Soient A, BEM (R).Posons A = (a, ) etB = (b, )
np ij ij
A+B=(a +b)
ij ij
M = (Aa, )

Exemples
Reprenons les matrices précédentes.
- I,+D=(100010001)+ (10003000 —2)=(1+10001+30001~-2)=(20004000 —1)

- E+F=(431—-209)+(5 —67 —81011)=(4+53—-61+7 —2—80+ 109 4+ 11)=(9 — 3¢
- 54=5(13 —14)=(5x15x35x(— 1)5x4)= (515 — 520)

- —2D=—12(10003000 —2)=(—2x1000 — 2x3000 — 2x(— 2))=(—2000 — 60004)

- 3M =3(1352 — 20500 —47 —6)=(39156 — 601500 — 1221 — 18)
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Propriété 2 (associativité et commutativité de la somme)
Soientn,p, q,7EN etA, pER. Soient (4, B, C) € Mip(R).
A+B)+C=A+ B +0
A+B=B+ A
AMA+ B)=24A + AB
A+ WA =24+ pd

Démonstration
La démonstration découle de maniere évidente de 'associativité, de la commutativité et de la distributivité dans
R.

Propriété 3 (produit de deux matrices) B
Soient n, p, gEN . Soient AEMn’p(R) et BEMM(R). Posons A = (ai,j) etB = (bi'j). —T

Le produit C = AXB est une matrice de an(R). D’autre part, si'on pose C = (cij), = Torh]
P
A
@]
) ai,k X bk’j

V(i) € [Lnl x [1,qlc, =

k=1

Exemples
Reprenons les matrices précédentes.
=  BXA estune matrice de M1 1(R)zR

BxA =2 -5 —-13)13 —14)=(2%x1 —5x3 — 1x(— 1)+ 3x4)=(0)=0
=  AXB est une matrice de M44(R)
AXB=(13 —14)2 =5 —13)=(1x21x(-51x(—11x X2 —

) bxi 3 est une matrice de M3.3(R) Le coefficient d'indice est obtenu en
D><I3 =(10003000 —2)(100010001)=(10003 0_9;_0 =2 multipliant les coefficients de 1a ligne de D par

Remarquons que 1 les coefficients de la colonne de
13><D =D

= MXE est une matrice de M4 2(R)

MXE =(1352 — 20500 —47 —6)(431 —209)=(1%x4 +3x1+5x01x3+3x(—2)+5x92x4
MXE =(7426102015 — 9 — 80)

Remarquons que I'on ne peut pas calculer le produit EXM car leurs dimensions ne sont pas compatibles.

= Posons

G=(—12 —22 —441/2 —11)etH=(2 -2 -1 -101/2 - 211)
GxH=(—-12 —-22 —441/2 -11)2 -2 -1 -101/2 —211)=(000000000)
HxG=2 -2 -1-101/2 —211)(—12 —22 —441/2 —11)=(—13/213 - 135/4 — 5/25/29/z
Remarquons que GXH#HXG
Par ailleurs, GXH = 0 sans que ni G ni H ne soient la matrice nulle. L'ensemble Mn(R) n'est pas intégre

contrairement a R ou € munis de la multiplication usuelle.

Propriété 4 (distributivité et associativité de la multiplication)
Soientn, p, q, TEN et A€R. Soient (4, 4, B, B',C) € sz(R) x M;q(R) x M, (R).-
A(B +B)=AB + AB’

(4 + A')B — AB + A'B
(AB)C = A(BC)

Preuve

Les deux premiéres égalités découlent directement de la distributivité de la multiplication par rapport a
I’addition dans R. Posons maintenant 4 = (ai ,), B = (bij) etC = (cij)
Posons aussiD = AB = (di‘j),E = BC = (ei'j etP = (AB)C = (pi’j)

P
V(i,k) € [1,n] X [[1,q]],dik: > a Xb
" me1 im m,

;llrMQ
&
o

X
a
.
-~
Il
?ITMQ

V(i) € [Ln] x [L7]p, =



On a pu inverser les deux sommations car les sommes sont finies et les indices de sommation sont
indépendants.

a_ ne dépend ni de k ni de g, on peut donc le factoriser dans la deuxiéme somme

p

q
p..= a Y b Xc =
ij me1 im =1 mk k,j

p

a Xe .
ey M m,j

Ainsi,

q p
V(i,j) € [[1,n]] X [[1,T]],pij = Z dik X ij — Z
b k=1 "~ - =

m=1

a, xe &(AB)C = A(BC)

Méthode

Utiliser la calculatrice pour effectuer des calculs matriciels

M yidéo TI https://youtu.be/8c4WDe1PSZk

M yidéo Casio https://youtu.be/zq50HgdTw34

M vidéo HP https://youtu.be/9a_rRHabIF8

M yidéo NumWorks https://youtu.be/6js_beljebI?si=g_nEoIXy6D_kjh__
On veut calculer le carré de la matrice A = (23 — 3245 — 15 = 5)

Avec une TI

Entrer dans le mode Matrice (MATRIX) puis EDIT.
Saisir la taille de la matrice puis ses coefficients.
Quittez (QUIT) puis entrer a nouveau dans le mode
Matrice, sélectionner la matrice A et enfin compléter
la formule pour élever A au carré.

[A]®

7 47 -11
13 -8 53

5% &

Avec une CASIO =] T ] 3
Entrer dans le menu RUN.MAT puis choisir MAT |Dimension m#n 1 e 3 -3
(Touche F1). moi3 a[ f : 5]
Choisir une matrice et saisir sa taille dans la fenétre noi3
qui s'ouvre.

Saisir ensuite les coefficients de la matrice. Z
Quitter le mode d'édition (QUIT), enfoncer la touche MAT puis saisir le calcul. ITIE 3 2u
On obtient le résultat. Mat. A2 E[ ]

Application : puissance d’'une matrice
Soit la matrice triangulaire supérieure
A=(110012001)

Soit nEN . On veut calculer A" en fonction de n.
Solution

SoitnEN . On décompose A sous la forme A = D + N ou D est une matrice diagonale et N est une matrice
nilpotente (dont les puissances s’annulent a partir d’'un certain rang). On pose
D= (100010001):I3etN =(010002000)

Remarquons que
DN = ND :NN2:(010002000)(010002000)=(002000000)N3=(010002000)(00200000

D’apres la formule du binéme de Newton, en remarquant que N* estnulle si n=3,
n n

(nk)NkI;‘—k — (nk)N" - (nO)NO +m1N + (nZ)NZ =1+ N+ n(n2—1) N
=0 k=0

A=+ N)'=
k
Soit

A'"=(1nnn-1012n001)

III. Inverse d’une matrice carrée
Dans toute la suite du cours, on ne considérera que des matrices carrées de Mn(R).
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https://youtu.be/8c4WDe1PSZk
https://youtu.be/zq5OHgdTw34
https://youtu.be/9a_rRHabIF8
https://youtu.be/6js_beljebI?si=g_nEoIXy6D_kjh__

1. Transposée d’'une matrice

Définition 2
Soit n€N . Soient 4, BeMn(R). Posons A = (aij) etB = (bij). La matrice B est la transposée de A si

v )€ Lnl’b, = a,

ik
On note

B =4

Remarques
T
T T
- (B) =B=4
= La définition de la transposée reste valable avec des matrices non carrées mais la taille d'une matrice et de

sa transposée ne sont pas identiques : si AEan(R), alors A’ € Mp n(R).

- sid' = A, on parle de matrice symétrique.
Exemple
La transposée de la matrice M=(0,2501 —11 —-21 -2 —4) est

M =(0,25 —1101 —21 —2 — 4)

2. Déterminant d’'une matrice

Définition 3
Soit n€EN . Une permutation o est une application de [[1; n] dans [1; n] telle que

V(i j) € [1,n]’, i#jeo()#0()
L'ensemble des permutations de [[1; n] est noté Sn

Remarque
card(S n) = nl

Définition 4
Soient n€EN et O'ESn. Soient i, jE[[1; n] tels que i < j. On dit que la paire {i,j} est une inversion pour la

permutation o si
o() > o(j)

Définition 5
SoientneN et GESn. La signature (o) de la permutation o égale

= 1 sile nombre d'inversions pour o est pair
= — 1sile nombre d’inversions pour o est impair

Exemple
Considérons la permutation
0=(1234513452)
Ainsi
o()=10(2)=30B3)=404)=50(5)=2
On dénombre trois inversions {2, 5}, {3, 5} et {4, 5} donc e(0) =— 1

Définition 6
Soit n€N . Soit AEMn(R). Posons A = (aij). Le déterminant de la matrice 4, noté det(A) ou |A| est donné par la
formule
n
detdet (A) = |Al= Y e(0)|]]a ..
o€S =1 o0

ou
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n
l.l:_ll Lo = o) X Yoo Mnom)

Exemples
=  Pourn = 2, onretrouve le déterminant vu en seconde
labcd|= ad — bc

|- 2134 |=— 2x4 — 1x3 =— 11

=  Pourn = 3, onobtient

|a11 a12 a13 a21 a22 a23 a31 a32 a33 | o a11a22a33 + a12a23a31 + a13a21a32 - a11a23a32 - a12a21a33 B a13a22a31

Remarquons que

a a . _a._a _a._a _a _a

11 712 713 21 22 23 731 32a33|—a

aaaa|—a2

11| 22 23 32 33 A Y33 @ |+a31|a12

1| 12 713 732 33 a39;, a23|
Mais aussi

|a11 a12 a13 a21 a22 a23 a31 a32 a33 | o a11|a22 a23 a32 a33 | N a12|a21 a23 a31 a33 | + a13|a21 aZZ a31 a32 |

Dans le premier cas, on dit que I'on a développé selon les lignes et dans le deuxieme cas, on a développé
selon les colonnes. On utilisera plutét I'un ou l'autre cas selon que la premiére ligne ou la premiére colonne
contient des zéros.

[23 —4058179|=2|5879| —0Xx|3 —479|
On aurait pu aussi développer selon les colonnes

|23 —4058179|=2|5879|—-3X|0819|—4%x|0517|= 2X(— 11) — 3X(— 8) — 4X(— 5)= 22
Dans le premier cas, le calcul est cependant plus simple. Cette formule se généralise a toutes les dimensions.

|23-4058179| |23-4058179| ml23-4058179] _

+1x|3 — 458]|

Propriété 5
Soit neN . Soit AEMn(R). Posons A = (aij). Soit (i,) € [1,n] 2, posons

Ai,j - (ak,l)

n .
Vj€[1,n],detdet (A) = |A]l= ) (— 1)l+]ai'j|AiJ_| (développement selon la colonne j)

(kDe[Ln]’, ki l#]

i=1
n . .

Vie[1,n], detdet (A) = |A|= Y (— 1)l+]aij|Aij| (développement selon la ligne i)
j=1 T

Remarque
La matrice Aij est la matrice A a laquelle on a retiré la i-éme ligne et la j-eme colonne.

Propriété 6
Soit n€N . Soit AEMn(R). Si une des lignes de A est une combinaison linéaire des autres lignes de la matrice ou

si une des colonnes de A est une combinaison linéaire des autres colonnes de la matrice alors
detdet (A) =|A|=0
Autrement dit, si les lignes ou les colonnes de la matrices sont liées, le déterminant est nul.

Exemples
» 152366 —20 —4|=0car(26 —4)=2(13 —2)
En effet,

[152366 —20 —4|=1X|660 —4|— 3520 —4|—2|5266|=—24+60—-36=0
» |04 -32 -12 -31,5 —-3|=0car(—31,5 -3)=1,5(2 —12)
En effet,
[04 —32 -12 —-31,5 —3|=—2%]4 —31,5 —-3|—-3/4 -3 —-12|=—2(—12+4+45—-15=0
= 112213314 |=0car(123)+(111)=(234)
En effet, en développant selon la 2¢ colonne,
(112213314 |=—12334|+1234|—-|1223]|=1-2+1=0
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Définition 7

Soit n€N . Soit TEM (R).Posons T = (a,)

T est une matrice triangulaire supérieure si
V(i j) € [L,n]’i > j=a, =0

T est une matrice triangulaire inférieure si
V(i j) € [Ln]’i < j=a, =0

Exemples
* (15206600 — 4) estune matrice triangulaire supérieure.
= (101 — 2) estune matrice triangulaire inférieure.

Propriété 7
Soit neN . Soit TEMn(R). Posons T = (aij). Si T est une matrice triangulaire, alors

n
detdet (T) =|T| =[] a.

; i,i
i=1_ "

Exemples

» 15206600 — 4|= 1x6X(— 4)=— 24
» 101 — 2|=1X(— 2)=—

* 10002000 — 3|=1x2X(—3)=—6
= |100010001]=1

Propriété 8
Soit neN . Soit AEMn(R).
T
Al =] |

Propriété 9
SoitneN . Soient 4, BEMn(R).
|AB| = |A| X |B| = |BA|

Propriété 10
Soit neN . Soient AEMn(R) et AER.

4] = 2"4]

Cas particuliers
= Matrice définie par blocs

Soientn, k, pEN* tels quen = k + p. Soient AEMn(R), BEMk(R), CEMkp(R), DEMp(R) telles que

A=(BCOD)
Le bloc de zéros (0) correspond a une matrice de taille pxk. Dans ce cas,
|Al = |B| X |D|
» Déterminant de Vandermonde
SoitneN . Vi€[1, n], aiER
. < . s n—-1 n-1 n—1 _ _
11 .. 1a1a2 wa ioitia oa, .oa |— I1 (aj ai)

1<i<j<n

M yidéo de la preuve https://youtu.be/8gr97pJSqrk?si=0rKVZ0QX3TTreUgw

3. Inverse d’'une matrice inversible

Définition 7
Soit neN . Soit AEMn(R). A est inversible s’il existe une matrice BEMn(R) telle que
AB =1
n
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On note alors

B=4"
Lensemble des matrices inversibles de M_(R) se note GLn(R) (GL pour groupe linéaire)

Exemples
= | X[ =] doncl = I_1 est son propre inverse.
n n n n n
= Soienta, b, ¢, d€R tels que ad — bc#0. Linversede A = (abcd) est
11

A =—=(d —b —ca)

Ainsi, siA = (11843):1101"5141_1 =3 -8 —-—411)

Propriété 11
Soitn€N . Soit AEGLn(R).

AAT =474 = I

Remarques

= On verra par la suite que A" est un polynédme en A que l'on peut obtenir a l'aide du polynéme
caractéristique XA(X) = |Xln — A| qui s’annule en A (x est la lettre grecque minuscule khi).

. -1 N P . . p \
= Dans 'expression de A , on reconnait le déterminant de la matrice A égal a |[A| = ad — bc. Cette remarque
se généralise a Mn(R). Il y aura équivalence entre A inversible et |A|#0

Propriété 12
Soitn€N . Soit AEMn(R).
A€GL (R)=|A|#0

. -1 . . . s . . .
Pour exprimer A ~ en fonction des coefficients de 4, on utilisera alors la comatrice dont les coefficients sont les

déterminants des matrices (— 1)L / Aij définies a la propriété 5.

Propriété 13

. * . NP 2
Soit neN . Soit AEGLn(R). Posons A = (aij). Soit (i,j) € [1,n] , posons
A =|a
b ( k’l)(k,l)e[[l,n]]z,k;ti,l:#j
La comatrice de A est définie par
"
4) = ((— A )
| v | @perny’
La matrice inverse de A est donnée par

vje[l,n], A = (4)

Exemple

Soit

M=(0,2501 —11 —21 -2 —4)

comM)=(1 -2 -2 -4 -|-1 -21 —4||-111 —-2| —]01 —2 —4]]0,2511 — 4| —10,2501

[M|=10,2501 — 11 — 21 —2 —4|=0,25]1 —2 -2 —4|+1]—-111 —2|=0,25X(—8)+ 1x1 =—1
Donc

M‘1=|T}|(A)T=_L1(—8 -2 -1-6-2-051050,25)=(821620,5 —1 — 0,5 — 0,25)

Remarque

Soit neN . Soit AEMn(R). L'égalité suivante est toujours vraie méme si A n’est pas inversible.

A" = AL

Application : solution d’un systéme
On veut résoudre le systeme

$)0,25x +z=2 —x+y—2z=3x—2y —4z=-1
Remarquons que
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$)=(0,2501 —11 -21 -2 —4)(xyz)=(23 - 1)
(S)eM(xyz)=Q23 — 1)oM Mxyz)=M ‘(23 - 1)
SO)exyz)=8216205 -1 —-05 —0,25)(23 —1)=(2117,5 — 3,25)
On peut généraliser en reprenant 'exemple introductif et en supposantn = p.

{amx1 +al’2x2 + . +a1’nxn _b1a2,1x1 +a2‘2x2 + .. +a2lnxn —b2 P b ba x +an’2x2 + .. +am

Le systéme admettra une solutionsi A = (aij) est inversible (c’est-a-dire si |[A|#0) et on aura

(xlxz : xn)ZA_l(bl b2 E bn)

Méthode : calculer I'inverse a I'aide du polyndme caractéristique
Définition 8

Soit nEN . Soit AEMn(R). Le polyn6me caractéristique de la matrice 4, noté X, est défini par
XX = |x1, — 4]

Théoreme de Cayley-Hamilton
SoitneN . Soit AEM (R).

x,(A) =0

Remarque
La démonstration de ce théoréme est moins simple qu’il n’y parait. On ne peut pas remplacer directement X par
A dans la définition et dire que XA(A) est le déterminant de la matrice nulle et donc 0. Les propriétés des

polyndmes a valeurs dans R ne sont pas celles des polyndmes a valeurs dans Mn(R). Cela dit, une démonstration

donnée sur Wikipédia exploite un peu cette idée.

Considérons la matrice M précédente

M=(0,2501 —11 —21 —2 —4)

On calcule le polynéme caractéristique en développant suivant la premiere ligne.

XM(X)= |X13— M|= [X —0,250 — 11X —-12 —12X+4|=X-025)[X-1DX +4)—4]—-12+ X —

X, )= (X = 0,25)(X" +3X — 8)— X — 1 =X + 275X — 9,75X + 1

Or, d’apres le théoreme de Cayley-Hamilton,
X, (M)=M"+ 2,75M" — 9,75M +1 =0

o - M - 2,75M2+9,75M=I3

(:M(— M? — 2,75M + 9, 7513) =1,

On en déduit que

M =— M = 2,75M + 9, 751,

Or,

M2=(O,2501 -11 -21 -2 —-4)0,2501 —11 —21 —2 —4)=(1,0625 —2 — 3,75 — 3,2555 -
2,75M = 2,75(0,2501 - 11 - 21 -2 —4)=(0,687502,75 — 2,752,75 — 552,75 =55 —11)
Donc

M_1=—M2—2,75M+9,7513=(— 1,0625 — 0,6875 + 9,7523,75 — 2,753,25 + 2,75 — 5 — 2,75 + 9,75
M '=(8216205 -1 — 0,5 — 0,25)

On retrouve le résultat trouvé précédemment.

Remarque
Sil'on écrit le polynéme caractéristique de A = (aij) EMn(R) sous la forme
n
-1 k
XA(X) = aan + an_an + ..+ alX ta, = > akX
k=0
Alors, en définissant la trace de 4, notée tr(A), comme la somme des coefficients diagonaux
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https://fr.wikipedia.org/wiki/Th%C3%A9or%C3%A8me_de_Cayley-Hamilton#Une_preuve_purement_alg%C3%A9brique

n

tr(A)= Y a
2ok

a  =—tr(A)eta, = (- 1)"det(4)

Ainsi, aux dimensions 2 et 3,
n = 2=x,(X) =X — tr(A)X + det(4)
n = 3=x () =X — tr()X" +—+(tr’(4) - tr(4°))X — det(4)
Dans ce dernier cas, le coefficient en X, souvent noté Z(A), est la trace de la comatrice.
Méthode : calculer l'inverse a 'aide de la méthode du pivot de Gauss
On transforme la matrice de départ en effectuant des opérations sur les lignes ou les colonnes pour obtenir la

matrice identité. Dans le méme temps, on applique les mémes opérations a la matrice identité. A la fin du
processus, la matrice inverse est celle obtenue a partir de la matrice identité.

Exemples
= Onveut déterminer l'inverse de

A=(012112023)
Solution
(012112023)|(100010001)L1L2L3(012100001)|(100 - 11020 — 1)L1<—L1L2<—L2—L1L3<—2L1
Donc

A =(=110 —30220 — 1)

=  Onveut déterminer l'inverse de

A=(123223333)
Solution
(123223333)|(100010001)L1L2L3(123023036)|(1002 - 1030 — 1)L1<—L1L2<—2L1—L2L3<—3L
Donc

A'=(-1101 —2101 - 2/3)
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