
COMP 4901B Large Language Models Fall 2025
Course Logistics and FAQ

1.​ Prerequisites and Materials

Students are required to be familiar with programming, machine learning
basics and deep learning basics. Specifically, for HKUST students, you are
required to have taken one of the machine learning courses COMP3211,
COMP4211, or COMP5212, and enroll COMP4211 in this semester if you only
took COMP3211 before.

2.​ Honor Code

Students are required to work on the homework independently unless
otherwise specified.

Use of Generative AI tools: we allow use of generative AI tools such as
ChatGPT and Claude to help the coding part in your homework, but for any
writing part of the homework, you are not allowed to directly copy outputs
from generative AI tools.

We have zero tolerance on honor code violation – any single time of violation
will cause you to fail the course directly.

3.​ Grading

- Attendance (10%)
- 4 assignments (40%=4*10%)
- Mini-project (25%)
- Final exam (25%)

Attendance: there will be occasionally in-course quizzes to record attendance, 80%
of the attendance will give you full score on this. For example, suppose we have 10
such quizzes across the semester, you can miss 2 of them and still get the full score.
The correctness to the quiz questions will not influence the score.

Assignments: there will be 4 assignments, all of which are programming-centric and
may require writing a simple report. These assignments will be released on an
ongoing basis.

Mini-project: The mini project will be a group project with 2-3 people for each group.

Exams: Exams are close-book.

4.​ Submitting Assignments

Assignments release, submission, and grading will be through Canvas unless
otherwise specified.

5.​ Late Assignments

Each student will have a total of three free late (calendar) days to use for
homeworks. Once these late days are exhausted, any assignments turned in
late will be penalized 20% per late day. However, no assignment will be
accepted more than three days after its due date. Each 24 hours or part
thereof that a homework is late uses up one full late day.

6.​ Lecture Video Policy

Lecture videos are available and will be released on Canvas.

FAQ

1.​ How should I ask for TAs to help me debug code? (courtesy of Stanford CS229)

a.​ Please note that the teaching staff will not debug code longer than 2-3
lines via Canvas. Learning to debug is a critical skill for software
programmers. The TAs are discouraged from helping you look at and
debug large blocks of your code during the office hours.

b.​ The best way to use office hours and ask TAs for coding questions
would be

i.​ You should come to office hours having done your own legwork
and ruled out basic logical errors. Identify the place where the
error is suspected to come from by doing ablation studies.
(Please see below for some common debugging tips.)

ii.​ During the office hours, you should articulate what your goals
are and what you have observed in your experiments, what you
think might be the problem, and what advice you need to move
forward.

iii.​ The TAs will mostly help you by looking at and analyzing the
outputs of your code instead of looking at the original code.
Typical advice that the TAs might give you would be to ask you
to do more analytical or ablation studies about your code. For
example, when you observe that your test error does not
decrease as training for longer, the TAs might ask you to check if
your training error decreases. If your training error does not
decrease, then the TAs might ask to check if the gradient of your
algorithm is implemented correctly.

c.​ Here are some common debugging strategies that might be useful
(courtesy of Stanford CS221)

i.​ Construct small test cases that you have worked through by
hand and see if your code matches the manual solution.

ii.​ Spend some time understanding exactly what the test cases are
doing and what outputs they are expecting from your code.

iii.​ If possible, write your codes in small chunks and test that each
part is doing exactly what you expect.

iv.​ PDB is the default python debugger. It is very helpful and allows
you to set breakpoints. You can set a breakpoint with the
following lines: import pdb; pdb.set_trace() .

v.​ Printing the state of your computation frequently can help you
make sure that things are working as expected and can help you
narrow down which portion of your code is causing the bug you
are seeing, e.g. print(“var1 has current value: {}“.format(var)) .

d.​ Debugging tips for timeouts:
i.​ Set operations in general are pretty slow, so if you have any see

if you can do them in some other way.
ii.​ Check if all loops / linear operations are necessary. For example,

with searching through a list for a specific item, sometimes you
can make that constant time by giving each item an ID (say 0, 1,
2, 3) and then using a dictionary as a cache (although
sometimes you just have to live with the cost).

iii.​ If you have a specific helper function you are calling a lot, see if
there is anything in there you can optimize!

e.​ Other debugging tips
i.​ If you do not know what type a variable is, use type(.) .
ii.​ If you are running into issues where “None” pops up, a function

may not be returning what you are expecting.
iii.​ For indexing into lists: example_list[a: b] is INCLUSIVE for a but

EXCLUSIVE for b.
iv.​ If a function has optional arguments, make sure you are feeding

in the proper arguments in the proper places (very easy to mess
up).

v.​ Since python 3.6, you can use f-strings for printing debug
messages, rather than format.

vi.​ Because of broadcasting and other implicit operations, it's
useful to assert shapes of np arrays (and tensors for deep
learning) after each operation that can change the shape.

https://docs.python.org/2/library/pdb.html
https://realpython.com/python-f-strings/
https://realpython.com/python-f-strings/

	COMP 4901B Large Language Models Fall 2025 Course Logistics and FAQ
	1.​Prerequisites and Materials
	2.​Honor Code
	3.​Grading
	4.​Submitting Assignments
	5.​ Late Assignments
	6.​ Lecture Video Policy
	FAQ

