Direction	provinciale	Errachidia
D C C C	provinciale	

Lycée qualifiant Chahid My Tayeb

Prof : M. RIDA

Evaluation diagnostique

1Bac SEF

Durée : 1h

2022-2023

	_	
Nomo	t própom	
MOIII C	L DI CHOIH	

N°:...

Classe: 1Bac SEF ...

Note:.....

1) Poser le signe 'X' devant la réponse correcte :

(10 x 0.5 pt)

1	$(x + 2)^3 =$	$x^{3} + 8$	$x^3 + 6x^2 + 12x + 8$	$x^3 - 6x^2 + 12x - 8$
2	$a^3 - b^3 =$	$(a-b)^3$	$(a+b)(a^2-ab+b^2)$	$(a-b)(a^2+ab+b^2)$
3	ABCD est un parallélogramme, donc :	$\vec{AC} = \vec{AB} + \vec{AD}$	$\vec{AC} = \vec{AB}$	$\vec{AB} = \vec{CD}$
4	Soit $n \in \mathbb{N}$. Le nombre $4n^2 + 8n + 3$ est :	Pair	Impair	Premier
5	$\frac{\pi}{8}$ rad égal en degré	22,5°	30°	45°
6	$\cos \cos (-x) =$	$-\cos(x)$	cos(x)	sin(x)
7	$\sin \sin (x + \pi) =$	sin(x)	cos(x)	$-\sin(x)$
8	$\cos \cos (\pi) =$	-1	1	0
9	$2 < x \le 5$, alors:	<i>x</i> ∈[2; 5[<i>x</i> ∈]2; 5]	<i>x</i> ∈]2; 5[
10	L'intersection de $] - \infty$; 2] et $[-3, +\infty[$ est :	[2; + ∞[[- 3; 2]] - ∞; + ∞[

2) Résoudre dans R l'équation et l'inéquation suivantes :

(2pts)

$$|x + 1| = 3$$
 $|x + 1| < 3$

3) Soient $x \ et \ y$ deux nombres réels tels que : $2 \le x \le 3$ et $4 \le y \le 7$.

Encadrer les expressions suivantes : $x^2 - 2y$; $\frac{x}{y}$ (2 pts)

- 4) Considérons le polynôme suivant : $P(x) = x^3 + x^2 2$
 - a. Montrer que 1 est une racine de P (0.5 pt)

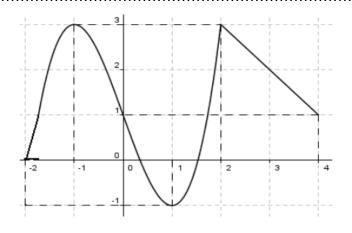
.....

b. En utilisant la division euclidienne, factoriser P(x) (1pt)

 $x^3 + x^2 - 2$ x - 1

5) Soit x un nombre réel :

a. Résoudre dans R l'équation suivante : $x^2 + 2x - 8 = 0$ (1.5pt	a.	Résoudre dans R l'équation suivante : $x^2 + 2x - 8 = 0$	(1.5pts)
--	----	--	----------


b. Déduire la factorisation du trinôme
$$x^2 + 2x - 8$$
 (1 pt)

(1.5 pts)

c. Déduire la solution d'inéquation suivante : $x^2 + 2x - 8 \ge 0$

x	_ ∞ + ∞
Signe de $x^2 + 2x - 8$	

6) Résoudre dans R^2 le système suivant : $\{2x + 3y = 8 - 3x + 4y = 5 (1.5pts)$

7) Déterminer l'abscisse curviligne principale du point $M\left(\frac{37\pi}{3}\right)$ (1 pt)

8) Soit f une fonction numérique définie sur l'intervalle [-2;4], sa représentation graphique ci –dessus.

a. Compléter le tableau suivant :

(0.5 pt)

b.	f(x) Déterminer les extremums de la fonction f	(0.5 pt)	
с.	Donner le tableau de variations de la fonction f		
d.	Résoudre graphiquement dans l'intervalle [- 2; 4]] l'équation $f(x) = 3$ et l'inéquation $f(x) \ge 0$.	 (1 pt)

Bonne chance

-1

0