TA Lecture Notes: Lecture #6 - Functions and Copy Constructor
2 5 January 29, 2018 - by Milica Hadzi-Tanovic

e |dentical to passing parameters into a function, we also have three choices on how
memory is used when returning from a function:
o Return by value: the object is copied from the function to the caller function
(the memory in function and caller function is different).

15 | Sphere joinSpheres(const Sphere &s1, const Sphere &s2);

o Return by reference: returns the address of the object (remember, never
return a reference to a stack memory).

15 | Sphere & joinSpheres(const Sphere &s1, const Sphere &s2);

o Return by pointer: also returns the address of the object (remember, never
return a reference to a stack memory).

15 | Sphere * joinSpheres(const Sphere &s1, const Sphere &s2);

e Copy Constructor, as its name says, copies an object based on the existing object.
When a non-primitive variable is passed/returned by value, a copy must be made.
o Automatic Copy Constructor
m Called if no custom copy constructor is defined.
m If we are copying an object, it copies all member variables by calling
their copy constructors.
m If we are copying a pointer, it will make a shallow copy by making the
variable point to an existing address.
o Custom Copy Constructor
m Declared as any other constructor but with special parameter.
m Itis supposed to make a deep copy of every member variable.

1 Universe::Universe(const Universe & other) {

2 /I custom copy ctor of some class Universe
3 // Deep copy of an object /l that contains three spheres

4 p_ = other.p_; Il const key word ensures “other” is not changed
5

6 /I Deep copy of a pointer

7 q_ = new Sphere (other — q_);

8

9 /I Deep copy of a reference

10 You cannot make a copy of a reference.

11 It doesn’t have its own memory.

12 |}




e Pass/return by value/reference/pointer tradeoffs

by value by reference/pointer
Everytime a value is passed or returned We are passing around addresses, but the
the value is copied into a new object. object is the same.
We are not changing the original object, It is risky because we are changing the
so it is safe. original object.




