
How fast do you really fall?
Minecraft wiki listed two equations for calculating how fast you fall, and they were both wrong.
https://minecraft.gamepedia.com/Transportation#Vertical_transportation
tl;dr:
Replace with 𝑑(𝑡) = 3. 92 * 99 − 49. 5 * 0. 98𝑡 + 1() − 𝑡()

 𝑑(𝑡) = 196 − 3. 92 * 𝑡 − 194. 04 * 0. 98𝑡−0.5

Here’s why.
First, it has 𝑣(𝑡) = 0. 98𝑡 − 1() * 3. 92
This gives you your velocity (in units of blocks per tick), from how many ticks you’ve been falling
for.
This equation is correct… but only when t is an integer. If t is, for example, 3.5, it gives -0.2676
while it should really be -0.2305.
This is because Minecraft only updates your velocity once a tick. So from t=3 to t=4, the
velocity is v(3)=-0.2305 the entire time. Then, at t=4 it changes suddenly to -0.3043.

The correct equation is 𝑣(𝑡) = 0. 98𝑓𝑙𝑜𝑜𝑟(𝑡) − 1() * 3. 92

This wouldn’t normally be an issue, but the next equation integrates v(t) to get d(t).

 𝑑(𝑡) = ∫ 𝑣(𝑡)𝑑𝑡 = ∫ 0. 98𝑡 − 1() * 3. 92 𝑑𝑡 = 3. 92 * 99 − 49. 5 * 0. 98𝑡 + 1() − 𝑡()
That last equation is presented in the wiki as simply

 𝑑(𝑡) = 3. 92 * 99 − 49. 5 * 0. 98𝑡 + 1() − 𝑡()
However, this equation is incorrect since it interprets the velocity as a continuous increase
instead of a stepwise increase. I have created a visualization of this difference here
https://www.desmos.com/calculator/8tji72kivp

https://minecraft.gamepedia.com/Transportation#Vertical_transportation
https://www.desmos.com/calculator/8tji72kivp

Desmos does not plot floor functions with the vertical connectors correctly, so the blue step
function is missing some connections. In that desmos chart, the red dots represent integral tick
values, the green curve represents the velocity estimate from the wiki equation, and the blue
step function is the correct velocity over time.

The correct equation is 𝑑(𝑡) = ∫ 0. 98𝑓𝑙𝑜𝑜𝑟(𝑡) − 1() * 3. 92 𝑑𝑡

However, this is hard to calculate and harder to invert. Is there a close estimate?

In order to get there, we have to look at how big of an error the original wiki equation caused.
The tl;dr is it underestimates how many ticks it takes to fall by between 0.5 and 0.50729.
The error is shockingly close to 0.5 consistently, this is because the function is very close to
linear, since the base of the exponent 0.98 is very close to 1.
For example, the original formula states it would take 8.968 ticks to fall three blocks, while it
would actually take 9.468. In actual game time, that means it would take 10 ticks instead of 9,
making the existing formula an underestimate by 1/20th of a second.

I have calculated the underestimate amounts here for every possible block distance to fall
between 1 and 256:
https://docs.google.com/spreadsheets/d/1gDqU7kWZPAujbi02Dmkjnb5Ng-XiLRgYq1l3BBOHP
HI/edit
114 of those fall distances have their durations underestimated by a tick in the existing
formula! The other 142 are correct (but only when you round up to the nearest tick).

https://docs.google.com/spreadsheets/d/1gDqU7kWZPAujbi02Dmkjnb5Ng-XiLRgYq1l3BBOHPHI/edit
https://docs.google.com/spreadsheets/d/1gDqU7kWZPAujbi02Dmkjnb5Ng-XiLRgYq1l3BBOHPHI/edit

Those integration functions go from a tick count to a fall distance, in order to go the other way I
numerically solved them for t in Mathematica, and verified the table values in Java (code at the
bottom).

The errors are very consistently close to 0.5 or just above.
As you can see in the above spreadsheet, the differences are fascinating when plotted:
In this graph, the Y axis is the difference between the real formula and the estimate from the
wiki, minus 0.5, and the X axis is the number of blocks to fall.

I have no explanation for why a pattern suddenly emerges from the chaos at around 100 blocks
of falling.
However, that is the inversion. The difference being around 0.5 in the inversion means that
offsetting the input by 0.5 should result in very similar output.

Therefore, we would expect

 ∫ 0. 98𝑡−0.5 − 1() * 3. 92 𝑑𝑡

To be very similar to

 ∫ 0. 98𝑓𝑙𝑜𝑜𝑟(𝑡) − 1() * 3. 92 𝑑𝑡

And when plotted, the difference is consistently less than 0.01! The error seems to peak at
every half integer tick count, which is fascinating.

Now, taking our improved estimate and evaluating the 𝑑(𝑡) = ∫ 0. 98𝑡−0.5 − 1() * 3. 92 𝑑𝑡

integral, we get our final improved formula:

 𝑑(𝑡) = 196 − 3. 92 * 𝑡 − 194. 04 * 0. 98𝑡−0.5

I verify the equivalency of those two in the spreadsheet, and that the tick count when rounded
up is identical to this improved estimate for every integer block fall amount from 1 to 256 (see
cell M259).

Assume these definitions:
 static double velocity(int ticks) {
 return (Math.pow(0.98, ticks) - 1) * -3.92;
 }

 static double oldFormulaTicksToBlocks(double ticks) {
 return -3.92 * (99 - 49.5 * (Math.pow(0.98, ticks) + 1) - ticks);
 }

This is my correct implementation:
static double blocksToTicks(double distance) {
 if (distance == 0) {
 return 0; // Avoid 0/0 NaN
 }

 int tickCount = 0;
 while (true) {
 double fallDistance = velocity(tickCount);
 if (distance <= fallDistance) {
 return tickCount + distance / fallDistance;
 }
 distance -= fallDistance;
 tickCount++;
 }
 }

 public double ticksToBlocks(double ticks) {
 double fallDistance = 0;
 int integralComponent = (int) Math.floor(ticks);
 for (int tick = 0; tick < integralComponent; tick++) {
 fallDistance += velocity(tick);
 }
 double partialTickComponent = ticks - Math.floor(ticks);
 double finalPartialTickVelocity = velocity(integralComponent);
 double finalPartialTickDistance = finalPartialTickVelocity * partialTickComponent;
 fallDistance += finalPartialTickDistance;
 return fallDistance;
 }

