Министерство образования и молодежной политики Свердловской области Государственное автономное профессиональное образовательное учреждение Свердловской области

«Уральский колледж технологий и предпринимательства» (ГАПОУ СО «УКТП»)

Преподаватель (ВКК) Фазлиахметова Оксана Юрьевна Обратная связь осуществляется: эл.почта ofazliakhmetova@list.ru

ДисциплинаФизика
Тема: Подготовка к контрольной работе по теме «Электромагнитная индукция». (2часов)
Вид учебного занятия: закрепление изученного материала.
СОДЕРЖАНИЕ УЧЕБНОГО ЗАНЯТИЯ
Критерии оценивания:
Отметка 5-задание выполнено на 100%;
Отметка 4 -задание выполнено с некоторыми недочетами;
Отметка 3 -задание выполнено на 50 %.
Ответ оформить в конспекте, подписать ФИО, дату задания, номер группы и отправить на почту в субботу до 16.00!!!

Задание 1.

Повторить и выучить все изученные формулы по теме «Магнитное поле Электромагнитная индукция.

1. Теоретическая часть.

 $F_{\scriptscriptstyle A} = I \cdot B \cdot l \cdot \sin \alpha$ - формула, для определения силы Ампера.

 $F_{_{\!M}}=\! \left|q\right| \! \cdot \! \upsilon \cdot \! B \cdot \! \sin \alpha$ - формула для определения силы Лоренца.

 $\varPhi = B \cdot S \cdot \cos \alpha$; $\varPhi = L \cdot I$ - формулы для вычисления магнитного потока.

$$arepsilon_i = \left| rac{\Delta \Phi}{\Delta t}
ight|; \quad arepsilon_i = n \cdot \left| rac{\Delta \Phi}{\Delta t}
ight|; \quad arepsilon_i = B \cdot \upsilon \cdot l \cdot \sin lpha \quad$$
формулы для вычисления ЭДС индукции.

 $\Delta \Phi = \Phi_2 - \Phi_1$ - изменение магнитного потока.

 $\Delta I = I_2 - I_1$ - изменение силы тока.

$$I_i = \frac{\mathcal{E}_i}{R}$$
 ; $I = \frac{q}{t}$ - сила индукционного тока.

$$arepsilon_{is} = L \cdot \left| \frac{\Delta I}{\Delta t} \right|$$
 - формула для вычисления ЭДС самоиндукции.

 $W_{_{M}} = \frac{L \cdot I^{2}}{2}$ - формула для вычисления энергии магнитного поля.

ОБОЗНАЧЕ	ния:
F_{A} - сила Ампера, [H];	Φ - магнитный поток, [Вб];
I — сила тока в проводнике, [A];	$\Delta \Phi$ - изменение магнитного потока, [Вб];
В – магнитная индукция, [Тл];	$arepsilon_i$ - ЭДС индукции, [В];
l — длина проводника, [м];	ε_{is} - ЭДС самоиндукции, [B];
α — угол;	
$F_{\scriptscriptstyle J\!\!I}$ - сила Лоренца, [H];	<i>n</i> - число витков, [-];

Q = 3аряд частицы, [Кл]; $\Delta t = 8$ ремя, [с]; L = 1 индуктивность, [Гн]; $\Delta \frac{\Delta \Phi}{\Delta t} = 0$ скорость изменения магнитного [Дж]; $\Delta I = 0$ изменение силы тока, [А]; $\Delta I = 0$ скорость изменения силы тока, [А]; $\Delta I = 0$ изменение, [Ом]; A = 0 гопротивление, [Ом]; A = 0

2. Практическая часть.

Решите задачи:

- 1. Магнитный поток через катушку, состоящую из 75 витков, равен 4,8 мВб. Рассчитайте время, за которое должен исчезнуть этот поток, чтобы в катушке возникла ЭДС индукции, равная 0,74 В. Определите силу индукционного тока, если сопротивление катушки 0,24 Ом.
- 2. Катушка перемещается в магнитном поле, индукция которого 2 Тл, со скоростью 0,6 м/с. ЭДС индукции равна 24 В. Найдите активную длину проволоки в катушке, если активные части ее перемещаются перпендикулярно линиям индукции.
- 3. Определите индуктивность катушки, если при равномерном изменении тока в ней за 0,1 с от нуля до 10 А возникла ЭДС самоиндукции 60 В.
- 4. Определите энергию магнитного поля катушки, в котором при токе 7,5 А магнитный поток равен 2,3 Вб. Число витков в катушке 120. Как изменится энергия поля, если сила тока уменьшится в 3 раза?
- 5. Какова скорость изменения силы тока в обмотке реле с индуктивностью 3,5 Гн, если в ней возбуждается ЭДС самоиндукции 105 В.
- 6. Катушку с ничтожно малым сопротивлением и индуктивностью 3 Гн присоединяют к источнику тока с ЭДС 15 В и ничтожно малым внутренним сопротивлением. Через какой промежуток времени сила тока в катушке достигнет 50 А?
- 7. Индуктивность катушки 0,2 мГн. При каком токе энергия магнитного поля равна 0,2 мкДж?
- 8. В катушке, индуктивность которой равна 0,4 Гн, возникла ЭДС, равная 20 В. Рассчитайте изменение силы тока и энергию магнитного поля катушки, если это произошло за 0,2с.

9.	2. Ток в катушке уменьшился с 12 до 8 А. При этом энергия магнитного пол катушки уменьшилась на 2 Дж. Какова индуктивность катушки и энерги ее магнитного поля в обоих случаях?	
•		