
GTFS Fare Model Proposal

Editor: Brian Ferris - bdferris@google.com
With contributions from the GTFS Fares Working Group.
Last major revision: July 2013

Want edit privileges? Send an email to the GTFS Fares Working Group list.

Introduction
Semantics

Fare Rules
Default Fare Rules
Leg Sequences
Block Transfers
Logical Equivalence

Fare Attributes
Existing Rules

Route Id
Origin Zone
Destination Zone

Multi-Agency and Multi-Feed Fares
Multi-Agency

Agency Id
Multi-Feed

Transfers
Transfer Count
Min / Max Transfer Count
Transfer Duration
Travel Duration
Transfer From Route Id
Transfer From Zone Id

Fare Priority
Fare Class
Additional Fare Rules

Zone Count
Contains Zone Id

Existing Feeds Using “contains_id”
Matching Zones Subsets vs Exact Sets

Contains Route Id
Service Id

mailto:bdferris@google.com
https://groups.google.com/forum/?fromgroups#!topic/gtfs-fare-wg/Cn7j9-n-N1I
https://groups.google.com/forum/?fromgroups#!topic/gtfs-fare-wg/Cn7j9-n-N1I

Calendar Date
Route Type

Additional Fare Attributes
Distance-Based Fares
Pay-The-Difference Fares

Fare Products and Eligibility
Fare Product Priority
Fare Product Eligibility
Other Fare Product Attributes

Examples
MBTA - Boston, MA - USA
CTA - Chicago, IL - USA
King County Metro - Seattle, WA - USA
ZVV - Canton of Zurich, Switzerland

Base Fare
Fare Products

Fare Systems of the World - Notes
Zones
Time
Transfers
Eligibility
Fare Products

Introduction
This document attempts to outline a number of potential proposals for clarifying and extending
the GTFS fare model, in order to better support the various transit fare systems found around
the world.

Though this document outlines a number of concrete proposals, it is mostly intended to get the
discussion going around how we might model various properties of fare systems. Any one
proposal is not so important. The main goal is to establish base-principles that will allow us to
adapt and extend the spec going forward without worry that we’ve painted ourselves into a
corner.

Note that proposals that break backwards-compatibility with current the spec are highlighted in
orange.

Semantics
The semantics of GTFS fare modeling have only ever been loosely defined at best. To start, I’d
like to nail down the model. First, let’s start with a few definitions:

https://docs.google.com/document/d/1gqR91vncy9SXPHvWmV9EKlqADW0tyQxqLMfQRV_3FWA/edit
http://code.google.com/p/googletransitdatafeed/wiki/FareExamples

●​ Leg: Travel by a rider on one transit vehicle from a departure stop to an arrival stop.
●​ Leg Sequence: Travel by a rider on one or more consecutive transit legs.
●​ Itinerary: The complete sequence of legs a rider would take from the start of their trip to

the end.

Typically, a transit routing engine will produce one or more itineraries to get a rider from point A
to point B. The goal of the GTFS fare model is to define the appropriate fare for each itinerary.
Fares are currently defined in two files:

●​ Fare Rules: Defines rules for matching a leg sequence to a fare id.
●​ Fare Attributes: Defines the price associated with a particular fare id.

To determine the fare for a particular itinerary, first find a fare id for each leg sequence of the
itinerary using fare rules and then add up the price for each fare id from the fare attributes to get
the total cost of the itinerary. A few notes:

●​ A fare id may match leg sequences of different lengths, anywhere from one leg up to all
the legs of a particular itinerary.

●​ A particular leg sequence may potentially match multiple fare ids.
●​ A particular itinerary is said to have a valid match if there exists some segmentation of

the itinerary into leg sequences, where each leg sequence matches a fare id. See
discussion of Multi-Agency and Multi-Feed Fares for notes on network boundaries.

●​ A particular itinerary may potentially have multiple valid matches. In such a situation, the
lowest-priced valid match should be used.

Fare Rules
The fare_rules.txt file defines rules for matching fare ids to leg sequences. Each column
of the file defines general properties of a leg sequence that a rule will match against. Each row
of the file defines a specific rule, with non-blank column values defining specific properties of a
leg sequence that must all apply for the rule to match. Each row also includes a fare_id
column, which specifies the fare id of the fare that will be applied if a rule matches.

If multiple rows mention the same fare_id, then only one of those rows need match a
particular leg sequence for the fare id to match. Note: I propose deprecating the multi-row
matching semantics of the contains_id column in fare_rules.txt, as discussed below.

Default Fare Rules
If a fare id is defined in fare_attributes.txt but is not mentioned by any rule in
fare_rules.txt, then the fare_id matches all single legs by default. This allows agencies
with a very simple fare structure (eg. all rides are $2.00) to model their system with a single
entry in fare_attributes.txt without any rules in fare_rules.txt.

Leg Sequences
As mentioned, a fare rule may match a single leg or potentially multiple consecutive legs in
sequence. Matching behavior is largely a function of the specific rule clauses used, as some
clauses can match multi-leg sequences (eg. origin_id, destination_id, contains_id)
while some clauses may only match a single leg (eg. route_id). As part of fully specifying the
semantics for GTFS fares, we will need to note this property (single leg vs multi leg) for each
rule clause.

Block Transfers
Special care must be taken for legs that include a block transfer. Recall that a block transfer
occurs when two or more transit trips are linked by the same block_id value in trips.txt,
such that a rider may board a transit vehicle during the first trip and remain on the vehicle
through subsequent trips in the block without exiting the vehicle. For the purpose of the GTFS
fare model, we consider these multiple, linked trips as a single leg. In such a case, properties of
the leg (eg. the route) may change during the course of the leg. Fare rules that match such
properties must be explicit about their behavior in the presence of block transfers. For example,
most rules will typically match the trip, route, or agency associated with the first trip in the block
sequence.

Logical Equivalence
Because all non-blank columns of a row must match for the row’s fare id to match, you can think
of the columns of a single row as a logic AND operation. By the same token, because a fare id
is considered a match if any of the rows mentioning it match, you can think of multiple rows with
the same fare id as a logical OR operation. For example:

fare_id,origin_id,destination_id
F1,Z1,Z2
F1,Z3,Z4

In this example fare_rules.txt file, the F1 fare id matches a particular leg sequence if the
following logical expression holds true:

(origin_id = ‘Z1’ AND destination_id = ‘Z2’) OR
(origin_id = ‘Z3’ AND destination_id = ‘Z4’)

Effectively, you can write the rules for matching a particular fare id as a logical expression in
disjunctive normal form. This formulation can be useful to consider when implementing GTFS
fare models in code.

Fare Attributes

Once fare rules have been applied to match a fare id to a particular leg sequence, the fare
attributes associated with that fare id define the price of the leg sequence. Historically, fare
attributes have also defined transfer rules for a particular fare id. I propose to define transfer
rules in fare_rules.txt instead, as described below.

The current spec only supports a fixed price for a particular fare id, but we propose some
additional pricing models further below.

Existing Rules

Route Id
File: fare_rules.txt
Columns: route_id
Matches Leg Sequences: No

When specified, matches a single leg that belongs to the route with the specified id, as matched
against the route_id column of routes.txt.

In the case where a single leg involves a block transfer, the route_id must match the route
currently assigned to the transit vehicle when the rider boards the transit vehicle.

Origin Zone
File: fare_rules.txt
Columns: origin_id
Matches Leg Sequences: Yes

When specified, matches one or more legs in sequence whose first leg departs from the
specified zone, as matched against the zone_id of the departure stop defined in stops.txt.
Typically used in combination with destination_id to describe the start and end point for a
sequence of legs.

Destination Zone
File: fare_rules.txt
Columns: destination_id
Matches Leg Sequences: Yes

When specified, matches one or more legs in sequence whose last leg arrives in the specified
zone, as matched against the zone_id of the arrival stop defined in stops.txt. Typically
used in combination with origin_id to describe the start and end point for a sequence of legs.

Multi-Agency and Multi-Feed Fares

Multi-Agency
When multiple agencies are defined in a feed, fare rules will by default apply to itineraries from
any agency. However, it may be necessary to restrict fares to particular agencies within a feed.
Google currently supports an agency_id extension to fare_attributes.txt that restricts
particular fare to routes belonging to the specified agency. I believe this model is incorrect and
would be better modeled within fare_rules.txt, as proposed below.

Agency Id
File: fare_rules.txt
Columns: agency_id
Matches Leg Sequences: Yes

When specified, matches one or more legs in sequence that have an agency with the specified
id, as matched against the agency_id column of agency.txt and linked via trip and route.

Multi-Feed
Currently, fare rule semantics only apply to the transit data contained within a single feed.
When an itinerary contains legs from two or more distinct GTFS feeds, fares are matched to the
portion of the itinerary contained in a particular feed, using the fare rules and attributes defined
by that feed. It is possible that one feed may define fares while a second feed may not, making
it possible to only specify fares for a portion of an itinerary.

There is currently no mechanism to specify fare rules to match leg sequences across feed
boundaries. Unfortunately, a number of agencies have requested the ability to define fares,
transfers, and other aspects across feeds, but we have yet to come up with a consensus
proposal for cross-feed references that would allow this functionality.

Transfers
Historically, fares for transfers have been defined through fare_attributes.txt via two
columns: transfers and transfer_duration. Though these columns were defined as
fare attributes, they behaved more like fare rules. Specifically, they define rules for when a
particular fare id is allowed to match a leg sequence based on the transfers in the sequence.

As we look to expand the GTFS spec to handle complex fares around different transfer
scenarios, I propose we rethink how transfers are currently modeled in the spec. Specifically, I

propose we move transfer rules out of fare_attributes.txt and into fare_rules.txt.

To see how this might work in practice, let’s first examine how we might model the current
transfer semantics of the spec using fare rules.

Note: In practice, we probably wouldn’t actually deprecate the existing transfer rules in
fare_attributes.txt. However, for now, let’s pretend we did and see where it takes us. For
example, I believe it’s possible to transform any existing feed that uses the existing transfer
fields into a form that uses the new fields.

Transfer Count
File: fare_rules.txt
Columns: transfer_count
Matches Leg Sequences: No

When specified as a non-negative integer N, matches a single leg that has been preceded by N
transfers.

Example usage:

Let’s consider an agency that offers a $2.00 base fare, $0.25 first transfers, and free second
transfers. We can model this fare in the following way:

fare_attributes.txt
fare_id,price,currency_type,payment_method
F0,2.00,USD,0
F1,0.25,USD,0
F2,0.00,USD,0

fare_rules.txt
fare_id,transfer_count
F0,0
F1,1
F2,2

This simple case doesn’t offer any additional functionality over the existing spec, but the power
of this representation is evident when we combine it with additional fare rules, both existing
rules and new ones proposed below.

Min / Max Transfer Count
File: fare_rules.txt

Columns: min_transfer_count, max_transfer_count
Matches Leg Sequences: No

Similar to the transfer_count proposal above, this is a convenience rule that would match
any leg that was preceded by at least or at most N transfers.

Transfer Duration
File: fare_rules.txt
Columns: transfer_duration
Matches Leg Sequences: Yes

Matches a transfer leg if the start time of the transfer leg is less than transfer_duration
seconds from the start of the previous non-transfer leg. A transfer_duration rule may
match any transfer leg or sequence of transfer legs as long as the start time of each transfer leg
is within the specified time window from the start of the original non-transfer leg. Thus, a
transfer_duration rule implies unlimited transfers within the time window if no other
transfer restrictions have been specified.

Travel Duration
File: fare_rules.txt
Columns: travel_duration
Matches Leg Sequences: Yes

Similar in spirit to transfer_duration, the travel_duration field measures the max
travel time, in seconds, from the start to the end of the matched leg sequence. A leg sequence
will match only if the sequence completes in under the specified time. This is useful for fare
systems where a fare must be valid for the entire duration of the trip, as opposed to only at
boarding or at transfer points.

Transfer From Route Id
File: fare_rules.txt
Columns: transfer_from_route_id
Matches Leg Sequences: No

Matches any leg that is preceded by a transfer from a trip with the specified route id. This rule
can be useful for matching fare such as “Transfers from light-rail to bus are free, but transfers
from bus to light-rail cost $0.25”. Here, the combination of transfer_from_route_id and
the existing route_id matcher can be used to finely control how fares apply in various transfer
combinations.

It might be worth considering a transfer_from_route_type field as well to allow agencies
to model “transfer from bus to light-rail...” explicitly, as I’ve seen this model in use in a number of
agencies. See also the Vehicle Type proposal below.

Transfer From Zone Id
File: fare_rules.txt
Columns: transfer_from_zone_id
Matches Leg Sequences: No

Matches any leg that is preceded from a transfer another leg whose arrival stop is in the
specified zone. This rule can be useful for matching fares such as “Transfers are normally not
free, except when they occur at particular stations within a fare-control zone.” Specific stops
and stations could be marked with particular zone ids and transfers between those zones could
marked as free.

Fare Priority
File: fare_attributes.txt
Column: priority

A non-negative, numeric value used to prioritize one fare over another (default value = 0).
When multiple fare ids match the same leg sequence and those fare ids have different priority
values, only the fare ids which share the maximum priority among matching fare ids will be
considered.

The goal of this property is to help agencies handle the common situation where there is a base
fare for all routes by default but a special, more-expensive fare for a particular route. Under the
existing GTFS spec, the agency can’t just define a base fare that applies to all routes (e.g. it has
no rules in fare_rules.txt) and an additional fare rule for the specific route, because the
policy of picking the cheapest matching fare will favor the the base fare even for the more
expensive route. By specifying a priority value for the override fare, agencies now have the
ability to represent matching fare rules even if they happen to be more expensive.

Fare Class
File: trips.txt (routes.txt as well?)
Column: fare_class_id

File: fare_rules.txt
Column: fare_class_id
Matches Leg Sequences: No

When specified, matches any leg whose fare_class_id, as defined in trips.txt, matches
the specified fare class. The fare class proposal gives agencies a lot of modeling power to
represent various fare models. For example, if there is a fare-surcharge for rush-hour trips,
those trips could be tagged with a special “RUSH” fare_class_id in trips.txt. A rule
could be added to match the rush-hour fare class to define a separate fare for these trips.

Additional Fare Rules

Zone Count
File: fare_rules.txt
Column: zone_count
Matches Leg Sequences: Yes

Matches any leg sequence that has traveled through the specified number of zones. While it’s
technically possible to model this behavior with the existing origin_id and
destination_id zone specifiers in the current spec, it requires explicitly mentioning each of
the N^2 zone pair combinations, which can grow unwieldy for a large system.

Contains Zone Id
File: fare_rules.txt
Column: contains_zone_id, contains_zone_id2, contains_zone_id3, …
Matches Leg Sequences: Yes

As mentioned in the semantics section, we’d like to move to a model where each fare rule is
defined on just one line. The current exception to that rule is the existing contains_id
matcher. The contains_id matcher is used to match a leg sequence that passes through or
“contains” the specified zone id. The clause can currently be specified multiple times by
specifying multiple rows with the same fare_id, each with a contains_id clause.

The current definition in the spec is not completely specified. It’s not clear what would happen if
contains_id clauses were mixed with other fare rule clause or how one would model the
situation where a single fare id needs to be used in two different groups of contains_id
clauses.

To rectify all these issues, I propose we deprecate the ability to model multiple contains_id
clauses using multiple lines in fare_rules.txt. Instead, I propose we introduce new columns
contains_zone_id, contains_zone_id2 and contains_zone_id3 (and perhaps more
as needed). Instead of specifying multiple contains clauses on separate lines, one would use

additional contains_zone_idN columns to specifying all the clauses on a single line. The
assumption here is that no agency would ever need to realistically specify more than a fixed
number of contains clauses (3-4?).

The advantage of this approach is that it helps us keep our “one line = one rule” policy and also
allows us to combined contains_zone_id clauses with our fare rule clauses in a more
obvious way.

Existing Feeds Using “contains_id”
I’ve been able to identify the following GTFS feeds currently using the contains_id field in
fare_rules.txt. Some feeds use the column in combination with either route_id,
origin_id, or no other columns at all. Most feeds are specifying one or two contains_id
rows, but a few are using more (4 and 10). It seems reasonable that some of those high
numbers might be a misinterpretation of the existing spec.

●​ Capital Metro - Austin, TX - Using contains_id (max=2) with route_id.
●​ Maui Bus - Maui, HI - Using contains_id incorrectly with 0 values to indicate empty.
●​ Merseylink - Devonport, Tasmania, Australia - Using contains_id (max=4) without

any other columns.
●​ San Luis Obispo Regional Transit Authority - San Luis Obispo, CA - Using

contains_id (max=10) without any other columns.
●​ TriMet - Portland, OR - Using contains_id (max=2) with origin_id.
●​ Wilsonville, OR - Using contains_id (max=1) with route_id.

Since there aren’t a ton of feeds currently using the contains_id field, I am hopeful that
refactoring the field will not be impossible.

Matching Zones Subsets vs Exact Sets
In the original contains_id specification, a rule matches a leg sequence if the set of zones
touched by the leg sequence exactly matches the set of zones defined by the contains_id
fields for the rule. I propose to relax that requirement such that the set of zone ids defined by
the contains_zone_id fields can be a subset of the the set of zones touched by a leg
sequence.

This allows more flexible rules, especially when combined with the proposed zone_count field,
described above. For example, if we wish to define a fare rule that matches any two-zone trip
that travels through zone Z1 using the original semantics of contains_id, we must define a
rule for each combination of Z1 and its adjacent zones. However, with the new semantics, we
can define a single rule with a contains_zone_id value of Z1 and a zone_count of 2.

Agencies that still wish to achieve the original behavior of contains_zone_id can still easily
do so. Simply define the complete set of zones that a leg sequence must visit and set

zone_count equals to the number of zones. In such a case, only legs that visit the specified
set of zones, and only those zones, will match.

Contains Route Id
File: fare_rules.txt
Column: contains_route_id, contains_route_id2, contains_route_id3, …
Matches Leg Sequences: Yes

Similar to the existing contains_id fare rule, the contains_route_id rule would match a
leg sequence that includes the specified route.

Existing Feeds Using “contains_route_id”
I’ve only found a single feed using the contains_route_id field: Nishitetsu Bus Company in
Japan. They are using up to three contains_route_id clauses in combination with
origin_id and destination_id.

Service Id
File: fare_rules.txt
Column: service_id
Matches Leg Sequences: No

Matches any leg whose trip has the specified service_id. Some agencies wish to offer
different fares based on the day of the week or other calendar-based criteria. Often, trips and
service calendars have already been organized around such criteria (WEEKDAY vs SATURDAY
service_id values). Allowing to match a fare rule by service_id would give agencies a quick,
compact way to define different fares for different days of the week.

Calendar Date
File: fare_rules.txt
Column: date
Matches Leg Sequences: No

Matches any leg that is active on the specified service date (YYYYMMDD form). Some agencies
wish to offer special fares on particular dates. For example, a special “everyone rides free on
July 4th” or similar promotions. Allowing to match a fare rule by date would give agencies a
quick, compact way to override the base fare on a particular date.

Route Type
File: fare_rules.txt
Column: route_type

Matches Leg Sequences: No

Many agencies seem to specify fares by route type (eg. subway vs bus), as defined in
routes.txt. While agencies can explicitly model these fares using the route_id field, it can
be tedious to mention each route specifically. By allowing agencies to match fares based on the
route type, it could make fares simpler and easier to specify.

Additional Fare Attributes

Distance-Based Fares
File: fare_attributes.txt
Column: distance_mode

Distance mode is an enumeration that enables various distance-based pricing schemes,
defining the base unit for distance-based calculations:

●​ 0 (default) - distance-based pricing is not enabled
●​ 1 - per-km pricing is used - distance unit is 1 km
●​ 2 - per-zone pricing is used - distance unit is 1 zone
●​ 3 - per-stop pricing is used - distance unit is 1 stop
●​ 4 - user-defined distance unit is used, as defined by fare_dist_traveled in

stop_times.txt
●​ 5 - user-defined distance unit is used, as defined in fare_distances.txt

For “per-km” pricing (distance_mode=1), distance is computed using the straight-line
distance between stops in sequence when shapes have not been specified for a route. When
shapes have been specified, the incremental distance along the shape is used. Note that the
shape_dist_traveled, defined in stop_times.txt, should not be used in “per-km” distance
calculations, since the shape_dist_traveled field makes no assumption about units.

For “per-zone” pricing (distance_mode=2), distance is computed using the number of zones
the transit vehicle travels through. Note that if transit vehicle leaves a zone and then comes
back, it is considered to have traveled through the zone twice for the purpose of the zone count
(eg. zones A, B, A would mean 3 zones). If an agency requires the count of unique zones
instead, we’d love to hear from you.

For “per-stop” pricing, the “distance” is equals to the total number of stops included in the leg
minus 1. That is to say, if a leg involves the stop sequence A, B, C, then the number of stops
“distance” is 2. This convention matches the typical way a user might describe a leg: “Get on a
stop A and ride for two stops.” So, in essence, we are not counting the number of stops, but
instead the number of linked stop pairs.

For “user-defined-distance” pricing, we propose two possible mechanisms for user-defined
distances.

In the first model (distance_mode=4), distance will be computed using a new
fare_dist_traveled column in stop_times.txt. Agencies can use the column to
specify the distance traveled along a trip sequence for the purposes of fare calculation.

In the first model (distance_mode=5), the user must specify an additional
fare_distances.txt file with columns from_zone_id, to_zone_id, and
dist_traveled, where the user may specify the full matrix of zone-to-zone distances defined
between each zone pair. Alternatively, the user may also specify from_stop_id,
to_stop_id, and distance_traveled, in the case where the user wishes to specify
distances between stops instead of zones.

File: fare_attributes.txt
Column: distance_unit_price

The price of each traveled distance unit for the matching leg sequence.

File: fare_attributes.txt
Column: distance_unit_start_offset

An initial offset that must be traveled before unit-based pricing kicks in. This can be used for
scheme such as “First 2km has a fixed price and each additional km adds some cost.”

Final fare calculation:

P = price + (units_traveled - distance_unit_start_offset) *

distance_unit_price

Where P is the final price for the leg sequence and units_traveled is the number of
distance units traveled in the leg sequence.

Pay-The-Difference Fares
Many fare systems have the concept of “pay the difference” fares, especially when electronic
stored-value fare products are used. For example, if a rider pays $1 to ride a bus and then
transfers to a light rail system with a $2.50 fare within a certain time window, the rider will only
pay the difference between the two fares: $1.50 in this case.

I propose to model pay-the-difference fares with the following proposal:

File: fare_attributes.txt

Column: pay_difference_duration

Time, in seconds, from which a fare can be applied towards a transfer fare on a different
vehicle. If the original fare is less than the transfer fare, the rider pays the difference.

Fare Products and Eligibility
Many agencies define multiple fare products that can be used to pay for a particular itinerary,
often with eligibility restrictions defining who may use a particular fare. In contrast, the current
GTFS fare model focuses exclusively on the base cash fare. I would like to outline some ideas
for modeling fare products and eligibility. These ideas probably deserve further scrutiny (and
perhaps a doc of their own), but I propose them here to provide at least one possibility of how
they might be modeled within the existing GTFS fare model framework.

I propose the introduction of a new file: fare_products.txt. The file will initially have the
following fields:

●​ product_id - a unique identifier for the fare product
●​ product_name - a short, human-readable name for the fare product

We then propose a new field in fare_attributes.txt:

File: fare_attributes.txt
Column: fare_product_id

The idea here is that a fare product can be associated with a particular fare. To simplify the
modeling process, I further propose allowing two entries in fare_attributes.txt to have
the same fare_id if they have different fare_product_id values. Stated another way, the
combination of fare_id and fare_product_id must be unique, while previous fare_id
alone must be unique.

We allow the same fare id to be associated with multiple fare products so that multiple fare
products can be associated with the same fare. Alternatively, we could have required separate
fare ids for each fare product, but this would potentially require a lot of duplicate fare rules. As
an additional wrinkle, if two fares match a particular leg sequence, we’d typically select the fare
with the lowest price. However, in the presence of fare products, we select the lowest price for
each fare product.

If an entry in fare_attributes.txt doesn’t define a fare_product_id, we assume it’s
associated with the “Base Adult Cash Fare”. While agencies are free to define an explicit base
adult cash fare product in fare_products.txt, it’s also reasonable to define two entries in
fare_attributes.txt, both with the same fare_id but only one defining a

fare_product_id, such that one fare is the base adult cash fare and the other fare is
associated with a specific product.

We can imagine defining a number of additional fields for a particular fare product.

Fare Product Priority
When a particular fare has been associated with multiple fare products, we may wish to control
the order in which products are presented to riders. For example, we might want to always
show the base adult cash fare first, followed by products that provide discounts for eligible
groups. Simply ordering products by price is not sufficient.

We can imagine modeling this in a number of ways. We might introduce a priority field in
fare_products.txt that controls the ordering of fare products in display results. Or we
might consider a base_fare field that can be used to indicate default base fares.

Fare Product Eligibility
Not all riders may be eligible to use a particular fare product. Most typically, the product may
have age restrictions or some membership requirement. While some eligibility requirements
may be common enough to warrant their own explicit field (eg. age restrictions), we may
imagine that we may simply need to provide a free-form text field (eg. eligibility_desc)
where an agency can briefly describe the eligibility requirements for a particular fair product.

Other Fare Product Attributes
Other attributes and properties of a particular fare product may warrant their own explicit fields.

●​ The applicable travel class (1st class vs 2nd class) for a fare product
●​ The time window associated with a fare product (one hours / one day / one month, etc)
●​ …

Examples

MBTA - Boston, MA - USA
●​ http://www.mbta.com/fares_and_passes/
●​ Different fare media (card vs paper-ticket)
●​ Different fares for bus vs rapid-transit (rail, etc).
●​ Charlie Card: Free transfer from rapid-transit to bus. $0.50 transfer from bus to

rapid-transit.
●​ Charlie Ticket: no transfer benefit.

http://www.mbta.com/fares_and_passes/

First, let’s define our two fare products in fare_products.txt:

product_id,product_name
card,Charlie Card
ticket,Charlie Ticket

Next, let’s define some fare rules:

fare_id,route_type,route_id
bus,3,
rapid,2,
rapid,3,741

We match fares based on two classes of transport: bus and rapid-transit. Rapid-transit
generally includes rail, but also the Silver Line bus.

fare_id,fare_product_id,price,currency_type,payment_method,priority,p
ay_difference_duration
bus,ticket,2.00,USD,0,0,0
rapid,ticket,2.50,USD,0,1,0
bus,card,1.50,USD,0,0,7200
rapid,card,2.00,USD,0,1,7200

Our fare attributes include our two fare ids (bus vs rapid) and our two products. The main
difference is that the Charlie Card is cheaper and also allows pay-the-difference transfers for up
to two hours, while the Charlie Ticket does not. Also note that we apply a priority rule that
boosts the rapid fare over the bus fare such that the Silver Line bus will properly match the rapid
rule, as opposed to the bus rule.

CTA - Chicago, IL - USA
●​ http://www.transitchicago.com/fares/
●​ Base cash fare pretty simply - $2.25 for a single ride
●​ Farecard fare is trickier- $2.00 for bus, $2.25 for rail, $0.25 for first transfer, second

transfer free.

First, let’s define a single fare product in fare_products.txt for the CTA electronic fare
card:

product_id,product_name
card,Farecard

Next, let’s define some fare rules:

http://www.transitchicago.com/fares/

fare_id,route_type,transfer_count
bus,3
rail,2
transfer=1,,1
transfer=2,,2

We match fares based on route type and then some special rules for the first and second
transfer.

fare_id,fare_product_id,price,currency_type,payment_method
bus,,2.25,USD,0
bus,card,2.00,USD,0
rail,card,2.25,USD,0
transfer=1,card,0.25,USD,0
transfer=2,card,0.00,USD,0

Our fare attributes define a base cash fare for buses (no fare_product_id specified). Next
we define fares for the fare card, with different fares for the initial ride on bus or rail, and then
discounts for transfers.

King County Metro - Seattle, WA - USA
●​ http://metro.kingcounty.gov/tops/bus/fare/fare-info.html
●​ Zone system (two zones)
●​ Peak (commute hours) vs off-peak
●​ During off-peak, fare is the same no matter how many zones
●​ During peak, fare is different based on number of zones
●​ Discounts: Seniors, Riders with Disabilities, Youth, Children
●​ Fare products: Cash vs ORCA card
●​ Transfers:

○​ Time-based transfer when paying with cash (paper transfer slip) only between
KCM buses

○​ Time-based transfer between systems, you pay the difference in extra fare

First, let’s define some fare rules.

fare_id,fare_class_id,zone_count,transfer_duration
off_peak,off_peak,
peak_1_zone,peak,1
peak_2_zone,peak,2
transfer,,,7200

http://metro.kingcounty.gov/tops/bus/fare/fare-info.html

We make use of the fare_class_id field to distinguish between peak and off-peak trips. Trip
entries in trips.txt would need to be annotated with fare_class_id to indicate peak
hours trips. We also distinguish between one and two zone peak trips, and finally add a rule for
matching transfers up to two hours.

fare_id,price,currency_type,payment_method
off_peak,2.25,USD,0
peak_1_zone,2.50,USD,0
peak_2_zone,3.00,USD,0
transfer,0.00,USD,0

With our rules in place, specifying the costs is pretty straight-forward.

MTA - New York, NY - USA
TODO

ZVV - Canton of Zurich, Switzerland
●​ Zone-based network
●​ Cities of Zurich (zone 110) and Winterthur (zone 120) count double in fare calculations.
●​ Different fare products:

○​ 1st class vs 2nd class
○​ 1 hour vs 24 hour ticket
○​ Base fare vs ½ fare

Base Fare
Let’s first consider only the base 2nd class, 1 hour fare.

First, we model each stop / station in its appropriate zone using the zone_id field in
stops.txt. Example:

stop_id,stop_name,stop_lat,stop_lon,zone_id
1234,Zurich Lochergut,47.3754102,8.5175033,110
5678,Zurich Flughafen,47.4501594,8.5637324,121

Next, we define fare rules in fare_rules.txt. The base price for a 2nd class, 1 hour ticket
depends on the number of zones used. The price for 1-2 zones is the same, while there is an
increase in price for each additional zone. Recall that travel through zones 110 or 120 counts
as two zones. In the example below, we define fare rules for 1, 2, and 3 zones of travel
(expanding to additional zones is left as an exercise to the reader). We also model the
double-counted 110 zone.

http://www.zvv.ch/opencms/export/sites/default/common-images/content-image-gallery/linien-zonen-pdfs/Tarifzonen_2012.pdf

fare_id,zone_count,travel_duration,contains_id
1-2 zones,1,3600,
1-2 zones,2,3600,
3 zones,3,3600,
zone 110 + 1,2,3600,110

We also define the actual fares in fare_attributes.txt.

fare_id,price,currency_type,payment_method,priority
1-2 zones,4.20,CHF,1,
3 zones,6.60,CHF,1,
zone 110 + 1,6.60,CHF,1,1

We use zone_count in fare_rules.txt to count the number of zones that a vehicle travels
through. Since traveling through one or two zones costs the same, they both match the same
fare id. We define a separate, more-expensive fare for three zones.

We also define a special rule for travel through zone 110 plus one additional zone using a
contains_id rule. Notice that if we have a trip that travels through two zones, one of which is
zone 110, two fares now match: 1-2 zones and zone 110 + 1. Normally, the cheaper 1-2
zones fare would win, but because we have defined a higher priority on the zone 110 + 1
fare, the more expensive fare is used.

Fare Products
Now that we have define the base fare, let’s throw some fare products into the mix. First, we
define the products in fare_products.txt:

product_id,product_name
adult_1st_1hr,Adult - 1st class - 1 hr
adult_2nd_1hr,Adult - 2nd class - 1 hr

We define two products, one for 1st and 2nd class travel, respectively. We now link those
products to different fares:

fare_id,fare_product_id,price,currency_type,payment_method,priority
1-2 zones,adult_1st_1hr,7.00,CHF,1,
1-2 zones,adult_2nd_1hr,4.20,CHF,1,
3 zones,adult_1st_1hr,6.60,CHF,1,
3 zones,adult_2nd_1hr,10.80,CHF,1,

We have now defined 1st class vs 2nd class fare prices for our different zone combinations.

Fare Systems of the World - Notes
Properties of different fare systems, as described in more details in the Fare Systems of the
World document.

Zones
●​ Zones

○​ Administrative areas

○​ Concentric rings

○​ Honeycomb

○​ Fare stages (sections along a route) => can be modeled as point-to-point

○​ etc

●​ Zones + time-of-day - Zones + Fare Class Proposal

●​ Ride free areas - model using zones?

●​ Zones + more than one route - Zones + Contains Route Id Proposal

●​ Pricing by numbers of zones (instead of O(N^2) zone-pairs) - Distance-Based Fares
Proposal

●​ Stops that span multiple zones - Model using a special zone for the stop

●​ Distance-based fares, both distance traveled and # of stops (Philippines) -
Distance-Based Fares Proposal

●​ Zone + intermediate routes - Zones + Contains Route Id Proposal

●​ Zone + intermediate zones - Zones + Contains Zone Id Proposal

Time
●​ Time-of-day - Fare Class Proposal

●​ Day of week - Service Id Proposal

●​ Calendar-date-specific fares (same trip on different dates) - Service Id Proposal or
Calendar Date Proposal

Transfers
●​ Time-based transfer validity - Transfer Duration Proposal

●​ Max transfer count - Transfer Count Proposal

●​ Free transfers inside fare control - Transfer From Stop Proposal

https://docs.google.com/document/d/1gqR91vncy9SXPHvWmV9EKlqADW0tyQxqLMfQRV_3FWA/edit
https://docs.google.com/document/d/1gqR91vncy9SXPHvWmV9EKlqADW0tyQxqLMfQRV_3FWA/edit

●​ Free transfers at some stations but not others - Transfer From Stop Proposal

●​ Inter-agency transfers

●​ Transfer discounts - Transfers Proposal and Pay-The-Difference Fares Proposals

●​ Proof-of-payment vs time-of-transfer for transfer validity - Transfer Duration Proposal

●​ Different properties for transfers between different vehicle types - Transfer From Route
Id Proposal

Eligibility
●​ Different fare rules for students/seniors/people with disabilities

●​ Service classes (first class vs economy)

●​ Additonal fares for bikes

Fare Products
●​ Limited number of tickets at a given price / variable price (Megabus, airlines);

●​ relatedly, different advanced purchase prices (Greyhound)

●​ Monthly/weekly passes

●​ Group discount tickets

●​ Coupon systems (Stockholm)

●​ Round-trip discounts (Hong Kong)

	Introduction
	Semantics
	Fare Rules
	Default Fare Rules
	Leg Sequences
	Block Transfers
	Logical Equivalence

	Fare Attributes

	Existing Rules
	Route Id
	Origin Zone
	Destination Zone

	Multi-Agency and Multi-Feed Fares
	Multi-Agency
	Agency Id

	Multi-Feed

	Transfers
	Transfer Count
	Min / Max Transfer Count
	Transfer Duration
	Travel Duration
	Transfer From Route Id
	Transfer From Zone Id

	Fare Priority
	Fare Class
	Additional Fare Rules
	Zone Count
	Contains Zone Id
	Existing Feeds Using “contains_id”
	Matching Zones Subsets vs Exact Sets

	Contains Route Id
	Service Id
	Calendar Date
	Route Type

	Additional Fare Attributes
	Distance-Based Fares
	Pay-The-Difference Fares

	Fare Products and Eligibility
	Fare Product Priority
	Fare Product Eligibility
	Other Fare Product Attributes

	Examples
	MBTA - Boston, MA - USA
	CTA - Chicago, IL - USA
	King County Metro - Seattle, WA - USA
	ZVV - Canton of Zurich, Switzerland
	Base Fare
	Fare Products

	Fare Systems of the World - Notes
	Zones
	Time
	Transfers
	Eligibility
	Fare Products

