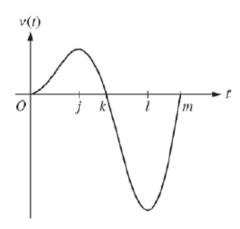
AB Calculus 3.2 Solutions

Derivatives and physics

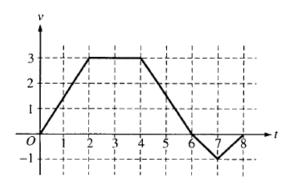
1. Acceleration is t	he derivative of	, which is the derivative	ve of
2	is the <i>second</i> derivati	ve of position.	
•	•	n the following: positive, neg	
3. A headline reads	s, "Birth rates declining in U	nited States," then points out	the population of the United
States is increasing	g at a decreasing rate. If $p(t)$ r	epresents the population of th	e United States,
a. <i>p</i> "(<i>t</i>) is	·		
b. <i>p</i> ′(<i>t</i>) is	and	·	
c. <i>p</i> (<i>t</i>) is		 , and	·
a. When $v(t)$ is positive. b. When $v(t)$ and c	sitive and $a(t)$ is negative, the $a(t)$ are both negative, the jum	leration are modeled by $h(t)$, a jumper's height is	and speed is
c. When $v(t)$ is neg	gative and $a(t)$ is positive, the	jumper's height is	and speed is
is increasing at an a. <i>c</i> "(<i>t</i>) is	unprecedented rate. If $c(t)$ rep	a, " and the ensuing article sta	
		 , and	
		,	·

6. A headline reads, '	'College tuition recently	becoming less expensive," and the article describes how the
rate at which college	tuition is increasing has	slowed down. If $p(t)$ represents the price of college tuition,
a. <i>p</i> "(<i>t</i>) is	·	
b. <i>p</i> ′(<i>t</i>) is	and	
c. <i>p</i> (<i>t</i>) is		, and
7. A headline reads, '	Local schools improving	g," followed by an article stating the rate at which the school
district's test scores an	re falling is decreasing. I	If $s(t)$ represents the test scores,
a. s"(t) is	·	
b. <i>s</i> '(<i>t</i>) is	and	
		, and
Arctic weather station (A) The change in ten (B) The change in ten (C) The rate at which (D) The rate at which	n. Which of the following inperature during the day inperature during the 12th the temperature is change the temperature is change.	
9. The function $P(t)$ n	nodels the population of	the world, in billions of people, where <i>t</i> is the number of
years since January 1,	, 2010. Which of the foll	lowing is the best interpretation of the statement
P'(1) = 0.076?		
(A) On February 1, 20	010, the population of th	ne world was increasing at a rate of 0.076 billion people per
year.		
(B) On January 1, 201	11, the population of the	world was increasing at a rate of 0.076 billion people per
year.		
(C) On January 1, 201	11, the population of the	world was 0.076 billion people.
(D) From January 1, 2	2010 to January 1, 2011,	, the population of the world was increasing at an average
rate of 0.076 billion p	eople per year.	


(E) When the population of the world was 1 billion people, the population of the world was increasing at

a rate of 0.076 billion people per year.

rate modeled by $g(t)$ peo	ople per hour, where t is 1 times t . Which of the fo	eled by $f(t)$ people per hour and exmeasured in hours. The functions ollowing inequalities indicates that any at time t ?	s f and g are nonnegative			
	_	or the volume of 4,000 lite or the volume of the balloon to reconstruction (C) liters per hour	• • • • • • • • • • • • • • • • • • • •			
11. The velocity v , in meters per second, of a certain type of wave is given by $v(h) = 5\sqrt{h}$, where h is the depth, in meters, of the water through which the wave moves. What is the rate of change, in meters per second per meter, of the velocity of the wave with respect to the depth of the water, when the depth is 3 meters?						
12. A particle moves alovalue of t is the velocity		position at time t is given by $x(t)$	$= t^2 - 8t + 9$. For what			


13. A particle moves along the *x*-axis so that at time $t \ge 0$ its position is given by $x(t) = 2t^3 - 18t^2 + 48t - 57$. At what time(s) is the particle at rest?

14. A particle moves along the x-axis so that its position at time t > 0 is given by x(t) and $\frac{dx}{dt} = -8t^4 + 12t^2 + 9t$. The acceleration of the particle is zero when $t = -8t^4 + 12t^2 + 9t$.

15. A particle moves along a straight line. The graph of the particle's velocity v(t) at time t is shown above for $0 \le t \le m$, where j, k, l, and m are constants. The graph intersects the horizontal axis at t = 0, t = k, and t = m and has horizontal tangents at t = j and t = l. For what values of t is the speed of the particle increasing?

16. The maximum acceleration attained on the interval $0 \le t \le 3$ by the particle whose velocity is given by $v(t) = t^3 - 4t^2 + 4t - 11$ is

17. A bug begins to crawl up a vertical wire at time t = 0. The velocity v of the bug at time t, $0 \le t \le 8$, is given by the function whose graph is shown above. At what value of t does the bug change direction?