Opening remarks:

Chris Kelly, open source program Salesforce, introduction.
e Helping do more open source at Salesforce, all aspects.
o Licensing
o Tooling
o Insight

Lars Hofhansl: Phoenix at Salesforce

Lots of use cases, different types of workloads and different business use-cases

Salesforce doesn’t fork!

Phoenix: ~100 clusters, 17B requests/day, 11PB of data (~2PB before
replication)

HBase opentsdb ~15T events

Hadoop 50PB cluster

Introductions of attendees

Discussion Points

Too many branches!! Hard to maintain so many.
o Do we need 1.2, 1.3 and 1.4 branches? Can we get away with one?
Salesforce keeps Phoenix close to open-source release
Cross-release compatibility -- rolling-upgrade, steps to do this?
Give more confidence around minor-release upgrades
Better clarity around “boundaries” for clients
o Did catalog schema change?
o Did encoding of data change?
Too many hbase 1.x branches?
Who are the major deployers of Phoenix?
o poll dev@ and user@ to figure out who uses what HBase versions
o Can we move away older 1.x versions of HBase?
o Can we push HBase 2.x to move to newer versions and avoid the same 1.x
branch problems in HBase?
Need to make more committers!!
Steal HBase’s FindFlakeyTests jenkins logic

What is the direction that Phoenix needs to take?
o Split up Phoenix into 4 discrete pieces: types, executor, RS-side, ...
m How do we proceed with splitting this up: high-level separation of
responsibilities and logic.

m Phoenix needs to drive composition of the discrete pieces into a complete
system
o Build a client-only phoenix if we have a type system
Cloud, non on-prem
o Ratis LogService to replace WALs
o De-couple from POSIX filesystem guarantees
m S3a with dynamodb is not sufficient
o Big goal is what? Drive adoption of hbase/phoenix? Cost-savings?
Phoenix today is two level query executor: client and RS
o Does a more complex model in Phoenix help?
o Should we rely on Presto, Spark, Hive, other?
Centralized schema management is nice to have.
o Is Hive metastore the right way to do it?
Hidden issues around multi-tenant queries: PHOENIX-4657
o Problems when deleting a row from a multi-tenant table may cascade to a
different tenant’s index/view
“Project cleanliness”
o UT/IT do not consistently pass
o HBaseMiniCluster “force-stop” to skip all close region logic, greatly shorten test
execution time
o Can we get a sponsor for better hardware for running UT/IT on ASF infra?
HBase incompatibilities
o Method additions in HBase are hard in Phoenix. Do JDK8 default methods help?
What is the current pain in hbase2?
Lots of new devs to HBase/Phoenix
o How can we engage lots of new engineers to the project?
o How can we ensure we review patches in a timely manner?
How can we get more reviewer bandwidth?
o Have recommendations of what a patch describes what it does
m Comments in the code
m Formatted code
m Inreview board
o Phoenix code quality makes patches hard:
m touch many lines through out files
m unit tests aren't compartmentalized (or list preconditions)
m pre-checkin hook to require unit test coverage increase
m style checker
o Improve flaky test noise Steal HBase’s FindFlakeyTests jenkins logic
Metadata ops are multi-stage and not necessarily idempotent
o Procv2 is meant to help some of this, but phoenix is doing things to fast to use
pv2 effectively.
o PV2is just too heavy for what Phoenix needs?

https://issues.apache.org/jira/browse/PHOENIX-4657

o Can we use state machines to better define what phoenix operations, better
understand
o Can we write a better API to help us do better
e Index rant by LarsH
Global and local, mutable and immutable
Transactional indexes are possible, but not here yet
Percolator style for mutable and immutable indexes, driven client side
Make local indexes solid
Transactional local indexes via Omidv2

o O O O O

	Opening remarks:
	Discussion Points

