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Attention: Can be shared Google-externally 

 
This document describes an intern project with a research flavour where not all outcomes are clear yet. The 
project is about evaluating how Oilpan can be changed to be able to perform precise stack scanning using 
clang/llvm. V8 already has precise stack scanning using handles to keep track of on-heap pointers on the 
stack. A followup project is to evaluate the efficiency of that approach and whether it can be replaced. 

Background and motivation 
Oilpan is used to manage C++ memory in Blink. It is connected to V8 via unified heap. C++ code may keep 
references to objects from its native execution stack. While V8 and Oilpan try to finalize garbage collections 
through non-nested tasks, which are guaranteed to not have heap references on the  stack, some garbage 
collections have to be finalized with a C++ stack due to timing reasons and resource limitations. This is ~11% 
of all Oilpan GCs (3.6% conservative + 9.3% unified heap where V8 finalizes via stack guard). Oilpan does not 
provide any garbage collection infrastructure to record pointers from the stack, meaning that it needs to 
conservatively walk the stack (word-by-word) and figure out whether references point into its heap. Upon 
finding such a reference, an object needs to be kept alive, i.e., it will be marked. This is called conservative 
stack scanning. 
 
Conservative stack scanning comes with the following problems: 

1.​ It is slow since all references on the stack have to be checked. 
2.​ It potentially keeps more memory alive. E.g., consider a double or intptr_t (or multiple ints)value 

that looks like a pointer into the heap. Such a value would retain an object that may actually be 
unreachable. Also, external people have noticed that certain macros, e.g. VLOG, may leave uninitialized 
holes on the stack where old values may peek through. 

3.​ A consequence of potentially misinterpreting primitive values such as doubles as an on-heap pointer is 
that Oilpan cannot run compaction on such garbage collections as the GC should not update double 
values. Precise stack scanning allows performing compaction on any GC. 

Explorer: Using clang/llvm infrastructure 
The idea is to leverage clang and llvm backend infrastructure to emit precise stack maps. This should work 
based on C++ types denoting that object are used on the garbage-collected heap of Oilpan. All interesting 
objects inherit from GarbageCollected or GarbageCollectedFinalized (with a few minor exceptions, see 
e.g. HeapVector), which can be used to figure out which pointers should be kept in a stack map. 

Milestones 
●​ M1: Explore using C++ types and clang/llvm to build pointer maps. 

○​ This can be a prototype that tries to emulate the environment in Blink (GCed base class) but can 
live completely outside of Blink and V8. 

●​ M2: Integrate in Blink using already existing clang plugin infrastructure. 
●​ M3 (stretch): Productionize Blink prototype 

https://uma.googleplex.com/p/chrome/histograms/?endDate=20190522&dayCount=7&histograms=BlinkGC.GCReason%2CV8.GCMarkCompactReason&fixupData=true&showMax=true&filters=platform%2CEQ%2CW%2Cmilestone%2CEQ%2C75%2Cchannel%2CONE_OF%2C3%2Cisofficial%2CEQ%2CTrue&implicitFilters=isofficial
https://uma.googleplex.com/p/chrome/histograms/?endDate=20190522&dayCount=7&histograms=BlinkGC.GCReason%2CV8.GCMarkCompactReason&fixupData=true&showMax=true&filters=platform%2CEQ%2CW%2Cmilestone%2CEQ%2C75%2Cchannel%2CONE_OF%2C3%2Cisofficial%2CEQ%2CTrue&implicitFilters=isofficial
https://groups.google.com/a/chromium.org/forum/?utm_medium=email&utm_source=footer#!msg/blink-dev/xoxdhBElCFY/WBDu4HCnDwAJ


●​ M4 (optional): Investigate how the stack maps can be integrated in V8’s handle system, which is 
v8::internal::Handle (internal) and v8::Local (API) level. This also requires checking build 
dependencies when integrating V8 into Blink. 

Potential project impact 
As of today it is not clear whether the approach is feasible (explorer in M1). In case the stack map works out, 
Oilpan is made fully precise, allowing compaction at any point in time and reducing floating garbage (M2, M3). 
Since Oilpan can work with conservative stack scanning, the precise approach is completely optional. 
 
The project also serves as explorer to replace V8’s handle mechanism, both internally and on V8 API level. This 
potentially has large performance impact on V8 and the web platform in general (M4). 

Oilpan characteristics 
●​ Code lives in third_party/blink/renderer/platform/heap/. 
●​ GC entrypoint for full garbage collections: ThreadState::CollectGarbage 

 
Most objects inherit from GarbageCollected (see here) or GarbageCollectedFinalized. Collection objects 
like HeapVector and friends use IS_GARBAGE_COLLECTED_TYPE macro to annotate GCed behavior. 
 

Precise Stack Scanning with Clang Address Space Attributes  
In Oilpan, most on-heap objects inherit from either a GarbageCollected or GarbageCollectedMixin base class. 
However, we can’t populate GC stackmaps sections directly by checking for these bases in LLVM IR because 
of the possibility of Empty Base Class Elimination. To precisely identify which pointers need including in a 
stackmap at the IR level, we need an additional form of annotation for GC roots that we can be sure won’t be 
optimised away. 
 
Clang’s address space annotations are a good fit here. It is supported directly in LLVM’s recent(ish) GC API. 
Address space attributes are also used in OpenCL to specify that objects reside in distinct regions in memory, 
which allows them to be used for alias analysis. Using address spaces has two key benefits: (1) they are type 
qualifiers, which means the type system will help ensure that their usage is propagated correctly; (2) their 
semantics are decided by the implementor, which gives us a blank slate to use them for GC. The downside is 
that address space attributes are quite verbose and their pervasive use can make a codebase harder to read. 
 

Why it is not possible to use Clang Plugins to add address space annotations to the AST 
 
The original idea in Blink was to use a Clang plugin (similar to those in blink_gc_plugins/) to differentiate 
between on and off heap pointers and annotate them accordingly. The AST in Clang is generally considered to 
be immutable, but we had identified several undocumented APIs which do allow us to change the type of a 
node in-place.  
 

https://cs.chromium.org/chromium/src/third_party/blink/renderer/platform/heap/thread_state.cc?sq=package:chromium&dr=Ss&g=0&l=1363
https://cs.chromium.org/chromium/src/third_party/blink/renderer/platform/heap/heap.h?type=cs&g=0&l=480
https://cs.chromium.org/chromium/src/third_party/blink/renderer/platform/heap/heap_allocator.h?dr=Ss&q=HeapVector&sq=package:chromium&g=0&l=591
https://llvm.org/docs/Statepoints.html
https://clang.llvm.org/docs/AttributeReference.html#opencl-address-spaces
https://blog.tartanllama.xyz/llvm-alias-analysis/


Unfortunately, this is a dead end due to Clang’s non-obvious pipeline. By default, Clang plugins are run after 
the main AST action (which, in most cases, is IR generation). This can be mitigated by specifying a different 
action type to run before the main action. 
 
There are two common entry points where Clang plugins regularly hook into in order to traverse the AST: 
HandleTranslationUnit and HandleTopLevelDecls. Most Clang plugins hook into the former, which allows them 
to walk a fully-formed, type checked AST. However, HandleTranslationUnit always happens after the main AST 
action (IR generation in our case) which makes it unsuitable for our use-case. 
 
HandleTopLevelDecls is also unsuitable, but the problem is more subtle. Even when we set the Clang plugin to 
run before the main AST action, the pipeline for each top level declaration is as below:  
 
Parse -> Typecheck -> Run Plugins -> Main Action (IR Gen)  
 
This is problematic because for each declaration which is not defined at the top level, we are unable to mutate 
their AST nodes early enough to guarantee that the invariants of the type system hold. This is best explained 
with a diagram (many AST details elided for simplicity): 
   
 

 
Clang fails here when it reaches the line first line in main(). The type checker is run on the assign statement 
before we’ve had a chance to update the lvalue to be an address spaced GarbageCollected type (Which 
happens only after the entire top level decl is parsed). The result is a type error because the rvalue’s type was 
updated in the previous top level declaration’s pass. 
 
It should be noted that the notion of using different address spaces to differentiate between pointer kinds is still 
a likely candidate for precise GC, however, more thought is needed to determine how to retrofit them to Blink’s 

https://clang.llvm.org/doxygen/classclang_1_1PluginASTAction.html#ad731052915ba4b9ad0f2de69d3536d2d


large codebase. Without forking Clang (or merging changes upstream) the following options are available, 
each with significant disadvantages. 

Source-to-Source translation 
This is the intended use-case for clang plugins where code changes are necessary. Instead of mutating the 
AST directly and then moving on to IR generation, the plugin outputs a new source file with the address space 
annotations inserted. This can be run once as a mass refactoring with the intention that programmers manually 
annotate address spaces in the future. 
Pros: No effect on compile time. Simple to implement 
Cons: Address space annotations are noisy and will clutter the codebase; more for the programmer to 
remember each time; mass refactor will likely touch every file in blink, and makes git blame / log tools harder to 
use. 

Source-to-source as part of the build 
Similar to above, but instead of running once as a mass refactor we include this as an additional step in the 
build. 
Pros: No effect on the codebase; programmers can continue using blink as they were. 
Cons: Duplication of work in parsing and type-checking the AST potentially causing a significant increase in 
build time. In essence we 2x the front-end phase of compilation. 

Mutate the AST with non-type-qualifier annotations to use in LLVM 
We can’t operate directly on LLVM IR at present because we may have lost class hierarchy information once 
the AST is lowered. It might be possible to mutate the AST in-place, inserting annotations which survive 
lowering which, unlike address space annotations, are not part of the type system. An additional llvm opt pass 
could then run, transforming the address spaces of pointers which are tagged with these annotations. 
Pros: Solves the duplication of work problem with S2S translation; custom annotations which are not typed will 
not break typing invariants on the AST. 
Cons: The type system is actually very useful when adding address space qualifiers, it helps catch corner 
cases that have been missed and guarantees that their usage is propagated correctly. We lose a very useful 
soundness guarantee without it. 

LLVM’s Statepoint GC API 
This API provides intrinsics and IR passes which allow for precise garbage collection in LLVM. In other words, 
GC roots can be precisely identified at program safepoints, making interaction with a moving garbage collector 
possible. It has been used successfully in Azul’s Falcon JVM implementation (PDF), and the CoreCLR runtime. 
It assumes the following has already been decided and / or generated by the front-end:  

●​ A mechanism for determining where to place safepoints (e.g. across function boundaries, loop 
back-edges, both etc.)  

●​ All managed and unmanaged pointers have been distinguished, and reside in separate, non-overlapping 
address spaces. 

●​ The statepoint specific IR passes are run as late as possible in the IR phase ordering. This is because 
they can impede important optimisations such as inlining and dead code elimination. 

 
For V8 and Blink, the statepoint API solves three problems: 

●​ It provides support for parsing pointer location information into stack maps at given safepoints in the 
program. 

https://www.jfokus.se/jfokus18/preso/Falcon--a-new-JIT-compiler-in-Zing-JVM.pdf
https://llvm.org/docs/GarbageCollection.html#the-coreclr-gc
https://llvm.org/docs/LangRef.html#pointer-type


●​ It generates stack maps and places them in a section in the final binary, allowing them to be queried by 
a collector at runtime. 

●​ It encodes the semantics of a potential relocation  into the IR. In other words, variables which contain 1

managed pointers are reassigned to fresh variables after they cross a safepoint boundary to account 
for the possibility that their value may have been relocated.   2

Terminology 
In GC literature, safepoint is a somewhat overloaded term: it can refer both to a point in a program where the 
GC can parse its machine state, and also the coordination required for threads to handshake such that a poll to 
the GC can be executed safely. The LLVM docs refer to the former exclusively with the term statepoint. For 
consistency, this document will do the same. 
 
A pointer is considered managed if it points, either directly or transitively to a value on the GC-managed heap. 
Any other pointer is therefore considered unmanaged. These are also commonly referred to as on-heap and 
off-heap pointers respectively. 

Proof of concept precise GC support in V8 with LLVM  
This section will outline the bare-minimum requirements for sound precise stack scanning in V8 with the LLVM 
statepoint API. In this naive approach, there are clear performance pitfalls which until optimised, would not 
meet expectations for a production ready system. In later sections of this document, each performance 
concern is evaluated in depth, with potential optimisations explored. In some cases, there are areas with 
obvious performance wins can be achieved. The information in this section alone is not enough for production 
ready performance expectations.  

Differentiating between managed and unmanaged pointers 
 
This step is straightforward, as the current handle based GC abstraction ensures that there is a clear boundary 
in the V8 codebase between managed and unmanaged pointers. All on-heap objects must be accessed 
through managed pointers. In other words, no raw pointers to the GC heap are allowed. In using Handles, V8 is 
able to guarantee that references on the stack never point directly to a GC object, and that all roots can be 
precisely located by the collector by iterating Handle scopes.  
 
In this proof of concept, we use an address-space of (1) to denote a managed pointer, and the default, elided 
zero address space for all other pointers (see explanation). With this approach, the (simplified) handle looks 
like this: 
 
class Handle { 
    Address* __attribute__((address_space(1)) address_; 
} 
 
 

2 LLVM IR is in SSA form, so variable assignment is expected to happen only once. In order for GC relocation not to break this invariant, 
an assignment to a new variable is required. 
 

1 Even though in the common-case the GC will not be invoked at a safepoint poll, the only guarantee we have at compile-time is that it 
might have. As a result, the object could have potentially been relocated, and we need semantics to account for this. 



This annotation makes up part of a type qualifier, and propagates through to the IR. Examples of the various 
stages of IR can be seen in the tests/out/ directory of the stack map artefact. 

Identifying which functions need statepoints 
In this proof of concept, statepoints exist only across a function call. Statepoints are not free: their 
corresponding stack map record will increase binary size; and they have the potential to inhibit llvm 
optimisations when lowering from IR to assembly. It is therefore desirable to make sure that they are used as 
sparingly as possible. The minimal number of statepointed call sites necessary which guarantees precise 
collection are any frames which a) contain managed pointers and b) potentially live on the stack during a 
collection. 
 
For simplicity, this proof of concept overapproximates the number of statepoints needed with the following rule: 
any function which contains managed pointers is statepointed. There is scope for optimisation efforts here, but 
the work is non-trivial. See explanation here 

Mitigating the effects on optimisation 
 
There are concerns about the possible effects these changes may have on traditional compiler optimisations. 
This is roughly because: 

●​ The gc statepoint intrinsics may prevent dead-code elimination and constant propagation 
●​ Statepointed functions in the IR can prevent inlining 
●​ If run before mem2reg or SROA, statepoint relocation is error prone and can prevent these important 

optimisations 
●​ The introduction of new SSA variables for relocated values may have an adverse affect on register 

allocation. 
 
The most important way to reduce interference on optimisation is to run the LLVM RewriteStatepointsForGC ( 
RS4GC) pass, which introduces statepoint relocation sequences, as late as possible in the pass manager. In 
the stack_maps/ artefact, compilation is split and performed in stages because of a bug in Clang. The RS4GC 
pass is run after both clang++ -O2 -emit-llvm frontend, and opt -O2. 

The inline problem 
 
LLVM’s RS4GC pass attempts to locate base pointers for potentially derived pointers. Derived pointers are not 
allowed in V8, however, in ToT LLVM there is no way to disable this check. In addition to the unnecessary work 
involved at compile time, this is problematic because of how LLVM performs this check.  
 
For base pointer identification to work, the invariant that there are no inttoptr (or ptrtoint) casts visible to the 
RS4GC must be upheld. When this invariant is broken, RS4GC will trigger an assertion fail, leading to a CTE.  
 
This becomes a problem with inlining because even if leaf functions which contain casting are deliberately 
excluded from the RS4GC pass (i.e. their function defs are not annotated with a gc strategy), they may be 
inlined into their caller before RS4GC is run.  
 
In the future, it will probably be useful to feature gate base pointer identification so it can be switched off when 
not needed. This could be upstreamed into LLVM and used with newer rolls of Clang. However, in the 
meantime there are three potential workarounds: 



 
1.​ Replace integer pointers with void*, this side-steps inttoptr casts which crash when observed by 

RS4GC.  
2.​ Prevent functions containing casts from being inlined in the first pass, then, after RS4GC, run the inliner 

again on those specific functions. This can be achieved by making use of a custom “inline-later” 
annotation. Example in artefact. 

3.​ Hide casting by making the function in which it occurs opaque. For example, compile it and link it as a 
separate translation unit. This only works if the function in question does *not* require statepointing. In 
addition, this can prevent inlining as well as other optimisations. Use this as a last resort.  

Requirements needed to ship production ready version  

Better handling of derived pointers 
Initially it was assumed that we would not need mechanisms in place to deal with derived pointers, as V8 only 
allows tidy pointers to the header of an object. While this is true at the source level, this cannot be guaranteed 
after compiler optimisations. The compiler may introduce temporary, untidy inner pointers to object fields which 
require both tracking and possibly updating (in a moving collector). For example consider the following code: 
 
A[i, j] = 10;  
A[i, k] = 20;  
 
After common subexpression elimination, this may become: 
 
t = &A[i];  
*(t + j * sizeof (int)) = 10;  
*(’c + k * sizeof (int)) = 20; 
 
In this case, t is an untidy pointer as it points inside A at some offset i. If an untidy pointer crosses a statepoint, 
the collector needs to know how to convert it back to a tidy pointer. In order to guarantee soundness, two 
things need to happen: 

●​ The tidy pointer’s life must be extended such that it is considered live at the statepoint 
●​ Both the tidy and untidy pointers are relocated after compaction.  

 
The LLVM Statepoint architecture does attempt to find base pointers for each corresponding derived pointers, 
but has two main problems which may make its use in V8 difficult: 

●​ It disallows inttoptr (and ptrtoint) casts in LLVM IR. At present, this will not work with the current 
Handle.address logic in V8 handles. 

●​ It emits a base and derived pair for each root. This doubles the number of entries required in each 
stack map record. 

The introduction of compiler generated untidy pointers are rare. Eliminating the need for duplicate stack map 
entries (and emitting more efficient stack maps in general) is the easier of the two problems. One approach 
which doesn’t require performing liveness analysis on the CFG is to is to consider making handles relaxed 
atomics, which may be enough to prevent the optimiser from interfering with base pointers. This however does 
come with obvious negative performance implications. 



A proposal for a more efficient stack map format 
The current stack map format provided by LLVM is inefficient. Its memory usage is unnecessarily large, and it 
needs to be parsed into a table which can be queried at runtime by the collector.  
 
Header { 

  uint8  : Stack Map Version (current version is 3) 

  uint8  : Reserved (expected to be 0) 

  uint16 : Reserved (expected to be 0) 

} 

uint32 : NumFunctions 

uint32 : NumConstants 

uint32 : NumRecords 

StkSizeRecord[NumFunctions] { 

  uint64 : Function Address 

  uint64 : Stack Size 

  uint64 : Record Count 

} 

Constants[NumConstants] { 

  uint64 : LargeConstant 

} 

StkMapRecord[NumRecords] { 

  uint64 : PatchPoint ID 

  uint32 : Instruction Offset 

  uint16 : Reserved (record flags) 

  uint16 : NumLocations 

  Location[NumLocations] { 

    uint8  : Register | Direct | Indirect | Constant | ConstantIndex 

    uint8  : Reserved (expected to be 0) 

    uint16 : Location Size 

    uint16 : Dwarf RegNum 

    uint16 : Reserved (expected to be 0) 

    int32  : Offset or SmallConstant 

  } 

  uint32 : Padding (only if required to align to 8 byte) 

  uint16 : Padding 

  uint16 : NumLiveOuts 

  LiveOuts[NumLiveOuts] 

    uint16 : Dwarf RegNum 

    uint8  : Reserved 

    uint8  : Size in Bytes 

  } 

  uint32 : Padding (only if required to align to 8 byte) 

} 
 
This stack map format requires a minimum of 40 bytes for each stack map record entry (i.e. each statepoint) 
assuming it contains a single location. 
 



Reducing statepoint overapproximation 
In the artefact, statepoint locations are overapproximated, with some functions having unnecessary stack map 
entries. A function requires a corresponding stack map if its frame contains a managed pointer(s) and: 

●​ It calls an external function (either directly or transitively) 
●​ It calls a function (either directly or transitively) which is known to trigger a collection 

 
The problem here is that it’s unknown whether an externally linked function, `foo` has a control flow path which 
triggers a collection. The only guarantee is that it *might*, hence we must conservatively include a stackmap 
entry for all functions which may exist on the stack when `foo` is called. 
 
If we could statically the traverse the call graph for foo’s translation unit, and determine that its path never 
triggered the collector, then we could remove stack map entries for functions in TUs which call `foo` externally. 
This might be possible with the following: 

●​ An LTO which may allow us to perform a pass over the whole executable, removing stack maps which 
are unnecessary. This could be too late, however, as certain compiler optimisations (which could have 
been unnecessarily impinged by overuse of stack maps) will have already taken place. 

●​ A fixed point analysis similar to gcmole which traverses over many different translation units and uses 
files to record state between them. 

Fixing the inefficient and clunky build process 
The ideal scenario is that all steps required to build V8 / Blink with stack map support can be managed fully 
using the clang++ binary. This is not currently possible as the GCStrategy library (used during stack map 
generation) is only instantiated when used with opt and llc. This doesn’t affect build times too much, but it does 
increase the number of steps required and can make it harder to understand. 

Compiler Gating 
As this uses an LLVM specific API, it will need to be conditionally included when used only with the Clang / 
LLVM toolchain. This also means that if the intention is for this prototype to be used to eventually remove the 
need for HandleScopes, either gcc support will need to be dropped, or they need to exist and be used in 
parallel for systems that are not compiled with LLVM. 

Stack walking 
In the proof of concept, stack walking is done by jumping into caller frames through the frame pointer. In 
production this can’t be relied on: calling conventions may differ between platforms; and optimisations exist 
which use the frame pointer as a general purpose register. Walking the stack with stack maps in such cases 
requires plugging into the existing stack traversal mechanisms used in V8 and Blink.  

Porting to architecture other than x64 
At present, the LLVM statepoint lowering pass has only been implemented for x86_64. Work will be needed to 
port this to additional architectures. Although tedious, this work is purely mechanical. See 
https://llvm.org/doxygen/StatepointLowering_8cpp_source.html. 
 
 

https://llvm.org/doxygen/StatepointLowering_8cpp_source.html
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