
Prerequisites:
- Basic Syntax​
- Asymptotic Analysis (Time Complexities)​

Overview​

Dynamic programming is a wide category of algorithms and techniques. It
is commonly defined as “a structure or algorithm which uses the answer to
smaller subproblems to solve a larger problem”. ​

Mindset​

Dynamic programming is a broad category of problems, similar to
geometry in mathematics and stoichiometry in chemistry. There is no
single template for dynamic programming problems, whether easy or hard.
Nonetheless, when solving dynamic programming problems, there are key
concepts to keep in mind. However, simply knowing these strategies is not
always enough to solve more difficult problems. ​

Initiation​

https://wcipeg.com/problem/ccc00s4
Read and attempt the problem for 15 minutes, or until it is solved.​
​
Solution:​
Dynamic programming problems often involve a decision-making process
which can be applied in real life. Consider the following idea:
​
Define clubs[32] as an array of club lengths. ​
In this problem, one can store an array dis, where dis[i] stores the
minimum number of strokes to reach a certain distance. Initially, dis[0] is
equal to 0. The remaining cells of the array can be completed by trying all
clubs in clubs[]. Denote one such cell as dis[i]. One can calculate
dis[i] by finding the minimum value of dis[i-clubs[j]]+1 for all values
of j.​
​
Why does this work? Think of the algorithm as a logical process, one that

https://wcipeg.com/problem/ccc00s4

you could attempt in real life. It functions by attempting to use each club,
at each distance. This type of program can be defined as an “exhaustive
search”, as it tries all possible situations to find the optimal one. Many
other algorithms are defined as “exhaustive search”, including recursive
backtracking and shortest-path problems. ​

Generalization
The above solution may appear very specific and isolated to a single
problem. However, dynamic programming problems, however difficult, can
be solved with a similar general method.

1.​ Identify the state - Determine what data your program uses in order
to define and solve subproblems. In the above problem, the state is
the distance.

2.​ Determine the start and end states - Each DP problem starts with
some data and ends with some data. The above problem starts at
distance 0 and ends at distance D(provided in the input).

3.​ Choose a possible transition - The transition is the method used to
convert information from smaller states into larger states. This is
often the most challenging part of a dynamic programming problem.
In the aforementioned “Golf” problem, this transition is attempting to
use each of the clubs.

4.​ Optimize your algorithm - Not all dynamic programming problems
require this step, and those that do are often quite difficult. This
topic is often attributed as category separate from regular dynamic
programming and will be the main topic of a future lesson. However,
optimization is a useful tool to understand. Optimization is the use
of an algorithm, data structure, observation or restriction to allow a
program to run more efficiently. This is often the next step if your
program receives a “Time Limit Exceeded” verdict.

Implementation tips (READ AFTER SOLVING EXAMPLE)

●​ Start with your state and by defining your array. Be careful not to go
out of bounds. It is also recommended to add a small number to
your array bounds, e.g. make an array of size 405 for n <= 400, in case
of off-by-one errors. Example: making an array of size 5280 in the
above problem may lead to runtime error or wrong answer, as
looping to (0-index) 5280 will go out of bounds.

●​ Make sure to initialize your array if it is necessary and that you are
initializing it to the correct value. Set the array to 0 if you are
calculating the sum, 230 if you are calculating the minimum, 1 if you
are calculating the product, etc.

●​ When you have determined a suitable transition, but are unsure of
how to implement it, simulate it by hand.

●​ If optimization is necessary, try to see if there are any states that are
never visited, or if a transition can be improved by precalculating
information.

Optional Practice
https://wcipeg.com/problem/cchange
https://wcipeg.com/problem/dwitefeb06p2
These problems will be repeated in the training section at the bottom of
the document. Do these problems before moving on, unless you are
confident in your dynamic programming ability (especially
implementation). ​

https://wcipeg.com/problem/cchange
https://wcipeg.com/problem/dwitefeb06p2

Recursive transitions

​
Dynamic programming can use a variety of complex and interesting
transitions. Although the following example is still quite simple, it
demonstrates an important technique in implementing dynamic
programming: using recursion to simplify transitions. ​
​
https://wcipeg.com/problem/ccc08s5
Read and attempt the problem for 15 minutes or until it is solved.​
​
Solution: ​
​ In convention with the dynamic programming process, recognize that
the state will be stored as [A][B][C][D], or the quantities of each type of
particle. This has a complexity of O(N^4), well within the memory and time
constraints. The start and end state is clear: the end state is one which is
unable to form a reaction, and the start state is the one given in the input. ​
​
​ The transition relies on a key (and somewhat trivial) principle of
game theory: it is possible to win from a state if and only if it is possible to
move to a state where it is impossible to win. Take a moment to think about
this idea if you are uncertain of why it is true.

​ Using that idea, it is simple to create a transition: for any state, try
the 5 combinations listed in the input, if any of them are losing, set the
current state to winning, otherwise, set the current state to losing. However,
the implementation for this may seem complicated. Fortunately, it can be
made clearer using recursion.
​

boolean [32][32][32][32] DP, visited
function f(a, b, c, d):
 if visited[a][b][c][d]:​
 return dp[a][b][c][d]​
 visited[a][b][c][d] = true
 for i in combinations:​
 if possible(a, b, c, d, i) and ​
​ not f(a - i.a, b - i.b, c - i.c,d - i.d):
 dp[a][b][c][d] = true​
 return dp[a][b][c][d]

https://wcipeg.com/problem/ccc08s5

This function solves the above problem in a very effective manner.
Additionally, it is faster than the iterative (loop-wise) method, since it does
not visit as many states. Being able to implement dynamic programming
using recursion is an important skill. ​
​

Optional Practice
https://wcipeg.com/problem/ioi9611
https://wcipeg.com/problem/ccc16s4
These problems will be repeated in the training section at the bottom of
the document. Solving these problems now is highly recommended,
especially the first one. ​

https://wcipeg.com/problem/ioi9611
https://wcipeg.com/problem/ccc16s4

Practice problems (There are a lot :0)

It is extremely important to practice dynamic programming regularly. Try to
solve as many of the problems as possible. Problems are sorted in roughly
ascending difficulty. ​
​
Note: Try to finish all problems before the space before next class.

https://wcipeg.com/problem/dwitefeb06p2
https://wcipeg.com/problem/cchange
https://wcipeg.com/problem/ccc08s5
https://wcipeg.com/problem/ccc07s5
https://wcipeg.com/problem/ioi9611
https://wcipeg.com/problem/coci065p5

https://dmoj.ca/problem/year2017p6
https://dmoj.ca/problem/ccc16s4
https://dmoj.ca/problem/dmopc14c2p5
https://wcipeg.com/problem/ioi0914
https://wcipeg.com/problem/ccc16s4
https://wcipeg.com/problem/mockccc15s4
https://dmoj.ca/problem/ncco2d1p1
https://dmoj.ca/problem/tle16c8p3

https://wcipeg.com/problem/dwitefeb06p2
https://wcipeg.com/problem/cchange
https://wcipeg.com/problem/ccc08s5
https://wcipeg.com/problem/ccc07s5
https://wcipeg.com/problem/ioi9611
https://wcipeg.com/problem/coci065p5
https://dmoj.ca/problem/year2017p6
https://dmoj.ca/problem/ccc16s4
https://dmoj.ca/problem/dmopc14c2p5
https://wcipeg.com/problem/ioi0914
https://wcipeg.com/problem/ccc16s4
https://wcipeg.com/problem/mockccc15s4
https://dmoj.ca/problem/ncco2d1p1
https://dmoj.ca/problem/tle16c8p3

	Prerequisites:
	- Basic Syntax​- Asymptotic Analysis (Time Complexities)​
	Overview​
	Dynamic programming is a wide category of algorithms and techniques. It is commonly defined as “a structure or algorithm which uses the answer to smaller subproblems to solve a larger problem”. ​
	Mindset​
	Dynamic programming is a broad category of problems, similar to geometry in mathematics and stoichiometry in chemistry. There is no single template for dynamic programming problems, whether easy or hard. Nonetheless, when solving dynamic programming problems, there are key concepts to keep in mind. However, simply knowing these strategies is not always enough to solve more difficult problems. ​
	Initiation​
	
	Generalization
	Implementation tips (READ AFTER SOLVING EXAMPLE)
	Optional Practice
	Recursive transitions
	Practice problems (There are a lot :0)

