
Prerequisites: 
- Basic Syntax​
- Asymptotic Analysis (Time Complexities)​
 
Overview​
 
Dynamic programming is a wide category of algorithms and techniques. It 
is commonly defined as “a structure or algorithm which uses the answer to 
smaller subproblems to solve a larger problem”. ​
 
Mindset​
 
Dynamic programming is a broad category of problems, similar to 
geometry in mathematics and stoichiometry in chemistry. There is no 
single template for dynamic programming problems, whether easy or hard. 
Nonetheless, when solving dynamic programming problems, there are key 
concepts to keep in mind. However, simply knowing these strategies is not 
always enough to solve more difficult problems. ​
 
Initiation​
 
https://wcipeg.com/problem/ccc00s4 
Read and attempt the problem for 15 minutes, or until it is solved.​
​
Solution:​
Dynamic programming problems often involve a decision-making process 
which can be applied in real life. Consider the following idea: 
​
Define clubs[32] as an array of club lengths. ​
In this problem, one can store an array dis, where dis[i] stores the 
minimum number of strokes to reach a certain distance. Initially, dis[0] is 
equal to 0. The remaining cells of the array can be completed by trying all 
clubs in clubs[]. Denote one such cell as dis[i]. One can calculate 
dis[i] by finding the minimum value of dis[i-clubs[j]]+1 for all values 
of j.​
​
Why does this work? Think of the algorithm as a logical process, one that 

https://wcipeg.com/problem/ccc00s4


you could attempt in real life. It functions by attempting to use each club, 
at each distance. This type of program can be defined as an “exhaustive 
search”, as it tries all possible situations to find the optimal one. Many 
other algorithms are defined as “exhaustive search”, including recursive 
backtracking and shortest-path problems. ​
 

 



Generalization 
The above solution may appear very specific and isolated to a single 
problem. However, dynamic programming problems, however difficult, can 
be solved with a similar general method.  

1.​ Identify the state - Determine what data your program uses in order 
to define and solve subproblems. In the above problem, the state is 
the distance.  

2.​ Determine the start and end states - Each DP problem starts with 
some data and ends with some data. The above problem starts at 
distance 0 and ends at distance D(provided in the input).  

3.​ Choose a possible transition - The transition is the method used to 
convert information from smaller states into larger states. This is 
often the most challenging part of a dynamic programming problem. 
In the aforementioned “Golf” problem, this transition is attempting to 
use each of the clubs.  

4.​ Optimize your algorithm - Not all dynamic programming problems 
require this step, and those that do are often quite difficult. This 
topic is often attributed as category separate from regular dynamic 
programming and will be the main topic of a future lesson. However, 
optimization is a useful tool to understand. Optimization is the use 
of an algorithm, data structure, observation or restriction to allow a 
program to run more efficiently. This is often the next step if your 
program receives a “Time Limit Exceeded” verdict.  

 
Implementation tips (READ AFTER SOLVING EXAMPLE) 

●​ Start with your state and by defining your array. Be careful not to go 
out of bounds. It is also recommended to add a small number to 
your array bounds, e.g. make an array of size 405 for n <= 400, in case 
of off-by-one errors. Example: making an array of size 5280 in the 
above problem may lead to runtime error or wrong answer, as 
looping to (0-index) 5280 will go out of bounds.  

●​ Make sure to initialize your array if it is necessary and that you are 
initializing it to the correct value. Set the array to 0 if you are 
calculating the sum, 230 if you are calculating the minimum, 1 if you 
are calculating the product, etc.  

●​ When you have determined a suitable transition, but are unsure of 
how to implement it, simulate it by hand. 



●​ If optimization is necessary, try to see if there are any states that are 
never visited, or if a transition can be improved by precalculating 
information. 

 
Optional Practice 
https://wcipeg.com/problem/cchange 
https://wcipeg.com/problem/dwitefeb06p2 
These problems will be repeated in the training section at the bottom of 
the document. Do these problems before moving on, unless you are 
confident in your dynamic programming ability (especially 
implementation). ​

 

https://wcipeg.com/problem/cchange
https://wcipeg.com/problem/dwitefeb06p2


Recursive transitions 

​
Dynamic programming can use a variety of complex and interesting 
transitions. Although the following example is still quite simple, it 
demonstrates an important technique in implementing dynamic 
programming: using recursion to simplify transitions. ​
​
https://wcipeg.com/problem/ccc08s5 
Read and attempt the problem for 15 minutes or until it is solved.​
​
Solution: ​
​ In convention with the dynamic programming process, recognize that 
the state will be stored as [A][B][C][D], or the quantities of each type of 
particle. This has a complexity of O(N^4), well within the memory and time 
constraints. The start and end state is clear: the end state is one which is 
unable to form a reaction, and the start state is the one given in the input. ​
​
​ The transition relies on a key (and somewhat trivial) principle of 
game theory: it is possible to win from a state if and only if it is possible to 
move to a state where it is impossible to win. Take a moment to think about 
this idea if you are uncertain of why it is true.  
 
​ Using that idea, it is simple to create a transition: for any state, try 
the 5 combinations listed in the input, if any of them are losing, set the 
current state to winning, otherwise, set the current state to losing. However, 
the implementation for this may seem complicated. Fortunately, it can be 
made clearer using recursion.  
​

boolean [32][32][32][32] DP, visited 
function f(a, b, c, d): 
  if visited[a][b][c][d]:​
    return dp[a][b][c][d]​
  visited[a][b][c][d] = true 
  for i in combinations:​
    if possible(a, b, c, d, i) and ​
​   not f(a - i.a, b - i.b, c - i.c,d - i.d): 
         dp[a][b][c][d] = true​
  return dp[a][b][c][d] 

https://wcipeg.com/problem/ccc08s5


This function solves the above problem in a very effective manner. 
Additionally, it is faster than the iterative (loop-wise) method, since it does 
not visit as many states. Being able to implement dynamic programming 
using recursion is an important skill. ​
​

Optional Practice 
https://wcipeg.com/problem/ioi9611 
https://wcipeg.com/problem/ccc16s4 
These problems will be repeated in the training section at the bottom of 
the document. Solving these problems now is highly recommended, 
especially the first one. ​

 

https://wcipeg.com/problem/ioi9611
https://wcipeg.com/problem/ccc16s4


 
Practice problems (There are a lot :0) 

It is extremely important to practice dynamic programming regularly. Try to 
solve as many of the problems as possible. Problems are sorted in roughly 
ascending difficulty. ​
​
Note: Try to finish all problems before the space before next class.  
 
https://wcipeg.com/problem/dwitefeb06p2 
https://wcipeg.com/problem/cchange  
https://wcipeg.com/problem/ccc08s5 
https://wcipeg.com/problem/ccc07s5 
https://wcipeg.com/problem/ioi9611 
https://wcipeg.com/problem/coci065p5  
 
https://dmoj.ca/problem/year2017p6 
https://dmoj.ca/problem/ccc16s4 
https://dmoj.ca/problem/dmopc14c2p5 
https://wcipeg.com/problem/ioi0914 
https://wcipeg.com/problem/ccc16s4 
https://wcipeg.com/problem/mockccc15s4 
https://dmoj.ca/problem/ncco2d1p1 
https://dmoj.ca/problem/tle16c8p3 
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