	Код:

КАБИНЕТ 3. ГЕНЕТИКА (42 балла)

<u>ЗАДАНИЕ 1 (14 баллов).</u> Лабораторная работа. Генетический анализ закономерностей наследования признаков у плодовой мушки дрозофилы (Drosophila melanogaster L.)

Материалы и оборудование: четыре пробирки с мушками, предварительно подвергнутыми наркотизации, ручная лупа с увеличением x2-x4, лист белой бумаги, препаровальная игла.

Генетический анализ — основной метод генетики, позволяющий с помощью логическо-математических и экспериментальных моделей определить тип наследования признака организма (ядерный или цитоплазматический), количество генов, его контролирующих, характер их взаимодействия и локализацию в группе сцепления. Принципы и методы генетического анализа являются той основой, которая позволяет перейти к выяснению молекулярных механизмов действия генов, к расшифровке генетического контроля метаболических путей, обуславливающих развитие признаков.

Весьма удобным объектом по изучению закономерностей наследования признаков является плодовая мушка дрозофила (*Drosophila melanogaster L.*). Ее преимущества перед другими объектами заключаются в непродолжительном цикле развития (10 суток от момента откладки яйца до вылета имаго), высокой плодовитости (50–200 потомков от одной пары мух) и обилию легко учитываемых признаков, различия по которым наследуются согласно моногибридной схеме.

1. Решите задачу. При скрещивании дрозофил получено следующее потомство:

	Самцы		Самки
75	с красными глазами, серым телом и длинными крыльями	92	с красными глазами, серым телом и длинными крыльями
70	с абрикосовыми глазами, желтым телом и длинными крыльями	75	с абрикосовыми глазами, желтым телом и длинными крыльями
21	с абрикосовыми глазами, желтым телом и загнутыми крыльями	20	с красными глазами, серым телом и загнутыми крыльями
27	с красными глазами, серым телом и загнутыми крыльями	28	с абрикосовыми глазами, желтым телом и загнутыми крыльями
2	с красными глазами, желтым телом и длинными крыльями		
1	с абрикосовыми глазами, серым телом и загнутыми крыльями		
	Итого: 196		Итого: 215

1.1. (3 балла, по 0,5 балла за позицию). Определите, как наследуются признаки, обозначьте доминантные и рецессивные аллели генов

A	темно-красные глаза
a	– абрикосовые глаза
b	– желтое тело
В	– серое тело
c	– загнутые крылья
С	– длинные(нормальные) крылья

Примечание: для обозначения аллелей используйте буквы латинского алфавита – А и а, В и b, С и с.

1.2. (6 баллов). Определите, имеется ли в этом скрещивании сцепление признаков с полом, а также сцепление генов между собой. Напишите генотипы родителей – самки и самца.

самка	самец
$\frac{AB}{ab}$ $\frac{C}{c}$	$\frac{ab}{c} \frac{C}{c}$

1.3. (5 баллов). Если гены сцеплены, определите расстояние между ними.

Гены окраски	Ген окраски глаз	Ген окраски тела
глаз и тела	и ген формы крыла	и ген формы крыла
сцеплены 0,74 морганиды (3 балла)	не сцеплены (1 балл)	не сцеплены (1 балл)

<u>ЗАДАНИЕ 2 (12 баллов).</u> Рассмотрите при помощи ручной лупы предложенных Вам в пробирках плодовых мушек *Drosophila melanogaster L*. Определите их фенотипы. Результаты внесите в таблицу.

ВНИМАНИЕ!!! При заполнении таблицы укажите доминантным или рецессивным является определяемый признак. Доминантный признак впишите в столбец таблицы «Д», рецессивный признак — в столбец таблицы «Р».

Таблица

Анализируемый	Пробирка №1		Пробирка №2		Пробирка №3		Пробирка №4	
признак	Д	P	Д	P	Д	P	Д	P
Окраска глаз	_	Абрико-со вые	_	Белые	Красные	_	Красные	_
Окраска тела	_	Черное	_	Желтое	Cepoe	_	Cepoe	
Форма крыльев	Нормаль- ные	_	Нормаль- ные		Нормаль- ные		_	Загнутые

ПРИМЕЧАНИЕ (сокращения принятые в таблице): Д – доминантный признак, Р – рецессивный признак.

ЗАДАНИЕ 3 (16 баллов). Изучение экспрессии гена А у мышей.

<u>Материалы и оборудование</u>: четыре опытных пробирки (1-4), пробирка с реактивом (P), пипетки, лист белой бумаги в файле.

Экспрессия гена A у мышей дикого типа находится под контролем регуляторного элемента (энхансера), который значительно увеличивает уровень экспрессии гена A.

Продуктом гена A у мышей является белок, который при взаимодействии с реактивом **P** дает цветное окрашивание (малиновый цвет), причем интенсивность окрашивания прямо пропорциональна уровню экспрессии гена.

Было установлено, что взаимодействие реактива ${\bf P}$ и белка, у которого нарушена аминокислотная последовательность, приводит к изменению цвета окрашивания.

<u>3.1.</u> (4 балла). Для проведения эксперимента у разных линий мутантных мышей, отличающихся уровнем экспрессии гена A, были изъяты клетки из которых получены клеточные экстракты (пробы 1-4), содержащие разное количество белка P.

На поверхность файла нанесите по одной капле раствора из каждой пробы. Затем к каждой из них добавьте по две капли реактива Р. Отметьте изменение окраски и данные внесите в таблицу.

Номер пробы	Цвет пробы
1	Малиновый
2	Желтый
3	Нет (светло-желтый)
4	Розовый

<u>3.2. (4 балла).</u> Определите, какие линии мышей имеют мутации, влияющие на экспрессию гена А. Наличие мутации, влияющей на экспрессию гена А, отметьте знаком «+», отсутствие – знаком « - ». Данные внесите в таблицу.

ВНИМАНИЕ!!! Каждая линия мышей может иметь только одну мутацию, влияющую на экспрессию гена А.

Номер пробы	Наличие мутации
1	-
2	+
3	+
4	+

3.3. (8 баллов). Определите, в какой из перечисленных областей гена А и его регуляторных элементов произошли указанные мутации у мышей. Номер соответствующей пробирки внесите в таблицу.

ВНИМАНИЕ!!! Каждая линия мышей может иметь только одну мутацию.

Номер пробы	Область мутации
3	промотор
4	энхансер
2	белок-кодирующая последовательность
1	интрон