PickYourPlace

Pick a place to live based on property value, safety, and accessibility

604 MEMORIAL DR NW
SUNNYSIDE

$ VALUE =~ SAFETY ACCESSIBILITY

eso00o® o '.oo.co..
[Local Crime ecseco®
L]

Flood Probability .

® 1% O 5% O 10% O 20%

Indicates the event probability of 1 in 100 years.
[J Hospitals & EMS Stations

[Fire Stations

Choosing a place to live is an important decision that will have a huge impact on everybody’s
life. So how do we choose our home? There are many factors; in fact the final decision is a
trade-off of many factors and, since everyone or every family has their own priorities, that
can be unique to them.

Location is a main component among all those factors. PickYourPlace is a location
intelligence platform that allows users to visualize and navigate the world surrounding
properties and make spatially-aware decisions. It enables users to understand property
value trends in different geographic areas, evaluate a number of safety factors in a localized
view, and compare accessibility to nearby amenities using different travel modes (walking,
biking, riding (on public transit), and driving).

Challenge

There are two main challenges when building a location intelligence platform. The first
challenge relates to user experience; how do we present the information in a way that drives
user engagement and awareness? Some real estate applications focus solely on the

“interior” of properties like the type (detached house vs. townhouse vs. apartment), number
of bedrooms, garage capacity, etc. and overlook the surroundings. Some other platforms do
provide metrics about the “exterior” but present them using some indices that are not always
easy to interpret and understand.

The second issue is about performance; how do we make sure that a data-centric platform
performs well and does not become a bottleneck when dealing with a lot of “data layers™?
Every property has a coordinate that does not change much (ignoring small changes in local
and global coordinates because of the constant movement of tectonic plates) but its
surrounding infrastructure and nearby amenities and services may change from time to time.
This requires a dynamic, up-to-date system that is able to run spatial queries and
aggregations on-demand.

PickYourPlace is an effort to address these challenges — it aims to present a set of “useful”
location-based indicators to help users pick a place to live based on (1) their budget, (2)
safety, and (3) the quality of amenities and services in their neighborhood. It augments data
from different open data sources including the City of Calgary’s open data portal and
OpenStreetMap to display all properties within the City of Calgary on an interactive map,
along with their assessed value, crime statistics, and areas susceptible to flooding. It also
uses the city’s road network along with walking, biking, and public transit infrastructure to
highlight the areas and POls (points of interest) that are reachable within a 15-minute walk,
bike, ride (on public transit), and drive — the POls include hospitals, emergency and fire
stations, schools, parks, trails, and bikeways.

The following section presents the technical architecture and describes how the system
works.

Solution

PickYourPlace is built using open source software, open standards, and open data and
hosted on Amazon’s AWS infrastructure — see the PickYourPlace’s overall architecture
below.

B oscon

-
1 1
1 1
1 1
1 1
1 1
— [—
_____________ 1 L’ 1 L.
Database | | Frontend Application
1 1
1 1
1 1
J

OpenTripPlanner

r il

1 1 1 1
1 1 1 1
| — | €2 | |
1 1 1 1
1 () 1 L-- - 1 1
1 zgy L 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
v J

PostgreSQL/PostGIS Map Tile Server
(RDS)

P CAU JRupS—

pg_tileserv
(EC2)

Figure 1. PickYourPlace’s overall architecture

PostgreSQL/PostGIS is the database — it stores spatial “data layers”, executes queries, and
generates vector tiles. The data layers include bikeways, crime statistics, hospitals and EMS
stations, fire stations, flood probability maps, parks, property values, schools, and trails. A
Graviton-powered RDS is used to create the database for this project.

pg_tileserv is the map tile server — it is a lightweight tile server, written in Go, that takes in
HTTP requests, forms SQL queries and sends them to a PostgreSQL/PostGIS database for
execution, and returns the results as vector tiles. The tile server is running on a
Graviton-powered EC2 instance.

OpenTripPlanner is the travel time calculator — it is a multimodal trip planning tool, written in
Java, that takes in HTTP requests, computes isochrones (areas that are reachable within a
specified amount of time from a location), and returns the results as GeoJSON. It uses
OpenStreetMap data, GTFS (General Transit Feed Specification) feed, and a digital
elevation model (DEM) to build a transportation network that supports different travel modes
including walking, biking, riding (on public transit), and driving. The OpenTripPlanner server
is running on a Graviton-powered EC2 instance.

The frontend application is an SPA (single page app), built using Vue.js, Vuetify, and Mapbox
GL JS. The SPA is hosted on S3 as a static website using AWS Amplify.

The frontend application visualizes all residential and non-residential properties in Calgary
on a map. When a user selects a property, it will show the data layers associated with the
location of interest under three categories:

1. Property value, which lists the assessed property value and its trend over the past
three years, plus some information about the property class, its construction year,
and square footage;

2. Safety, which provides local crime statistics (population adjusted and aggregated
based on different types of crime including assault, break and enter, robbery, theft
from vehicle, theft of vehicle, and violence), flood risk maps with event probability
ranging from 1% to 20%, emergency stations and hospitals, and fire stations within a
15-minute drive;

3. Accessibility, which shows schools and universities, parks, trails, and bikeways that
are reachable within a 15-minute walk, bike, ride (on public transit), and drive.

This provides an interactive experience for users, empowering them to explore their options
in an intuitive and performant way and make their decision with more location context. |
encourage you to play with the web app live here, and explore its GitHub repository to take a
deeper dive into the code base.

The next section presents the results of a performance evaluation between
Graviton-powered instances used in this project and their x86-based counterparts.

Performance Evaluation

As mentioned in the previous section, a Graviton-powered RDS PostgreSQL and two
Graviton-powered EC2 instances run the database and backend services for this project.
The database stores the data in 15 tables and handles the spatial queries sent by
pg_tileserv. To execute the queries, four spatial operations need to be performed: bounding
box calculation, coordinate transformation, overlay analysis, and vector tile generation.

http://pickyourplace-dev.s3-website-us-west-2.amazonaws.com/
https://github.com/mepa1363/pickyourplace

To evaluate the performance of Graviton-powered vs. x86-based RDS PostgreSQL
instances, the following query was executed on two different instances (db.t4g.micro vs.
db.t3.micro) and the response time was recorded. The experiment was repeated 30 times to
get representative results.

EXPLAIN ANALYZE
WITH bounds AS (
SELECT ST_TileEnvelope(15, 5995, 10956) AS geom

)f
mvtgeom AS (
SELECT ST_AsMVTGeom(ST_Transform(t.geom, 3857), bounds.geom) AS geom,
t.address
FROM property_value t,
bounds
WHERE ST_Intersects(t.geom, ST_Transform(bounds.geom, 4326))
)
SELECT ST_AsMVT(mvtgeom, 'public.property_value')
FROM mvtgeom;

Figure 2. The SQL query for vector tile generation used in this test

Instance CPU RAM Storage Software
. 2 1GB
db.t4g.micro 20 GB General PostgreSQL 13.4 R1
Purpose SSD (9p2) | postGls 3.1.4
, 2 1GB
db.t3.micro 20 GB General PostgreSQL 13.4 R1
Purpose SSD (9p2) | postGis 3.1.4

Table 1. Configuration of the RDS instances

The results suggest that the Graviton-based RDS instance provides more than 46% better
performance over the x86-based instance — see the results in the table below.

RDS Instance Response Time (ms)
db.t4g.micro 2.44 +£0.07
db.t3.micro 3.57+£2.60

Table 2. Performance test results

The map tile server publishes all the available tables in the database (15 tables in this
project) as vector tile layers. It accepts HTTP tile requests, generates SQL queries and
sends them to the database, and returns the response.

To test the map tile server, pg_tileserv was compiled for arm64 and x86 architectures and
deployed on two different instances (t4g.micro vs t3.micro). ApacheBench was used to run
the test and measure the response time — a vector tile request was used for this
experiment. The experiment was repeated 30 times to get representative results.

ab -n 30 -c 1 "${IP_ADDRESS}/public.property _value/16/11992/21914.pbf"

Figure 3. The ApacheBench command used in this test

Instance CPU RAM Storage Software
tag.micro |2 (@5CH2) [1TGB | 34 op General Ubuntu Server 20.04 LTS
Purpose SSD (gp2) Go 1.17.2
pg_tileserv 1.0.8
nginx 1.18.0
@B.micro |2 (39CH2) | 1TGB |34 GB General Ubuntu Server 20.04 LTS
Purpose SSD (gp2) Go 1.17.2
pg_tileserv 1.0.8
nginx 1.18.0

Table 3. Configuration of the EC2 instances

The results suggest that the Graviton-based EC2 instance provides more than 68% better
performance over the x86-based instance — see the results in the table below.

EC2 Instance Response Time (ms)
t4g.micro 112x6.7
t3.micro 189 + 105.3

Table 4. Performance test results

The travel time calculator generates isochrones from a specified location and returns the
results as GeoJSON polygons. To do so, the OpenTripPlanner server is first used to build a

graph object (i.e., a transportation network) and store it on the disk. Then, it loads the graph
in memory, exposes an API, and handles isochrone HTTP requests.

To test the travel time calculator, OpenTripPlanner was deployed on two different instances
(t4g.small vs t3.small) and two test scenarios were designed. In the first scenario, the graph
build time was measured — the build process is composed of three steps: (1) building the
transportation network from OpenStreetMap data, (2) building the transit network using
GTFS data, (3) and analyzing elevation profiles using DEM data. The result of this process
was a graph with 203,546 nodes and 617,268 edges for the City of Calgary.

In the second scenario, ApacheBench was used to measure the response time to isochrone
requests. Both experiments were repeated 30 times to get representative results.

ab -n 30 -c 1 '${IP_ADDRESS}/isochrone?fromPlace=51.085699,-114.1223445mode=WALK, TRANSITScutoffSec=900"

Figure 4. The ApacheBench command used in the second experiment of this test

Instance CPU RAM Storage Software
t4g.small 2(25GHz) | 2GB 30 GB General Ubuntu Server 20.04 LTS
Purpose SSD (gp2) Java 8 (OpenJDK)
OpenTripPlanner 1.2.0
nginx 1.18.0
3.small 2(25GHz) 12GB | 35 B General Ubuntu Server 20.04 LTS

Purpose SSD (9p2) | jovas (OpenJDK)

OpenTripPlanner 1.2.0
nginx 1.18.0

Table 5. Configuration of the EC2 instances

The results suggest that the Graviton-based EC2 instance provides 20% and more than 71%
better performance over the x86-based instance when building the graph and handling
isochrone HTTP requests, respectively — see the results in the table below.

EC2 Instance Build Time (min) Response Time (ms)
t4g.small 2003 103 + 4.4
t3.small 24+0.8 177 £101.4

Table 6. Performance test results

	PickYourPlace
	Challenge
	Solution
	Performance Evaluation

