
How rendering works in Ebitengine 
hajimehoshi@gmail.com 
Last Update: 2024-05-07 

Status: Public 

TL;DR 
Image in the package ebiten (github.com/hajimehoshi/ebiten) is the core of Ebitengine’s 
API for rendering. This API is simple, but graphics operations via the API are not directly 
translated into commands for a low-level graphics layer. One of the reasons is efficiency, and 
besides the performance, there are a lot of requirements for rendering. To solve the issues, 
Ebitengine adopted a layered rendering system. 

Background 
Ebitengine offers a very simple rendering API with Image. On the other hand, actual 
rendering is not so simple. Ebitengine needs to satisfy these requirements: 
 

●​ For efficient rendering, the number of graphics commands that are sent to GPU 
should be small. However, we don’t want Ebitengine users to care about low-layer 
things. Ebitengine should efficiently translate graphics operations to a small number 
of GPU graphics commands automatically. 

●​ There are some environments that cannot start rendering before the main loop due 
to gomobile restrictions. Then, graphics operations before the main loop needs to be 
buffered somewhere. 

●​ When the linear filter is used, mipmap images are preferable. 
 
To achieve this, Ebitengine adopted a layered rendering system. 

Overview 
This figure explains the layered system of Ebitengine rendering at the latest commit. 
 

mailto:hajimehoshi@gmail.com
https://github.com/hajimehoshi/ebiten


 

ebiten.Image 
An Image in the package ebiten is a user-facing API for rendering. The API must keep 
backward compatibility as long as the major version is not updated. 
 
To reach the actual low-level graphics API, graphics operations go through several layers 
described below. 

ui.Image 
An Image in this package is an intermediate image to connect the upper level 
(ebiten.Image) and a lower level (mipmap.Mipmap). This image caches some values 
from ebiten.Image calls for more efficient renderings. 
 
(TBD) 

mipmap.Mipmap 
A Mipmap in the package mipmap represents a collection of images for mipmap. With linear- 
filter, prepared shrunk images are needed for high quality rendering. A mipmap has an 
original image, a half size, 1/4, 1/8, … and so on. They are created when the original image is 
used as a rendering source with linear-filter. They are discarded when an original image is 
used as a rendering destination. 
 



For more details about mipmap, see https://en.wikipedia.org/wiki/Mipmap. 

buffered.Image 
An Image has pixel cache, which is updated when ReadPixels is called, in order to reduce 
the graphics commands to read pixels. 

atlas.Image and atlas.backend 
An image in the package atlas represents an image that is a part of a big image 
(backend). The purpose is to achieve more efficient rendering. In general, the smaller the 
number of graphics commands is, the better the performance will be. If successive two 
graphics operations have different source images, they have to be executed as different 
graphics commands. This is not efficient. If they have the same source image, the 
operations can be merged into one graphics command. To achieve this, images are 
integrated into one big image whenever possible. 
 
The packing algorithm is a very simple binary tree, which splits a region into two horizontally 
or vertically. See github.com/hajimehoshi/ebiten/v2/internal/packing for more 
details. 
 
A destination image for rendering cannot be put into a big image as a part. In the current 
implementation, such an orphan image is put into a big image again after the image is used 
as a source a number of times. On the other hand, if an image that is on a big image is used 
as a rendering destination, the image will be an orphan image automatically before 
rendering. 

graphicscommand.Image 
An image in the package graphicscommand represents an interface of graphics 
operations. To make rendering efficient, graphics operations are merged when possible. For 
example, if a source image and a destination image in successive operations are the same, 
the operations might be merged into one graphics command. To be exact, there are more 
complex conditions to merge operations. For details, see 
https://pkg.go.dev/github.com/hajimehoshi/ebiten/v2#Image.DrawImage. 

driver.Image 
An image in the package driver is an interface for a low-level graphics driver like OpenGL 
or Metal. This executes the low-level APIs almost directly. 
 
The package driver offers interfaces, not implementations. One of the implementations is 
in github.com/hajimehoshi/ebiten/v2/internal/graphicsdriver/opengl. 
 

https://en.wikipedia.org/wiki/Mipmap
https://pkg.go.dev/github.com/hajimehoshi/ebiten/v2#Image.DrawImage


The low-level graphics driver basically does these things: 
 

1.​ Set vertices and their indices. 
2.​ Draw the vertices (Loop) 

a.​ Set a renderer source 
b.​ Set a renderer target 
c.​ Set the range of indices 
d.​ Set other properties (e.g., filter) 
e.​ Draw the specified vertices 

 


	How rendering works in Ebitengine 
	TL;DR 
	Background 
	Overview 
	ebiten.Image 
	ui.Image 
	mipmap.Mipmap 
	buffered.Image 
	atlas.Image and atlas.backend 
	graphicscommand.Image 
	driver.Image 

