Mission Support System: Collaborative editing of flight path in
real-time

About Me

Name: Shivashis Padhi, (Github/Bitbucket/IRC username) - plant99, mss-devel.slack.com - shiv
University info:

University Name: National Institute of Technology, Tiruchirappalli
Major: Computer Science and Engineering

Current Year: Ill year

Expected Graduation date: May 2020

Degree: Bachelor of Technology

Contact info:

Homepage: https://plant99.github.io
Email: shivashispadhi@gmail.com
Alternate Email: 106116085@nitt.edu

Time Zone: Indian Standard Time (GMT + 5:30 hours)

Why | chose this idea to submit a proposal on?

Having written ~7000 lines of code in Python, | can safely say it’s my favorite programming language. So |
had no doubt that contributing to a Python based project would be the easiest and most rewarding for me.
PSF was my first priority when | planned to apply for GSoC. Besides computer science, | spend a good
amount of my spare time browsing through research updates in the area of Geo-sciences. Thus, when |
stumbled upon mss, | decided to submit a proposal for one of its ideas.

| have around 2 years of experience with development of real-time applications as a student developer. In
the past, | have worked with chat and notification modules, some of which were deployed to production
logged ~680 users and >25000 games requests during Code-Character 2019, which was online for 21 days.
This proposal has similar algorithms incorporated to handle connections and network 1/0.

During my internship at Flytbase, | designed and developed a video-chat platform for human and drone

clients, with different permission levels to publish/view the streams using core concepts of WebRTC. A big
issue was to build an interface for an onboard device like Raspberry Pl to publish stream over WebRTC,
because there were no reliable python clients for WebRTC. | wrote a python client with websockets,
asyncio, and Flask, to receive a stream from web-browser, process the frames, and send it back to
web-browser through websockets and eventually WebRTC clients. The architecture is represented in the
following illustration:

https://github.com/plant99/
https://bitbucket.org/plant99/
https://nitt.edu
https://plant99.github.io
mailto:shivashispadhi@gmail.com
mailto:106116085@nitt.edu
https://github.com/plant99/ProPart/blob/master/app.js#L137
https://github.com/delta/codecharacter-server-2019/blob/master/api/utils/socketHandlers.js#L8
https://www.pragyan.org/19/home/events/byte_hoc/code_character/
https://flytbase.com/about-us/

headless- |,

/ browser

Y

Flask Backend |
socket WebRTC
v:ﬁ EETE;?;ZS connections connections
\ headless- |, =
browser | ull

Certainly, the best of my work till date as a student developer involved concepts related to this project. |
look forward to making the best use of my experience, interests, and abilities to work with MSS on this idea
and contribute a lot to open source over the summer, if given a chance.

Code Sample

From the time PSF’s sub-org list was released, to this date, | have worked with mentors from MSS to discuss
issues/features and successfully got my work accepted. Following is a list of links to PRs | have worked on,
sorted by date.

Note: PRs marked with a * are major ones.

https://bitbucket.org/wxmetvis/mss/pull-requests/617/stable/diff

https://bitbucket.org/wxmetvis/mss/pull-requests/616/i324/diff *

Project Information

Sub-org name:

Mission Support System - MSS

https://bitbucket.org/wxmetvis/mss/pull-requests/597/fix-pep8-indentation-exception/diff
https://bitbucket.org/wxmetvis/mss/pull-requests/599/renamed-_tests-utilspy-to-_tests/diff
https://bitbucket.org/wxmetvis/mss/pull-requests/601/update-gitignore-for-project-structure/diff
https://bitbucket.org/wxmetvis/mss/pull-requests/603/add-delete-and-insert-functionalities-in/diff
https://bitbucket.org/wxmetvis/mss/pull-requests/604/fix-pep8-trailing-space-exception/diff
https://bitbucket.org/wxmetvis/mss/pull-requests/607/show-approximate-coordinates-of-point-on/diff
https://bitbucket.org/wxmetvis/mss/pull-requests/609/enhancement-of-insert-waypoint-function-to/diff
https://bitbucket.org/wxmetvis/mss/pull-requests/617/stable/diff
https://bitbucket.org/wxmetvis/mss/pull-requests/616/i324/diff
https://bitbucket.org/wxmetvis/mss/wiki/GSOC2019/Overview

Project Abstract:

Mission Support System is a flight planning software which a researcher can use to analyze predicted
atmospheric data, and plan a flight-path with 3D waypoints. The software in the present state allows editing
by a single user per flight-path. To share this work, one has to export the work as a $name . ftml file and
send it to other researchers for further planning. This back and forth communication not only consumes a
lot of human efforts and time, but also can be frustrating when the number of researchers involved in a
project is bigger, say >=3.

| propose a solution to this problem, the development of Mscollab which stands for ‘Mission Support
Collaboration’. Mscollab would facilitate real-time, collaborated editing of flight-paths by authorized users.
By design, it will also provide a chat facility for the users who collaborate on the project. Its Ul would be a
part of msui, the core User Interface module of mss. It will additionally provide insights about changes and
the users who created the changes, for analytics purpose. Mscollab-server will be a standalone server
built with Python, Flask, and python-socketio.

Project Description:

A brief introduction to MSS software:

Mission Support System provides a suite which can be used by atmospheric research scientists to plan a
research flight. It has two essential components
® msui
It’s the core Ul module of mss software, this shows atmospheric data on a 2D map. A researcher has
to analyze the data and mark the waypoints (a set of points which the research aircraft has to pass
through to collect experimental data).

® WMmS/MmsSwms

WMS stands for Web Map Server, which essentially serves maps given origin coordinates and other
geographic parameters. A sample wms server can be setup with ‘mswms’, and some demo data
which can be setup easily as per instructions here. In a single sentence, mswms serves the data to
be displayed by msui.
In the current state of mss, the waypoints created by a researcher is volatile in nature. To save it, one has to
export the waypoints to a “ftml’ file (by default) which is saved and accessed by user through fs API.
® So, to share the flightpath with other researchers, one has to use an external channel. This can cause
considerable waste of time and efforts when working in a big team.
® Plus, the changes made by members get mixed up which creates a lot of confusion down the line.
Thus, a collaboration tool is highly necessary to synchronize individual work of group members and keep
track of changes made in the process.

Mscollab:

Mscollab’s design solves the aforementioned problems, in a simple and structured fashion. Following is a
helicopter view of the same.

http://flask.pocoo.org/
https://python-socketio.readthedocs.io/en/latest/intro.html
https://mss.readthedocs.io/en/stable/deployment.html#demodata-simulated-data
https://pyfilesystem2.readthedocs.io

msuii msui2 msuid

/N /N /N

1.ftml 2Fml 1 .ftml 3.ftml 3dtml 2.5tml

—

Socket API Central File Listing
A

‘: 1 ftml 2 fiml 3.ftmi
Main App }/

User and
Auth API

Chat APl File AP

Message Change File

User Connection Permission (

Database]

Data Models [Classes

Mscollab has four major components:

e Data Models / Classes
e Main App

e APIs

o Ul

Among these, the first three modules would be developed within Mscollab server. Ul of this software
would be integrated with msui module of mss software.

Data Models

Connection &=
User = =T u_id |string
email string(128) ! i s_id |string(128)
password |string(128) '/'- > |id integer
» oo |id integer q.:;‘—i":______ o Add field
. name string ’ N
|15 e ~ Permission
'! T u_id |integer(128)
| id integer
f_id [integer
| il =1} | [Add field
| V- | |Eid integer
i' content text
I", \u}— u_id string
| | B Addfield
T
Message = |I
= ||u_id integer | I."
text text II"-.. [e =
e e , T I.""\ l-, path |string(128) t
created_at |datetime el - :
= Add field ™ _Qj-*d?-‘mm integer
= A

The project needs six basic models named:
e (Connection
This class is defined to keep track of the socket connections maintained by users.
u_id: user-id
s_id: socket-id

e User

This class represents an user of mscollab.
id: user-id

email: email-id of the user
name: Screen name of the user
password: bcrypt hashed password

® Permission
This data represents the authorization of an user to collaborate on afile.
u_id: user-id
f_id: file-id

7

access_level: enum[“admin”, “collaborator”, “viewer”]

APIs

Message

Message represents a single message unit, linked with a chat(further linked to a file).
u_id: user-id
f_id: file-id

text: message content
created_at: used to order the messages in a conversation

Change

Change represents a change in .ftml file submitted by an authorized user.
u_id: user-id

f_id: file-id

content: ‘diff’ of file made by the user

created_at: used to sort the changes w.r.t time

Eile

File represents an .ftml file.

id: to be used as fileld

path: filepath - unique

description: description of the file, stating its purpose of creation.

Some of the major APIs and their functionalities are listed as follows:

Socket API
o connect_user
Checks email-id and password, if authorized saves user-id and socket-id to Connection table.
o disconnect_user
Removes connection associated to the socket
O message
Notifies main app about incoming message from one of connected socket clients.
o emit
Emits ‘file change’ or ‘message’ events to other users to change their local data in real-time,
sent by main-app.
o is_online
Used to check if an user is online by looking for an entry in connection
User and Authentication API

o add_user

Add email-id, name, and password to ‘User’
O remove_user

Remove user from ‘User’ table.

o change_password
Change password of user

o

authenticate

Checks if an email-id and password passed as parameters are valid, and matching with one in
the database.

user_exists

Checks if an email-id exists in ‘User’

e File API
File APl will be based on fs library, and the storage options can be modified as per need. A

configuration file would be used to control the same.

o

file_save

Adds an entry in the ‘Change’ table.

‘Sname.ftml’ is tweaked to append ‘Change-Id’ to change-log attribute inside each
<Waypoint/> tag. This would help to display information specific to this waypoint in Ul.
Saves the new file atomically, (this process will be made efficient by saving only the ‘diff’ at
the right file cursor)

get file
Returns file as ASCII string or buffer, as instructed in the parameter.

get_authorized_users
Returns a list of users who are authorized to collaborate on file identified by f_id/f name.

get change log

Returns a list of changes by collaborating users sorted by timestamps from Change table with
f_id as key.

exists

Returns boolean value if the file with ‘file-name’ exists or not.

list

Returns an array of ‘File’ data with permission level for each file. This data can be used to
view projects dashboard in client’s side, as a list of projects the user is admin of and another
list of projects the user is collaborating on.

delete_file (access_level = admin)

Deletes file from file-path and ‘File’ table, preferentially delete entries related to this file
from ‘Message’, ‘Permission’, ‘Change’.

add _permission (access_level = admin)

Checks if user with user-id exists. If yes, add user-id and file-id to ‘Permission’ table.
remove_permission (access_level = admin)

Checks if user with user-id exists. If yes, remove entries of ‘user-id and file-id together’ in
‘Permission’ table.

rename_file (access_level = admin)

Rename a file, would basically change ‘path’ in ‘File’ table corresponding to file-id.

e Chat API

o

message save
Adds an entry in the ‘Message’ table.

https://pyfilesystem2.readthedocs.io

O get_messages
Return an array of messages corresponding to a file_id (chat_id as each file can have one

‘Chat’ entry), sorted by ‘created_at’ values.

Main App

This module orchestrates all other services and APIs and regulates the data-flow.
A pseudo-code of main app is as follows:

import socketManager
import fileManager
import authManager
import chatManager
import Flask

app = Flask(__name__)

dsocketManager.sio.on('connect')

def connect(sid, env):
check auth here by authmanager
socketManager.connect_user()

dsocketManager.sio.on('disconnect"')
def connect(sid, env):
socketManager.disconnect_user()

use decorator to check auth
@sio.on('message')
def message(sid, data):

if data.type == "file":
fileManager handles file here
pass
else:

data.type = message
chatManager handles messages here
pass

app.route('/user"')
def user_handler():
args = request.args
authManager handles the rest
would be used to add remove user, etc

Ul

Ul module of mscollab will be integrated with msui, the core Ul module of mss software. The temporary
files would be stored in “~/mssdata’ directory or as configured in ‘mss_wms_settings.py’.

A list of projects which the user is working on can be displayed as illustrated below, which can be activate by
clicking on Tools->Mscollab projects list, on MSS’ main window.

Mission Support System - ui_mainwindowui

File Views |Tools| Help Type Here

Trajectory Tool (Lagranto) &

Time Series View (Trajectories) @

-0 Flight T m/4m————————————+—+—+ . .
| e Mscollab projects list ﬁ

Type Here
Add Separator

MamWindew - MemWindow - unttieds

: Projects createdbyyou - -~ - - - oo

projectl
project2
project3

projectd
projects
projects

Double clicking on a project opens the mscollab-ui window as shown on page 11.

Project

e A '‘project’ is a data storage model implemented by popular code IDEs, like vscode,pycharm etc.

e In this case, instead of treating a ‘Sfilename.ftml’ as a project, since it won’t be aesthetic to store
configuration data in ftml file, it would be better if we introduce a project as a collection of some
files.

e To start with, it will have a flightpath related file, and a configuration file, and a contributors file
showing waypoint details and collaborators who contributed to change of the waypoint.

e Anillustration is shown below.

Personal Storage of mssuser

projectl praoject2
collaborators.json collaborators.json
project_config.json project_config.json
waypoints.fiml waypoints.fiml
project3
collaborators.json
project config.json
waypoints.fiml

e To integrate this with mss, create_new_view function can be modified to open a flightpath in a

particular view mode. The attribute self.active_flight_track can be changed to
self.active_project .And each window opened would have a flightpath with some
configuration obtained from project_config.py, and contribution details of each waypoint from
project_config.py.

Projects can also be opened/created directly from main-window.

File| Views Tools Help Type Here

New Project

Open Project

Close Selected Project ®&f
MNew Flight Track

Open Flight Track...

Activate Selected Flight Track
Save Active Flight Track

Save Active Flight Track As...

ol gl Rl il v

Close Selected Flight Track

Import Flight Track b
Export Active Flight Track b

https://bitbucket.org/wxmetvis/mss/src/ec33f188fd521f52a6e647fe6cc481d12c5be989/mslib/msui/mss_pyui.py?at=develop&fileviewer=file-view-default#mss_pyui.py-427

The configuration for a new project can be input by the user in a graphical manner.
MainWindow - untitled. o

L I ——
o emdame []
e

 Fighipatislocaton | seectFighpatnfie |
admin - Add User
[oo [cememe]

This creates a project on mscollab server with a single administrator.

Clicking on ‘Mscollab Login’ would show a dialogue-box with email-id and password, for login. If the User
with email-id doesn’t exist in the mscollab database, user registration dialogue-box is opened. Once login is
completed, login button gets replaced by the following display.

Opening a project which the user is administrator of would open the following window. Clicking on a project
which the user is the collaborator of, opens a similar window, without options to add/remove collaborators.

Users collaborating Change Log

add
User2 changed the File
line 45 waypoint 5
—-lat=44.3
+lat=44.56

user 1

user 2

User3 changed the File
user 3 User1 line 65 waypoint 6
This is a dummy message weee --height=450
+height=445
line 45 waypoint 5
--lat=44.56
User 2 +lat=46.60

Okay | agree, but here is another dummy message weeeeeeeee

user4

You

Well, since we are using dummy messages. dum Dum Dum

User1
Okay, enough. Get back to work!

Send

Left side of the window as seen by the user, has a list of users collaborating on the experiment.
Right side of the window as seen by the user, has a log of recent history of changes.

Central space lists the group chat messages which will support important markdown syntax (e.g
bold, italics) during editing.

Once a new file is created or a file is opened with mscollab, say ‘experiment.ftml’, msui window gets
updated with new file in the listing which can be edited in an usual manner and each change gets saved in
mscollab server after a certain duration. The continuous backup can be disabled/enabled by the user by
an Ul element.

File Views Tools Help
Open Flight Tracks:

Open Views:

If one opens an old stored file, say ‘old-experiment.ftml’, following API calls are made with filename/file-id
as parameter.
e /get_file handled by FileManager
If file is not found in Sdata_dir, it’s created in Sdata_dir as an intermediate save point.
e /get authorized_users handled by FileManager

e /get_log handled by FileManager

e /get_messages handled by ChatManager
Once this data is received, it is suitably rendered to a new mscollab-ui window as shown in the mock-up.
The overall data-flow diagram in front-end would resemble the following.

mscollab server

T

Socket
Manager

Storage local
to user

SocketManager class would be a simple class, with two major functions:
e connect()
Used to start connection after authentication is complete and the client receives a token
® on_message()
Used to handle messages incoming from mscollab server (when SocketManager.emit() is called).
Event handlers would be written in ‘msui/mscollab_ui.py’.

Timeline
| have tried to schedule the project work as per GSoC’s timeline.
Note:

e Every time span starting from 27th May till 12th August, if it doesn’t involve ‘buffer for
improvement’ or ‘bug-fixes’, would include unit tests.

e Holidays like weekends are included in the time blocks. (I plan to take 1 day off per week, if work is
up-to date as per schedule)

6th May Accepted student proposals announced
7th May - 26th May Community Bonding Period
7th May - 8th May (2 days) Setup logistics

- Decide on schedule and mode of

communication for weekly and emergency
meetings.
- Setup other logistics i.e GSoC blog

9th May - 21st May (~2 weeks)

Finalize proposed architecture with mentors

- Discuss with mentors about any changes or
improvement to be made in proposed
architecture and draft a final design
document.

- Discuss and confirm the selection of
software libraries and tools, replace them
with better ones if needed.

- Help solve some issues related to 1.9.0
release of mss.

- Dive a little deeper into mss’ way of
handling File 10 in client’s side.

- Start working on ‘Project’ for core msui

21st May - 26th May (~1 week)

Setup project environment

- Finish up on Project integration for msui.

- Make a list of software and tools
dependencies of the project.

- Install and verify their installation.

27th May

Official coding starts

27th May - 5th June (~1.5 weeks)

Starter template setup and development of User
related route.

- Setup mscollab server with Flask, and
python-socketio.

- Migrate database models and write classes
for the same as Schemas.

- Write API endpoints of /user route i.e login,
signup, authentication.

6th June - 12th June (~1 week)

Development of Socket API

- SocketManager class is developed along
with all the member functions.

- Integrated with Main App.

- Test connect/disconnect/message
functionality with a dummy client setup
externally.

13th June - 16th June (~0.5 weeks)

Development of Chat API

- ChatManager class is developed along with

event handler functions.

- Integrated with ‘message’ event in
SocketManager.message() function.

- Test functionality with dummy python
client.

17th June - 24th June (~1 week)

Development of File API

- FileManager class is developed.

- Separate handler functions for different
storage options (e.g local and WebDAV) are
considered and implemented.

- Development of Permission class and
associated handlers.

- Test functionality with python client

24th June - 28th June

First round of evaluations

24th June - 28th June (~0.5 weeks)

Buffer time to cover back-logs, solve newly
discovered bugs, refactoring needs, and improve
tests.

29th June - 6th July (~1 week)

Development of ‘Change’ related handlers.

- Development of FileManager class is
continued and the ‘diff’s are stored in
‘Change’ table.

- Design algorithm to handle a change, link it
to waypoint(s) and save this change-id to
XML tag <Waypoint/> for further insights.

- Test this with a dummy python client.

7th July - 14th July (~1 week)

Development of auth/connection for front-end and
Projects’ Dashboard

- Setting up a login modal for users when
they open mscollab’s dashboard.
Development of socket utilities for
front-end

- Development of dashboard which shows
users’ projects which they collaborate on or
are admin of.

- Setting up click handlers which should open
a dummy window as of this duration.

15th July - 22nd July (~1 week)

Development of Project Window upto some
features i.e users-list and messages

- Development of Project window where
users would discuss on a project.

- Identify admin/non-admin and setup
corresponding Ul i.e (Add/delete
collaborators, etc.)

22nd July - 26th July

Phase 2 evaluation

23rd July - 28th July (5 days)

Continue development of Project Window

- Development of change-log column

- Thorough testing of the required
functionalities implemented.

- Listing down bugs

29th July - 3th August (~0.5 weeks)

Buffer time to cover back-logs, solve newly
discovered bugs, refactoring needs, and improve
tests.

5th August - 12th August (~1 week)

Load ‘change’ attributes from <Waypoint/> XML
and use these changes to show insights like

- Last edited time

- Last 5 contributors
in topview/sideview window.

13th August - 18th August(~1 week)

- Implement integration testing, find and
solve more bugs if found.

- Improve on general algorithm
implementations to achieve a more efficient
solution, if needed.

- Document code and integrate
documentation to that of mss’.

19th August - 26th August

Work Submission

19th August - 25th August(~1 week)

- Ask mentors for a more detailed review, and
work on fixes covering
code/documentation/deployment options
etc.

- Project and documentation submission.

26th August - 2nd September

Mentors submit final evaluation

3rd September

Final results announced.

Future Work

Mscollab’s development doesn’t stop with GSoC’19. Once the initial base is established, | want to keep
working along further development and maintenance at my spare time. Some features which | hope to

work on after GSoC are as follows.

e Multiple workspaces in single window

The above layout shows a single collaboration task in one window. This can be extended to multiple

workspaces in a single window as ‘tabs’. This work would mostly involve working with the Ul of
mscollab software.

e Waypoint as a model
If two other models are introduced as ‘Waypoint’ and ‘Path’, this design can be largely exploited to
save better insights about the changes made to Waypoints.

e Make mscollab generic
The server can be used for any other XML or structured data with some modification. This can help
open doors to make mscollab available for broader use-cases.

e Version Control
Version control of files can be introduced in the central storage, using GitPython or a similar library.
Some concepts like branches, cherry-pick/revert can be exploited to implement functionalities like
undo, or redo operations made by commit(s).

e 3D implementation of msui
Topview and sideview window can be combined to form a single 3D globe and one can traverse the
dimensions like Google-Earth and click at a point to insert a waypoint, if atmospheric data can be
visualized in a 3D fashion. This would also support mscollab without any further modifications.

Other Commitments

- If lam selected as a GSoC student, it will be my full-time commitment. | don’t have any other jobs or
internships during GSoC.
| have some important classes and assessments to attend on the third week of August, so for this
duration, I'd be able to work a few hours less.
May 6 - August 12: 45-48 hours/week
August 13 - August 19: 36-38 hours/week
August 20 - August 26: 45-48 hours/week
Though I'd join my school after summer break on 29th June, it won’t affect the numbers of hours |
work on the project. | will inform my mentors about any changes in schedule in a timely manner.

- Other than PSF, | am not applying to any other organisation to participate in GSoC. | am submitting
only one proposal, for Mission Support System under PSF.

https://github.com/gitpython-developers/GitPython

	Mission Support System: Collaborative editing of flight path in real-time
	About Me
	Code Sample
	Sub-org name:
	Project Abstract:
	Project Description:
	A brief introduction to MSS software:
	Mscollab:
	Data Models
	APIs
	Main App
	UI

	Project
	Future Work

	Other Commitments

