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1. INTRODUCTION (Times New Roman, 10 pt, bold)

An electrochemical process known as corrosion occurs when metal surfaces come into contact with
corrosive surroundings. It is a major loss-causing factor in several sectors but is most prevalent in the oil
and gas. Since corrosion-related problems account for a sizeable amount of the yearly expenses incurred
by oil and gas production businesses globally, corrosion is a topic worth researching, particularly in oil
field applications [1], [2], [3]. Furthermore, adequate corrosion prevention can aid in averting several
possible catastrophes that can result in grave problems, including fatalities, detrimental effects on society,
and contamination of the environment and water supplies [4], [5], [6].

In recent years, the development of predictive models to study material properties has become a
major focus in materials science and computational chemistry. Accurate predictive models can accelerate
the discovery of new materials by reducing the reliance on expensive and time-consuming laboratory
experiments. One approach that has been widely used is Support Vector Regression (SVR), which is
known to handle high-dimensional data and detect non-linear patterns [7], [8].

However, although SVR offers several advantages, its performance is often limited when applied to
small or complex datasets. This has prompted researchers to explore more innovative approaches, such as
using quantum computing principles in predictive models. Quantum Support Vector Regression (QSVR)
has emerged as a new method that integrates the advantages of SVR with the capabilities of quantum
computing to overcome the limitations in non-linear prediction [9], [10].

In this study, we evaluate the performance of QSVR in predicting material properties, especially on
limited and complex datasets. We compare the prediction accuracy of the QSVR model with that of
conventional regression models that have been used previously and examine the extent to which quantum
approaches can improve the prediction results. The results of this research are expected to provide
significant contributions to the development of predictive models based on quantum computing and pave
the way for broader applications in materials science.
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2. METHODS
2.1. Dataset

The method must explain the procedures for obtaining data and data analysis techniques. The
research stages and analysis must be explained in detail. A published dataset with 260 data points and 14
molecular descriptors is used in this investigation [11]. Molecular weight (MW), acid dissociation
constant (pKa), water solubility (log S), polar surface area (PSA), polarizability (o), the energy of lowest
unoccupied molecular orbital (LUMO), the energy of highest occupied molecular orbital (HOMO),
Ionization Energy (I), Electron Affinity (A), Electronegativity (eV), Electrophilicity (), Hardness (eV),
and The Faction Electron Shared (AN) are some of these features.

2.2. Preprocessing

Preprocessing is done since some data points have missing values, leading to data cleaning with 78
clean data points. The Min-max scaler approach is then used to scale the features. The results are split
into two variables: X and Y. Principal Component Analysis, or PCA, is used to variable X. By generating
new, uncorrelated variables and optimizing data variance, PCA is a technique that minimizes information
loss while reducing the dimension of a huge dataset to aid in interpretation [12], [13].

2.3. QSVR model

The QSVR developed in this study consists of several main components that work synergistically to
improve the accuracy of material property prediction. This model utilizes the principles of quantum
computing combined with the traditional SVR algorithm. The first step in the QSVR architecture is
mapping classical features to the quantum feature space. This is done using a quantum feature map, where
input data is converted into quantum states through a series of gates. This process allows the model to
capture complex non-linear patterns in the data more efficiently [14], [15].

One key component in QSVR is the use of a quantum kernel. This quantum kernel is calculated
based on the amplitude or probability of the measurement results from the quantum circuit. It measures
the similarity between data pairs in the quantum feature space. Because kernel computation is performed
in quantum space, QSVR can exploit the advantages of superposition and entanglement to measure
similarity more accurately than traditional kernels [16], [17].

The quantum circuit used in QSVR is designed to implement the quantum feature map and quantum
kernel optimally. This circuit consists of a series of quantum gates, such as Ry and Rz, applied to qubits to
manipulate quantum states. This circuit design minimizes errors and increases the stability of quantum
computing, resulting in more accurate prediction results [18], [19].

After the quantum kernel is calculated, the model training process is carried out similarly to
conventional SVR by minimizing a loss function that measures the prediction error against the training
data. However, optimization is performed in the quantum feature space, allowing for a wider and more
diverse solution space exploration. Optimization algorithms such as the Quantum Approximate
Optimization Algorithm (QAOA) or variational methods are often used to find the optimal parameters in
this stage [20], [21].

After the model is trained, predictions are made by measuring the quantum circuit's results for new
input data. These measurement results are converted to the classical world for the final prediction [22],
[23]. This measurement process allows QSVR to make more accurate and faster predictions, especially on
complex datasets.

The results of quantum computing are then further processed with classical methods to obtain the
final prediction. This step involves calculating regression values based on the results of the quantum
kernel and optimization. Combining quantum and classical computing provides a hybrid advantage that
maximizes the model's predictive performance.

2.4. Model evaluation

The evaluation process is critical in determining the effectiveness of machine learning (ML) models,
particularly in identifying the most suitable model for a given task. To achieve a thorough evaluation,
several performance metrics are employed. Mean Absolute Deviation (MAD) measures the average of the
absolute differences between the observed actual outcomes and the predictions made by the model.
Unlike metrics that square the errors, MAD provides a straightforward measure of model accuracy by
treating all errors equally without disproportionately penalizing larger errors. This makes MAD useful for
obtaining a clear, interpretable understanding of the typical error magnitude. A lower MAD value
indicates better predictive accuracy, highlighting the model's ability to produce predictions close to the
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actual values. Root Mean Squared Error (RMSE) is the square root of MSE and provides an interpretable
error measure in the same units as the output variable. RMSE is particularly valuable in understanding the
typical size of the prediction errors and is often preferred because it is more sensitive to outliers. This
study uses RMSE to gauge the robustness of the QSVR model's predictions. Mean Absolute Error (MAE)
calculates the average of the absolute differences between predicted and actual values. Unlike MSE,
which squares the errors, MAE provides a linear score that treats all errors equally, making it easier to
interpret. MAE is often used alongside RMSE to give a more complete picture of model performance,
with a lower MAE indicating better accuracy. These metrics collectively provide a robust framework for
evaluating and comparing the performance of the QSVR model against traditional ML models. The study
aims to highlight QSVR's strengths and potential limitations by analyzing these metrics, offering insights
into its practical applicability and effectiveness in predictive modeling tasks [24], [25], [26], [27].

3. RESULTS AND DISCUSSION

Table 1. Comparison between QSVR and classical models.

Model RMSE MAE MAD Ref.

QSVR 4.40 3.33 3.17 This work
SVR 6.28 5.12 5,04 This work
ARX 7.03 - - [28]
GB 6.40 4.80 - [29]

Table 1 presents a comparative analysis of the predictive performance of four models: QSVR, SVR,
AutoRegressive with exogenous inputs (ARX), and Gradient Boosting (GB). The models are evaluated
using three key metrics: RMSE, MAE, and MAD. The QSVR model achieves the lowest RMSE value of
4.40, indicating superior predictive accuracy compared to the other models. This suggests that QSVR is
better at minimizing the squared differences between the predicted and actual values, making it a more
reliable model for this dataset. The RMSE for SVR is 6.28, significantly higher than that of QSVR. This
indicates that SVR produces larger errors on average, which affects its overall accuracy. The ARX model
has an RMSE of 7.03, the highest among the models compared. This result implies that ARX struggles
the most regarding prediction accuracy, likely due to its reliance on simpler linear relationships. With an
RMSE of 6.40, GB performs better than ARX but is still less accurate than QSVR and SVR. This
suggests that while GB captures some complex patterns, it doesn't match the predictive power of the
quantum-enhanced QSVR.

QSVR also outperforms the other models regarding MAE, with a value of 3.33. This indicates that,
on average, the absolute difference between the predicted and actual values is smaller, making QSVR the
most precise model in this comparison. The MAE for SVR is 5.12, indicating that its predictions are
generally less accurate than QSVR. This aligns with the RMSE results and reinforces QSVR's superior
performance. GB shows an MAE of 4.80, slightly better than SVR but still significantly higher than
QSVR, suggesting that while GB is reasonably accurate, it cannot match the precision of QSVR. The
MAE for ARX is not provided in the table, which limits a direct comparison. However, given its high
RMSE, it can be inferred that ARX likely has a higher MAE, indicating lower predictive accuracy.

The MAD for QSVR is 3.17, the lowest among the models. This further underscores the model's
ability to produce consistent predictions with minimal deviation from the actual values. SVR has an MAD
of 5.04, higher than QSVR, indicating greater prediction variability. This result highlights QSVR's
advantage in producing more stable and accurate predictions. The MAD for GB is not provided, which
limits a direct comparison. However, based on the RMSE and MAE values, it can be inferred that GB
may have a MAD value higher than QSVR, further supporting the superior performance of QSVR.
Similar to GB, the MAD for ARX is not provided. However, given ARX's high RMSE, it likely has a
higher MAD, which is consistent with its lower overall accuracy.

The analysis demonstrates that the QSVR model outperforms the other models across all provided
metrics. Its lower RMSE, MAE, and MAD values indicate that QSVR is better at capturing the
underlying patterns in the data, leading to more accurate and stable predictions. This superior
performance is likely due to the quantum-enhanced feature mapping and optimization processes in
QSVR, which allow it to handle complex, non-linear relationships in the data. In contrast, traditional
models like SVR, ARX, and GB exhibit higher error metrics, reflecting their limitations in predictive
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accuracy. While commonly used for regression tasks, SVR appears to fall short compared to QSVR,
likely due to its reliance on classical optimization methods. ARX, with the highest RMSE, is particularly
disadvantaged due to its simplistic linear approach, making it less suitable for the complex relationships
in the dataset. While performing better than ARX, GB still lags behind QSVR, suggesting that even
advanced classical models may struggle to match the capabilities of quantum-enhanced methods. These
results suggest that QSVR offers a promising advancement in predictive modeling, particularly for
applications where high accuracy and consistency are critical. The findings of this study reinforce the
potential of quantum machine learning techniques to surpass traditional methods, especially as quantum
computing technology continues to evolve.

4. CONCLUSION

This study demonstrates the significant advantages of the QSVR model over traditional regression
models such as SVR, ARX, and GB. The results show that QSVR consistently outperforms these models
across multiple evaluation metrics, including RMSE, MAE, and MAD. The QSVR model achieved the
lowest RMSE, MAE, and MAD values, indicating superior predictive accuracy and stability. This
enhanced performance is attributed to the quantum-enhanced feature mapping and optimization processes
that allow QSVR to capture complex, non-linear relationships in the data effectively. In contrast,
traditional models like SVR, ARX, and GB exhibited higher error metrics, reflecting their limitations in
handling complex datasets. The findings of this study highlight the potential of quantum machine learning
techniques, particularly QSVR, in advancing predictive modeling capabilities. As quantum computing
technology continues to mature, it is expected that QSVR and similar quantum-enhanced models will play
a critical role in various applications, offering more accurate and reliable predictions than classical
methods. In summary, QSVR presents a promising approach for tasks that require high precision and
consistency, and its integration into practical applications could lead to significant improvements in
predictive performance across a wide range of domains.
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