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 This study evaluates the performance of Quantum Support Vector 
Regression (QSVR) in predicting material properties using limited 
data. Experimental results show that the QSVR model consistently 
produces superior prediction accuracy compared to previous 
conventional regression models. This improvement is especially 
evident in the prediction accuracy for small and complex datasets, 
where QSVR can better capture non-linear patterns. The superiority 
of QSVR in processing data with a quantum approach provides 
great potential in developing predictive models in materials science 
and computational chemistry. 
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1.​ INTRODUCTION (Times New Roman, 10 pt, bold) 

An electrochemical process known as corrosion occurs when metal surfaces come into contact with 
corrosive surroundings. It is a major loss-causing factor in several sectors but is most prevalent in the oil 
and gas. Since corrosion-related problems account for a sizeable amount of the yearly expenses incurred 
by oil and gas production businesses globally, corrosion is a topic worth researching, particularly in oil 
field applications [1], [2], [3]. Furthermore, adequate corrosion prevention can aid in averting several 
possible catastrophes that can result in grave problems, including fatalities, detrimental effects on society, 
and contamination of the environment and water supplies [4], [5], [6]. 

In recent years, the development of predictive models to study material properties has become a 
major focus in materials science and computational chemistry. Accurate predictive models can accelerate 
the discovery of new materials by reducing the reliance on expensive and time-consuming laboratory 
experiments. One approach that has been widely used is Support Vector Regression (SVR), which is 
known to handle high-dimensional data and detect non-linear patterns [7], [8]. 

However, although SVR offers several advantages, its performance is often limited when applied to 
small or complex datasets. This has prompted researchers to explore more innovative approaches, such as 
using quantum computing principles in predictive models. Quantum Support Vector Regression (QSVR) 
has emerged as a new method that integrates the advantages of SVR with the capabilities of quantum 
computing to overcome the limitations in non-linear prediction [9], [10]. 

In this study, we evaluate the performance of QSVR in predicting material properties, especially on 
limited and complex datasets. We compare the prediction accuracy of the QSVR model with that of 
conventional regression models that have been used previously and examine the extent to which quantum 
approaches can improve the prediction results. The results of this research are expected to provide 
significant contributions to the development of predictive models based on quantum computing and pave 
the way for broader applications in materials science. 
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2.​ METHODS 
2.1.​Dataset 

The method must explain the procedures for obtaining data and data analysis techniques. The 
research stages and analysis must be explained in detail. A published dataset with 260 data points and 14 
molecular descriptors is used in this investigation [11]. Molecular weight (MW), acid dissociation 
constant (pKa), water solubility (log S), polar surface area (PSA), polarizability (α), the energy of lowest 
unoccupied molecular orbital (LUMO), the energy of highest occupied molecular orbital (HOMO), 
Ionization Energy (I), Electron Affinity (A), Electronegativity (eV), Electrophilicity (ω), Hardness (eV), 
and The Faction Electron Shared (∆N) are some of these features. 

 
2.2.​Preprocessing 

Preprocessing is done since some data points have missing values, leading to data cleaning with 78 
clean data points. The Min-max scaler approach is then used to scale the features. The results are split 
into two variables: X and Y. Principal Component Analysis, or PCA, is used to variable X. By generating 
new, uncorrelated variables and optimizing data variance, PCA is a technique that minimizes information 
loss while reducing the dimension of a huge dataset to aid in interpretation [12], [13]. 

 
2.3.​QSVR model 

The QSVR developed in this study consists of several main components that work synergistically to 
improve the accuracy of material property prediction. This model utilizes the principles of quantum 
computing combined with the traditional SVR algorithm. The first step in the QSVR architecture is 
mapping classical features to the quantum feature space. This is done using a quantum feature map, where 
input data is converted into quantum states through a series of gates. This process allows the model to 
capture complex non-linear patterns in the data more efficiently [14], [15]. 

One key component in QSVR is the use of a quantum kernel. This quantum kernel is calculated 
based on the amplitude or probability of the measurement results from the quantum circuit. It measures 
the similarity between data pairs in the quantum feature space. Because kernel computation is performed 
in quantum space, QSVR can exploit the advantages of superposition and entanglement to measure 
similarity more accurately than traditional kernels [16], [17]. 

The quantum circuit used in QSVR is designed to implement the quantum feature map and quantum 
kernel optimally. This circuit consists of a series of quantum gates, such as Ry and Rz, applied to qubits to 
manipulate quantum states. This circuit design minimizes errors and increases the stability of quantum 
computing, resulting in more accurate prediction results [18], [19]. 

After the quantum kernel is calculated, the model training process is carried out similarly to 
conventional SVR by minimizing a loss function that measures the prediction error against the training 
data. However, optimization is performed in the quantum feature space, allowing for a wider and more 
diverse solution space exploration. Optimization algorithms such as the Quantum Approximate 
Optimization Algorithm (QAOA) or variational methods are often used to find the optimal parameters in 
this stage [20], [21]. 

After the model is trained, predictions are made by measuring the quantum circuit's results for new 
input data. These measurement results are converted to the classical world for the final prediction [22], 
[23]. This measurement process allows QSVR to make more accurate and faster predictions, especially on 
complex datasets. 

The results of quantum computing are then further processed with classical methods to obtain the 
final prediction. This step involves calculating regression values ​​based on the results of the quantum 
kernel and optimization. Combining quantum and classical computing provides a hybrid advantage that 
maximizes the model's predictive performance. 
 
2.4.​Model evaluation 

The evaluation process is critical in determining the effectiveness of machine learning (ML) models, 
particularly in identifying the most suitable model for a given task. To achieve a thorough evaluation, 
several performance metrics are employed. Mean Absolute Deviation (MAD) measures the average of the 
absolute differences between the observed actual outcomes and the predictions made by the model. 
Unlike metrics that square the errors, MAD provides a straightforward measure of model accuracy by 
treating all errors equally without disproportionately penalizing larger errors. This makes MAD useful for 
obtaining a clear, interpretable understanding of the typical error magnitude. A lower MAD value 
indicates better predictive accuracy, highlighting the model's ability to produce predictions close to the 
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actual values. Root Mean Squared Error (RMSE) is the square root of MSE and provides an interpretable 
error measure in the same units as the output variable. RMSE is particularly valuable in understanding the 
typical size of the prediction errors and is often preferred because it is more sensitive to outliers. This 
study uses RMSE to gauge the robustness of the QSVR model's predictions. Mean Absolute Error (MAE) 
calculates the average of the absolute differences between predicted and actual values. Unlike MSE, 
which squares the errors, MAE provides a linear score that treats all errors equally, making it easier to 
interpret. MAE is often used alongside RMSE to give a more complete picture of model performance, 
with a lower MAE indicating better accuracy. These metrics collectively provide a robust framework for 
evaluating and comparing the performance of the QSVR model against traditional ML models. The study 
aims to highlight QSVR's strengths and potential limitations by analyzing these metrics, offering insights 
into its practical applicability and effectiveness in predictive modeling tasks [24], [25], [26], [27]. 
 
3.​ RESULTS AND DISCUSSION 
 

Table 1. Comparison between QSVR and classical models. 
Model RMSE MAE MAD Ref. 
QSVR 4.40 3.33 3.17 This work 
SVR 6.28 5.12 5,04 This work 
ARX 7.03 - - [28] 
GB 6.40 4.80 - [29] 

 
Table 1 presents a comparative analysis of the predictive performance of four models: QSVR, SVR, 

AutoRegressive with exogenous inputs (ARX), and Gradient Boosting (GB). The models are evaluated 
using three key metrics: RMSE, MAE, and MAD. The QSVR model achieves the lowest RMSE value of 
4.40, indicating superior predictive accuracy compared to the other models. This suggests that QSVR is 
better at minimizing the squared differences between the predicted and actual values, making it a more 
reliable model for this dataset. The RMSE for SVR is 6.28, significantly higher than that of QSVR. This 
indicates that SVR produces larger errors on average, which affects its overall accuracy. The ARX model 
has an RMSE of 7.03, the highest among the models compared. This result implies that ARX struggles 
the most regarding prediction accuracy, likely due to its reliance on simpler linear relationships. With an 
RMSE of 6.40, GB performs better than ARX but is still less accurate than QSVR and SVR. This 
suggests that while GB captures some complex patterns, it doesn't match the predictive power of the 
quantum-enhanced QSVR. 

QSVR also outperforms the other models regarding MAE, with a value of 3.33. This indicates that, 
on average, the absolute difference between the predicted and actual values is smaller, making QSVR the 
most precise model in this comparison. The MAE for SVR is 5.12, indicating that its predictions are 
generally less accurate than QSVR. This aligns with the RMSE results and reinforces QSVR's superior 
performance. GB shows an MAE of 4.80, slightly better than SVR but still significantly higher than 
QSVR, suggesting that while GB is reasonably accurate, it cannot match the precision of QSVR. The 
MAE for ARX is not provided in the table, which limits a direct comparison. However, given its high 
RMSE, it can be inferred that ARX likely has a higher MAE, indicating lower predictive accuracy. 

The MAD for QSVR is 3.17, the lowest among the models. This further underscores the model's 
ability to produce consistent predictions with minimal deviation from the actual values. SVR has an MAD 
of 5.04, higher than QSVR, indicating greater prediction variability. This result highlights QSVR's 
advantage in producing more stable and accurate predictions. The MAD for GB is not provided, which 
limits a direct comparison. However, based on the RMSE and MAE values, it can be inferred that GB 
may have a MAD value higher than QSVR, further supporting the superior performance of QSVR. 
Similar to GB, the MAD for ARX is not provided. However, given ARX's high RMSE, it likely has a 
higher MAD, which is consistent with its lower overall accuracy. 

The analysis demonstrates that the QSVR model outperforms the other models across all provided 
metrics. Its lower RMSE, MAE, and MAD values indicate that QSVR is better at capturing the 
underlying patterns in the data, leading to more accurate and stable predictions. This superior 
performance is likely due to the quantum-enhanced feature mapping and optimization processes in 
QSVR, which allow it to handle complex, non-linear relationships in the data. In contrast, traditional 
models like SVR, ARX, and GB exhibit higher error metrics, reflecting their limitations in predictive 
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accuracy. While commonly used for regression tasks, SVR appears to fall short compared to QSVR, 
likely due to its reliance on classical optimization methods. ARX, with the highest RMSE, is particularly 
disadvantaged due to its simplistic linear approach, making it less suitable for the complex relationships 
in the dataset. While performing better than ARX, GB still lags behind QSVR, suggesting that even 
advanced classical models may struggle to match the capabilities of quantum-enhanced methods. These 
results suggest that QSVR offers a promising advancement in predictive modeling, particularly for 
applications where high accuracy and consistency are critical. The findings of this study reinforce the 
potential of quantum machine learning techniques to surpass traditional methods, especially as quantum 
computing technology continues to evolve. 
 
4.​ CONCLUSION 

This study demonstrates the significant advantages of the QSVR model over traditional regression 
models such as SVR, ARX, and GB. The results show that QSVR consistently outperforms these models 
across multiple evaluation metrics, including RMSE, MAE, and MAD. The QSVR model achieved the 
lowest RMSE, MAE, and MAD values, indicating superior predictive accuracy and stability. This 
enhanced performance is attributed to the quantum-enhanced feature mapping and optimization processes 
that allow QSVR to capture complex, non-linear relationships in the data effectively. In contrast, 
traditional models like SVR, ARX, and GB exhibited higher error metrics, reflecting their limitations in 
handling complex datasets. The findings of this study highlight the potential of quantum machine learning 
techniques, particularly QSVR, in advancing predictive modeling capabilities. As quantum computing 
technology continues to mature, it is expected that QSVR and similar quantum-enhanced models will play 
a critical role in various applications, offering more accurate and reliable predictions than classical 
methods. In summary, QSVR presents a promising approach for tasks that require high precision and 
consistency, and its integration into practical applications could lead to significant improvements in 
predictive performance across a wide range of domains. 
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