
OpenROAD Writeup for final check

Introduction
Welcome to the final blog post for my GSoC’23! Once again, my name is Jack and I am working
under the open-source electronic design automation project - OpenROAD. We are a fast
growing leading open-source foundational application for semiconductor digital design, as
evidenced from our consistent star growth since inception. You may check us out at this link.
Allow me to share the four significant milestones of this project.

Improving Ease of Installation

Firstly, OpenROAD is now able to support multiple operating systems. This is essential as one
of our primary goals is to democratise chip implementation. And installation is often one of the
hardest steps to get right, so that was one of our priorities. Today, we provide options for
different types of installation:

https://github.com/The-OpenROAD-Project/OpenROAD/

-​ *Prebuilt binaries*: Local installations can often be riddled with incompatibilities or
unexpected bugs, as well as taking a long compilation time. We sidestepped this by
providing semi-regular updates to OpenROAD binary, reducing the time to installation.

-​ *Docker*: Echoing previous concerns, we also enabled Docker installation for 9 major
operating systems. Docker is extremely flexible and runs on many operating systems (as
long as it is supported by Docker).

With these changes, we have observed a 10% reduction of installation related Github issues
posted on a weekly basis.

Filling missing documentation

Next, we have made considerable improvements to over 20 tool-specific documentations,
introducing consistent formatting styles for each page. We introduce default values and
datatypes to allow users to use the tools with greater ease.

Rather than having all arguments for a function under a common table, we separated out into
developer arguments and developer commands. This is to further make our documentation
more beginner-friendly to read, while not alienating our technical userbase. We have also added
sections for example scripts and regression test, so as to help onboard newcomers to each tool
of the flow.

Extensible documentation framework

Thirdly, we have introduced extensible documentation frameworks. Now, what do we mean by
"extensible"? It means we have created an infrastructure which is easy to use for developers,
and allows for greater maintanability. Our goal is to create something that requires minimal
changes to add content for documentation.

So how did we do this?

We introduced 4 initiatives, namely: the warning/error messages glossary. We noticed that
people were searching for error and warning messages, but our documentation did not have
them. So we added a page where all the error/warning messages along with relevant code line
number can be generated automatically. On top of that, developers can add useful debug
information to help the end user.

Next, we also introduced automatically generated Doxygen pages, which integrates nicely into
our C++/Tcl source code framework. This automatic generation will make it much more
convenient for developers to just insert comments into their source code, and allow Doxygen to
generate documentation automatically.

Next, we introduced cloud-based packaging. It is important that our framework is able to
runnable on cloud, and the ever-popular notebook format. Our Colab based notebook was
created with this in mind, and allows for easy transfer to other notebook providers with some
modifications. Check out the notebooks here!

https://openroad-flow-scripts.readthedocs.io/en/latest/tutorials/Notebooks.html

Lastly, we have the changelog workflow which can be triggered manually. For our open-source
project, we have chosen not to do software releases. This means it can be difficult to track the
changes between commit numbers. Adding this workflow can help newcomers track the
changes easier, by month.

OpenROAD Chatbot

Finally, we are also discussing the potential of creating a chatbot whose purpose is to answer
user queries. We were thinking, there are lots of domain knowledge in Slack Channels, Github
repos, and so on, so why not create a LLM-based chatbot. Stay tuned for updates!

Personal Reflections
To me, my most valuable takeaway is with regards to code quality. Often times, we as coders
tend to opt for the best solution and “hack” something out quickly. Hacking is fine, as a proof of
concept - but not for long term code development. Working in open-source projects like this, I
have learnt to avoid creating unnecessary files, shortening the code and optimising runtime. In
doing our job, we also wish to make life easier, not harder for future developers.

Final words
Thank you very much to my mentors Indira and Vitor for their guidance and insight throughout
the project, as well as the OpenROAD dev team for their assistance. Would also like to thank
the Google Summer of Code organising committee, and UCSC for creating such a wonderful
program. Being able to contribute to actual real open-source projects with real needs, is truly the
best of both worlds for aspiring programmers.

	OpenROAD Writeup for final check
	Introduction
	Improving Ease of Installation
	Filling missing documentation
	Extensible documentation framework
	OpenROAD Chatbot
	Personal Reflections
	Final words

