CASA Next Generation Infrastructure
Development Plan

PREPARED BY ORGANIZATION DATE

NRAO

Change Record

VERSION DATE REASON

0.1 Draft Release

Table of Contents

Overview 3
Scope 3
Project Plan and Schedule 4

Resources and Cost

Requirements
Ground Rules
Requirements Decomposition

Requirements Synthesis

a o 1 1 n

Functional Hierarchy
Trade Study 1 7
Trade Study 2 7

Design and Prototyping
Initial Design Ideas
Revised Design Decisions

Prototype Detailed Design

00 00 N N N

Processing

Links

Github: https://github.com/casangi/cngi_prototype
API: https://cngi-prototype.readthedocs.io/en/latest/
Install: https://pypi.org/project/cngi-prototype/
Examples: https://github.com/casangi/examples

e CUC and Astropy Briefs:

https://safe.nrao.edu/wiki/pub/Software/CASA/CASAUsersCommittee2019/2019%20-%20CNGI.pdf
e [nternal Review:

https://docs.google.com/presentation/d/1SCGjE-GtTcSFDoHCIhCIMDERROaP00lasZXUIZ1tboA/edit?usp=s
haring

20of9

https://github.com/casangi/cngi_prototype
https://cngi-prototype.readthedocs.io/en/latest/
https://pypi.org/project/cngi-prototype/
https://github.com/casangi/examples
https://safe.nrao.edu/wiki/pub/Software/CASA/CASAUsersCommittee2019/2019%20-%20CNGI.pdf
https://docs.google.com/presentation/d/1SCGjE-GtTcSFDoHCihCIMDERROaP00lasZXUlZ1tboA/edit?usp=sharing
https://docs.google.com/presentation/d/1SCGjE-GtTcSFDoHCihCIMDERROaP00lasZXUlZ1tboA/edit?usp=sharing

Overview

CASA software development faces several competing challenges that are expected to only worsen with
time. As both a scientific research and development platform as well as a necessary component in
multi-million dollar telescope operations, CASA must overcome the contradictory goals of being a
flexible experimentation platform with mature, documented, tested, and stable performance.
Furthermore, it must accomplish this with a relatively modest development staff that is diverse, remote,
and matrixed across many competing projects.

Historically, much of CASA traces its roots to algorithms developed and refined over many decades and
implemented in a custom code base utilized and maintained by a global, yet small developer base. In
years past, it was necessary to develop a custom infrastructure to support the unique needs of radio
astronomy science. Yet as data sizes, performance demands, and conflicting needs of multiple
telescopes continue to rise, the overhead of maintaining this infrastructure grows exponentially.

Scope

The new CNGI library will focus solely on MeasurementSet and Image access rather than general
purpose table manipulation. It is anticipated that foundational packages (casa, scimath, tables,
measures, lattices, meas, and python) will be largely (if not entirely) replaced by an off-the-shelf
framework. Remaining packages with more specialized functionality (fits, derivedmscal, msfits,
coordinates) will be substantially if not entirely replaced with alternative community supplied
functionality such as astropy. Remaining custom functionality will be limited to wrapping CASA specific
actions under MeasurementSet and Image functions. The resulting new casa infrastructure interface will
have fewer packages and far less custom code. The specific final APl definition will be determined during
prototyping. The new API is not required to be backward compatible with the old.

AP

Processing Framework

-,

Measurement

Sets Images

ey -~

The CNGI package will give developers and researchers a revolutionary new capability to access and
manipulate radio astronomy MeasurementSet and Image data. The APl will provide a simple
representation of the data and methods to apply transformations and mathematics that are inherently
parallel, scalable and divorced from hardware memory limitations. File formats will conform to industry
standards and be easily transportable to other packages. An included processing framework will execute
CNGI functions on a diverse set of hardware platforms making optimal use of specified resources.

The CNGI package will be the cornerstone for future CASA evolution to meet the demands of next
generation instruments, heuristic development, and data visualization.

30f9

Project Plan and Schedule

CNGI will be developed in phases, beginning with six months of study and review followed by another six
months of prototyping and experimentation culminating in an initial prototype release.

Software Trade Study - 3 months
The first trade study will explore modern developments in the field of software engineering with respect

to high-performance scalable computing and data analysis. Many methods of "parallelizing" the
execution of code as well as the reading and writing of data now exist with a wide range of complexity,
control, and performance. In most cases, the choice of programming language itself plays a critical role
in what methods of parallelization are available and their level of complexity.

Deliverable: Software Trade Study Report containing downselection of technology choices for further
study.
This step is now complete, the report can be found here: Software Trade Study Report v0.2.pdf

Framework Trade Study - 3 months
After the completion of the first trade study, the desired programming language(s) and method of

parallelization is defined. The second trade study focuses on what off-the-shelf frameworks are available
to satisfy the selected paradigm. Limited experimentation is conducted in each candidate option using a
more detailed understanding of what specific functionality from the old casacore APl is necessary to
replicate and/or re-implement in the new framework. The selected framework should satisfy the
motivations stated herein but also be versatile enough to handle the nuances and any unforeseen
complexities that arise in actual implementation.

Deliverable: Framework Trade Study Report containing final selection of technology to pursue in an
initial prototyping effort.
This step is now complete, the report can be found here: Framework Trade Study Report.pdf

Prototype Implementation - 6 months
Using the selected technology from the trade studies, a prototype next generation infrastructure will be

implemented. Given that the intention is to move to a largely off-the-shelf software stack, the amount
of custom code written should be drastically lower than comparable CASA development projects of the
past. The prototype may not be feature complete, however it must adequately cover major functional
areas so as to allow for useful scientific evaluation and utility. The prototype will also include necessary
conversion routines to migrate old MeasurementSet and Image data formats to the new implementation
as well as extensive documentation of how the new library is intended to work. The prototype is
intended to serve as the initial implementation release of the new infrastructure.

Deliverable: Initial 0.1 release of CNGI infrastructure with documented API
This step is currently underway, progress is captured in github, readthedocs, and the remainder of this
document.

During the prototyping effort two reviews will be held. An internal CASA review of prototype progress
and API functionality will be conducted to ascertain the scope and impact to a next generation CASA
(ngCASA) effort to re-write the science algorithms of CASA. The results of this internal study will feed a
Conceptual Design Review with various NRAO technical and scientific staff to examine both CNGI and
the broader ngCASA impacts.

Eull Implementation - 6 months
Complete the full implementation of remaining development items to make CNGI feature complete for

the initial major release. Ensure APl is well documented and complete. Develop a test plan against
documented API functionality and install automated test execution against that plan.

Deliverable: CNGI Release 1.0

4 0f 9

https://drive.google.com/open?id=1NG9WTywquY7SRh-Jutdtn7iPkJxXjYMU
https://drive.google.com/open?id=12P69KQ3OXvHYnl9vVKjSKLojB7B1odVl
https://github.com/casangi/cngi_prototype
https://cngi-prototype.readthedocs.io/en/latest/

Resources and Cost

The CNGl initiative will require a dedicated team of four individuals. This team must be primarily
focused on this project alone with minimal matrixed duties to other projects. The team will be staffed by
currently funded and existing positions and require no additional FTE's. Two positions will be filled by
current vacancies open on the CASA development team while the other two will be filled by
reassignment of existing development team members. The final team makeup will be as follows:

e Technical Lead - responsible for more detailed planning and tracking beyond this document, to
be filled with current vacancy

e Casacore SW Engineer

e HPCSW Engineer

e Infrastructure Engineer

It is expected that the selected framework for the re-implementation of casacore will be a free and open
source off-the-shelf software product. As such, there should be no licensing or equipment costs.
Furthermore, the software stack should execute on existing NRAO hardware systems and not require the
purchase of new or additional processing capacity.

Total cost of the initial CNGI development is estimated to be 4 FTE x 1.5 years = 6 labor years.

Requirements

As this project is attempting to develop new software infrastructure that may be in future use for quite
some time, it is tempting to demand clear, specific requirements on what it shall do. However, the
functional science requirements of CASA are not currently defined in a single specification, nor are the
derived infrastructure requirements or performance requirements of CASA for each instrument.
Furthermore, the way in which CASA has been specified and developed over the years is steeped in
implementation specifics, making it difficult to separate what is actually needed for science in absolute
terms from what is needed because of the way in which it was already built.

It is beyond the scope of the Next Generation Infrastructure project to reverse engineer a complete set
of functional and performance requirements for the current generation of CASA/casacore or future
iterations of CASA needed by next generation instruments. Rather, this project is studying
implementation choices that exist independent of requirements. This will present unavoidable
challenges with stakeholders and users as the legacy implementation they are used to will necessarily be
changing.

In lieu of a formal requirements specification, a top-down functional decomposition from the current
task-level definition of CASA and the CASAdocs data reduction documentation can be used to derive
infrastructure API functions and their implicit requirements. Additionally, a bottom-up synthesis of API
functions and their implicit requirements can be generated from a survey and collection of basic
mathematics and data manipulation needed by radio interferometry. These two methods should meet
in the middle to provide a reasonable and robust definition of CNGI functionality.

Ground Rules

The following high-level ground rules also form a starting point of this project:

Cover the same functionality provided by casacore

Callable from a Python 3.x environment

Support older legacy data

Industry standard usage with expected multi-decade longevity
Meet the needs of ngVLA

The following points are worthwhile to note as not being required:

° Does NOT need to be backwards compatible with casacore — but that would certainly be nice
° Does NOT need to be C++
° Does NOT need to be a single solution for both MS and Image data processing

Requirements Decomposition

The aforementioned top-down requirements decomposition from CASAdocs documentation can be
found in a standalone spreadsheet here:
https://docs.google.com/spreadsheets/d/lihhoOFa-aRpCUnHeleh8oL6fSTwtn6BFyz52yB5ko7A/edit?us

p=sharing

50f9

https://docs.google.com/spreadsheets/d/1ihhoOFa-aRpCUnHe1eh8oL6fSTwtn6BFyz52yB5ko7A/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1ihhoOFa-aRpCUnHe1eh8oL6fSTwtn6BFyz52yB5ko7A/edit?usp=sharing

Requirements Synthesis

The aforementioned bottom-up requirements synthesis from data survey/collection can be found in a

standalone spreadsheet here (second sheet):
https://docs.google.com/spreadsheets/d/1lihhoOFa-aRpCUnHeleh8oL6fSTwtn6BFyz52yB5ko7A/edit?us

p=sharing

Functional Hierarchy

The following functional hierarchy serves as a starting point for future design and implementation
decisions. The boxes in green [__1 are anticipated to be entirely off-the-shelf entities from existing
third party software packages, but may require a conversion from current custom implementations.

API MS Functions Image Functions

Table representation with robust Coordinate systems, reference Astronomical units, quantities,
selection/query capability frames and transformations and conversions

MN-dim mathematics, linearinon-linear fitting M-dim region selection and masking

Logging, system resource management

Parallel Processing Framework

MS File Image File

6 0of 9

https://docs.google.com/spreadsheets/d/1ihhoOFa-aRpCUnHe1eh8oL6fSTwtn6BFyz52yB5ko7A/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1ihhoOFa-aRpCUnHe1eh8oL6fSTwtn6BFyz52yB5ko7A/edit?usp=sharing

Trade Study 1

Refer to the stand alone report here: Software Trade Study Report

Trade Study 2

Refer to the stand alone report here: Framework Trade Study Report

Design and Prototyping

Per the outcome of the second trade study report (here), CNGI will use the Dask processing
infrastructure and Dask compatible data structures. The APl will follow a functional paradigm in which
the MS and Data routines take in a dask-compatible data object and return a new dask-compatible data
object as output.

Initial Design Ideas

The second trade study report suggested an initial design based on the Dask Dataframe model for
in-memory data representation and the Apache Parquet format for on-disk storage. However, a critical
design limitation in which Dask cannot utilize the Pandas multi-index concept, combined with the design
of the Apache Parquet storage format, creates edge cases with exceptionally poor performance on very
large data sizes due to constant data shuffling operations. The Dask documentation warns of these
scenarios (as discussed here) and the dangers of data shuffling, but does not highlight just how poor or
how unavoidable these scenarios would be. Operations on MS data will necessarily need to support
different columns as axes of parallelization (i.e. map operations across time, antenna/baseline, channel,
polarization etc). Since only one column may be used as an index (no multi-index support), only that
column will avoid data shuffles.

This limitation is compounded by the fact that Apache Parquet has limited support for indexing multiple
columns within the file format itself. Otherwise one could build multi-indexing into the storage
structure, and then simply open it multiple times with multiple single-column indices set. However,
Parquet only allows for sorting of column values and quick retrieval of start/end values per row-group.
This means that an index can only be created for columns that can be sorted such that the start of each
subsequent row group is always greater than or equal to the end of the previous row-group value. This
works for a single index column, and indeed might work for a couple index columns if they are suitably
related, but it is not possible to sort time, antenna/baseline, channel and polarization simultaneously in
this way.

The only other avenue towards using Dask Dataframes and Apache Parquet storage as originally
intended, would be to partition the data by all desired axes of parallelization. This essentially spreads
the indexing into the partitioning structure of the parquet directory tree. However, for even modestly
sized datasets, this can result in many thousands of partitions on disk, and experimentation quickly
reveals that the overhead involved in reading and maintaining such a large number of partitions is worse
than the data shuffling.

Consequently, CNGI has opted against using Dask Dataframes as the in-memory data model and Apache
Parquet as the on-disk storage.

Revised Design Decisions

CNGI will use the xarray Dataset structure as the in-memory data model and the Zarr format for on-disk
storage. Xarray structures are built from Dask and thus completely in keeping with decisions to this
point. The xarray Dataset is very well suited for image data and the intuitive choice for that type of
structure. The MS data structure is much more complex and requires much more adaptation during the
conversion process. Consequently the learning curve will be a bit steeper, however the benefits are
substantial and worth the investment. The subsequent sections will detail these decisions.

http://xarray.pydata.org/en/stable/data-structures.html

7 of 9

https://drive.google.com/open?id=1NG9WTywquY7SRh-Jutdtn7iPkJxXjYMU
https://drive.google.com/open?id=12P69KQ3OXvHYnl9vVKjSKLojB7B1odVl
https://drive.google.com/open?id=12P69KQ3OXvHYnl9vVKjSKLojB7B1odVl
https://docs.dask.org/en/latest/dataframe-best-practices.html
http://xarray.pydata.org/en/stable/data-structures.html

https:

zarr.readthedocs.io/en/stable/tutorial.html#fpersistent-arrays

https://examples.dask.org/xarray.html#Custom-workflows-and-automatic-parallelization

Combining these design decisions with the demonstrated power and utility of Jupyter notebooks (via
Google colab) first utilized during the trade studies, we arrive at the following high level architecture:

sopou abeiols

HPC / Cloud Compute

{{{:‘* J@r end user
(] = Mo 22
o\ g

compute nodes

This diagram is from the Pangeo project in the geosciences, which has pioneered this same design on
similar data sizes (https://pangeo.io/architecture.html)

Prototype Detailed Design

As CNGI prototype development proceeds, design and architecture details will be decided and filled in.
The desire is to keep these details in a location and format that meets the following needs:

1.
2.
3.

Publicly accessible by users and contributors to code base, to better understand how things work
Coupled to the code implementation, to prevent drift and staleness

Coupled to usage examples, guides, and user level documentation, to better illustrate the
impacts of design decisions on end users

To meet these needs, CNGI will utilize readthedocs.org coupled to a public github repository. Further
design documentation will not take place in this document, but rather in the github docs folder and
displayed on the readthedocs website. Here we will link to several important locations in the prototype
documentation specifically dealing with detailed design.

Architecture - https://cngi-prototype.readthedocs.io/en/latest/development.html#Architecture

[]

e Visibility Data Processing - Note that due to significant differences in the representation of data
after conversion, CNGI will refer to MeasurementSet data as Visibility data -
https://cngi-prototype.readthedocs.io/en/latest/visibilities.html

e Image Data Processing - https://cngi-prototype.readthedocs.io/en/latest/images.html

e Development Process - https://cngi-prototype.readthedocs.io/en/latest/development.html

Processing
TBD

Run CASA on a single machine using Dask LocalCluster mode as described here:

https:

docs.dask.org/en/latest/setup/single-distributed.html

80of9

https://zarr.readthedocs.io/en/stable/tutorial.html#persistent-arrays
https://examples.dask.org/xarray.html#Custom-workflows-and-automatic-parallelization
https://pangeo.io/architecture.html
https://cngi-prototype.readthedocs.io/en/latest/development.html#Architecture
https://cngi-prototype.readthedocs.io/en/latest/visibilities.html
https://cngi-prototype.readthedocs.io/en/latest/images.html
https://cngi-prototype.readthedocs.io/en/latest/development.html
https://docs.dask.org/en/latest/setup/single-distributed.html

Run CASA on a larger cluster that is managed by some resource scheduler (i.e. Torque) using Dask as
described here: h

Alternatively, dask-gateway provides a secure, multi-tenant server for managing Dask clusters so we
should aim to get that set up in-house.

90f9

https://docs.dask.org/en/latest/setup/hpc.html
https://gateway.dask.org/

	
	Overview
	Scope
	
	

	Project Plan and Schedule
	Resources and Cost

	Requirements
	Ground Rules
	Requirements Decomposition
	Requirements Synthesis
	Functional Hierarchy

	Trade Study 1
	Trade Study 2
	Design and Prototyping
	Initial Design Ideas
	Revised Design Decisions
	Prototype Detailed Design
	Processing

