Unit-1

INTRODUCTION TO DBMS

Unit Structure

1.0 Objectives

1.1 Introduction to DBMS
1.2 Overview of DBMS
1.3 Advantages of DBMS
1.4 Levels of abstraction
1.5 Data independence
1.6 DBMS architecture

1.0 OBJECTIVES

After going through this unit, you will able to:

e To introduce the concept of the DBMS with respect to the relational
model.

e Define database, DBMS, overview of DBMS, level of abstraction,
DBMS architecture.

e [carning Data models and its different types.

e Designing the database schema with the use of appropriate data
types for storage of data in database.

e To create, manipulate, query and back up the databases.

1.1 INTRODUCTION

A database is a collection of information that is organized so that it
can be easily accessed, managed and updated. Database systems are
designed to manage large bodies of information. Management of data
involves both defining structures for storage of information and providing
mechanisms for the manipulation of information. In addition, the database

system must ensure the safety of the information stored, despite system
crashes or attempts at unauthorized access. If data are to be shared among
several users, the system must avoid possible anomalous results. Because
information is so important in most organizations, computer scientists have
developed a large body of concepts and techniques for managing data.

DATABASE MANAGEMENT SYSTEM

A database-management system (DBMS) is a collection of
interrelated data and a set of programs to access those data. This is a
collection of related data with an implicit meaning and hence is a database.

1.2 OVERVIEW

The collection of data, usually referred to as the database, contains
information relevant to an enterprise. The primary goal of a DBMS is to
provide a way to store and retrieve database information that is both
convenient and efficient. By data, we mean known facts that can be
recorded and that have implicit meaning. For example, consider the names,
telephone numbers, and addresses of the people you know. You may have
recorded this data in an indexed address book, or you may have stored it on
a diskette, using a personal computer and software such as DBASE IV or V,
Microsoft ACCESS, or EXCEL. A datum — a unit of data — is a symbol or a
set of symbols which is used to represent something. This relationship
between symbols and what they represent is the essence of what we mean
by information. Hence, information is interpreted data — data supplied with
semantics. Knowledge refers to the practical use of information. While
information can be transported, stored or shared without many difficulties
the same cannot be said about knowledge. Knowledge necessarily involves
a personal experience. Referring back to the scientific experiment, a third
person reading the results will have information about it, while the person
who conducted the experiment personally will have knowledge about it.
The DBMS is a general purpose software system that facilitates the process
of defining constructing and manipulating databases for various
applications.

1.3 ADVANTAGES

Data Independence: Application programs should be as
independent as possible from details of data representation and storage. The
DBMS can provide an abstract view of the data to insulate application code
from such details.

Efficient Data Access: A DBMS utilizes a variety of sophisticated
techniques to store and retrieve data efficiently. This feature is especially
important if the data is stored on external storage devices.

Data Integrity and Security: If data is always accessed through the
DBMS, the DBMS can enforce integrity constraints on the data. For
example, before inserting salary information for an employee, the DBMS
can check that the department budget is not exceeded. Also, the DBMS can
enforce access controls that govern what data is visible to different classes
of users.

Concurrent Access and Crash Recovery: A database system allows
several users to access the database concurrently. Answering different
questions from different users with the same (base) data is a central aspect
of an information system. Such concurrent use of data increases the
economy of a system. An example for concurrent use is the travel database
of a bigger travel agency. The employees of different branches can access
the database concurrently and book journeys for their clients. Each travel
agent sees on his interface if there are still seats available for a specific
journey or if it is already fully booked. A DBMS also protects data from
failures such as power failures and crashes etc. by the recovery schemes
such as backup mechanisms and log files etc.

Data Administration:

When several users share the data, centralizing the administration of
data can offer significant improvements. Experienced professionals, who
understand the nature of the data being managed, and how different groups
of users use it, can be responsible for organizing the data representation to
minimize redundancy and fine-tuning the storage of the data to make
retrieval efficient.

Reduced Application Development Time:

DBMS supports many important functions that are common to
many applications accessing data stored in the DBMS. This, in conjunction
with the high-level interface to the data, facilitates quick development of
applications. Such applications are also likely to be more robust than
applications developed from scratch because many important tasks are
handled by the DBMS instead of being implemented by the application.

1.4 TYPES OF USERS IN DBMS:

Database Administrator:

One of the main reasons for using DBMSs is to have central control
of both the data and the programs that access those data. A person who has
such central control over the system is called a database administrator
(DBA). DBA is responsible for authorizing access to the database,
coordinating and monitoring its use, and acquiring software and hardware
resources as needed.

Naive users:

Naive users are unsophisticated users who interact with the system
by invoking one of the application programs that have been written
previously. For example, a bank teller who needs to transfer $50 from
account 4 to account B invokes a program called transfer. This program
asks the teller for the amount of money to be transferred, the account from
which the money is to be transferred, and the account to which the money is
to be transferred.

Application programmers:

Application programmers are computer professionals who write
application programs. Application programmers can choose from many
tools to develop user interfaces. Rapid application development (RAD)
tools are tools that enable an application programmer to construct forms and
reports without writing a program.

Sophisticated users:

Sophisticated users interact with the system without writing
programs. Instead, they form their requests in a database query language.
They submit each such query to a query processor, whose function is to
break down DML statements into instructions that the storage manager
understands. Analysts who submit queries to explore data in the database
fall in this category.

Specialized users:

Specialized users are sophisticated userswho write specialized
database applications that do not fit into the traditional data-processing
framework.

1.5 LEVELS OF ABSTRACTION IN A DBMS:

Hiding certain details of how the data are stored and maintained. A
major purpose of database system is to provide users with an “Abstract
View” of the data. In DBMS there are 3 levels of data abstraction. The goal
of the abstraction in the DBMS is to separate the users request and the
physical storage of data in the database.

Physical Level:

o The lowest Level of Abstraction describes “How” the data are
actually stored.

e The physical level describes complex low level data structures in
detail.

Logical Level:

e This level of data Abstraction describes “What” data are to be stored
in the database and what relationships exist among those data.

e Database Administrators use the logical level of abstraction.

View Level:

e [t is the highest level of data Abstracts that describes only part of
entire database.

e Different users require different types of data elements from each
database.

e The system may provide many views for the some database.

External Schema 1 External Schema 2 External Schema 3

S & e

—o o

P o

* Conceptuad Schema

Figure 1.1: Level of Abstraction

1.6 DATA INDEPENDENCE:

A very important advantage of using DBMS is that it offers Data
Independence. The ability to modify a scheme definition in one level
without affecting a scheme definition in a higher level is called data
independence.

There are two types:
1. Physical Data Independence
2. Logical Data Independence

Physical Data Independence:

e The ability to modify the physical schema without causing
application programs to be rewritten.

e Modifications at this level are usually to improve performance.

Logical Data Independence:

e The ability to modify the conceptual schema without causing
application programs to be rewritten

e Usually done when logical structure of database is altered

e [Logical data independence is harder to achieve as the application
programs are usually heavily dependent on the logical structure of
the data.

1.7 DBMS ARCHITECTURE

A database system is partitioned into modules that deal with each of
the responsibilities of the overall system. The functional components of a
database system can be broadly divided into the storage manager and the
query processor components.

The storage manager is important because databases typically
require a large amount of storage space. Some Big organizations Database
ranges from Giga bytes to Terabytes. So the main memory of computers
cannot store this much information, the information is stored on disks. Data
are moved between disk storage and main memory as needed. The query
processor also very important because it helps the database system simplify
and facilitate access to data. So quick processing of updates and queries is
important. It is the job of the database system to translate updates and
queries written in a nonprocedural language.

Mol e lication Replusiceted database
[(E“Elﬂaw.- [Pﬂw “*l [; users ; iRt
Lise wrribe use . use

application query
gr; - _boals

- DML queries l |DDLh1|ﬁrpmmu:|

} apphngnm : DL compiler
.nE;mf'mde and organizer

]

query evaluation

engine

| — v idsuonioF]
Y

|bnfmanager | | fite manager gﬂﬂmﬁﬁ%'w

SHOTaEe TRATIASET

disk storage

Figure 1.2: Database Architecture

Storage Manager:

A storage manager is a program module that provides the interface
between the low-level data stored in the database and the application
programs and queries submitted to the system. The storage manager is
responsible for the interaction with the file manager. The storage manager
translates the various DML statements into low-level file-system
commands. Thus, the storage manager is responsible for storing, retrieving,
and updating data in the database.

Storage Manager Components:

Authorization and integrity manager: It tests for the satisfaction of
integrity constraints and checks the authority of users to access data.

Transaction manager which ensures that the database itself remains in a
consistent state despite system failures, and that concurrent transaction
executions proceed without conflicting.

File manager: which manages the allocation of space on disk storage and
the data structures used to representing information stored on disk.

Buffer manager:It is responsible for fetching data from disk storage into
main memory. Storage manager implements several data structures as part
of the physical system implementation. Data files are used to store the
database itself. Data dictionary is used to stores metadata about the structure
of the database, in particular the schema of the database.

Query Processor Components:

DDL interpreter:It interprets DDL statements and records the definitions
in the data dictionary.

DML compiler: It translates DML statements in a query language into an
evaluation plan consisting of low-level instructions that the query
evaluation engine understands.

Query evaluation engine:It executes low-level instructions generated by
the DML compiler.

Application Architectures:

Most users of a database system today are not present at the site of
the database system, but connect to it through a network. We can therefore
differentiate between client machines, on which remote database users’
work, and server machines, on which the database system runs.

O o% o% o%
A XA XA NG X g

DATA MODELS

Unit Structure
2.0 Introduction
2.1 Types of Data Models

2.0 INTRODUCTION

Data models define how the logical structure of a database is
modelled. Data Models are fundamental entities to introduce abstraction in
a DBMS. Data models define how data is connected to each other and how
they are processed and stored inside the system. The very first data model
could be flat data-models, where all the data used are to be kept in the
same plane. Earlier data models were not so scientific; hence they were
prone to introduce lots of duplication and update anomalies. The following
models are

2.1 TYPES OF DATA MODELS:

An Object Based Logical Model also known as conceptual data
model which provides representation according to the way many users
perceive data. Most popular conceptual data model is Entity Relationship
Model which is based on the concepts of entity, relationship and attributes.
Object based logical models provide flexible structuring capabilities and
allow data constraints to be specified explicitly.

2.1.1 Entity Relationship Model

The ER (Entity relationship) based on the collection of basic
objects, called entities and relationships among these objects. The
diagrammatic notation associated with ER model, are also known as ER
diagrams. The ER model employs three basic concepts entity sets
relationship sets and attributes. An entity is an object in the real world that
is distinguishable from all other objects. An entity set is a set of entities of
the same type that share the same properties or attributes. Attributes are
descriptive properties possessed by all members of an entity set.

2.1.2 Object Oriented Model

The object-oriented data model is an adaptation of the object-
oriented programming language paradigm to database systems. The model
is based on the concept of encapsulating data and code that operates on that
data in an object. Entities in the sense of the ER model are

represented as objects with attributes values represented by instance
variables within the object. The values stored in an instance variable are
itself an object. Thus, a containment relationship i.e., is-part-of relationship
is established among objects.

2.1.3 Physical data model

This model provides details of how data is stored on the computer
storage media and meant for software specialist. This model hides many
details of data storage on disk but can be implemented on a computer
system directly. I is used in traditional commercial DBMS and based on the
concepts of record structure with fixed format; hence it is also known as
record based data model. The use of fixed length records simply the
physical implementation of the database. The relational model is a primary
data model in commercial data processing application.

2.1.4 Relational data model

This model uses a collection of tables to represent both data and the
relationship among data. Tables are known as relations in relational
database. Each relation consists of multiple columns and each column has
unique name. This table has one column for each domain and one row for
each tuple. Each column has a unique name which is called as attribute of
the relation. The set of attributes are called as relation schema.

2.1.5 Network data model

The network model allows more general connections among the
nodes. Network model has the ability to handle many —to — much
relationship. The network data model is an abstraction of the design
concepts used in the implementation of database.

2.1.6 Hierarchical data model

Data is sorted hierarchically in a tree like structure using parent
child relationship, either in top down or bottom-up approach. This model
uses pointers to navigate between stored data using hierarchical tree. Based
on one-to-many relation.

2.1.7 Client server architecture:

The client/server architecture was developed to deal with computing
environment in which a large number of PCs, workstations, file servers,
printers, data base servers, Web servers, e-mail servers, and other software
and equipment are connected via a network. The idea is to define
specialized servers with specific functionalities. For example, it is possible
to connect a number of PCs or small workstations as clients to a file server
that maintains the files of the client machines. Another machine can be
designated as a printer server by being connected to various printers; all
print requests by the clients are forwarded to this machine. Webservers or
e-mail servers also fall into the specialized server category. The resources
provided by specialized servers can be accessed by many client machines.
The clientmachines provide the user with the appropriate interfaces to
utilize these servers, as well as with local processing power to run local

applications. This concept can be carried over to other software packages,
with specialized programs such as a CAD(computer-aided design) package
being stored on specific server machines and being made accessible to
multiple clients. Some machines would be client sites only (for example,
diskless workstations or workstations or PCs with disks that have only
client software installed).

Diskless Client Server
Client with Disk Server and Client

—]
Server
Client || || Client |

Site 1 Site 2 Site 3 Site n

TN j/

Communication
Metwork

Figure 2.1: Client/Server architecture

90 o% o% %
O 09 0,0 00

ENTITY RELATIONSHIP MODEL

Unit Structure
3.0 Introduction
3.1 Types of Attributes

3.0 INTRODUCTION

Entity-Relationship Model or simply ER Model is a high-level data
model diagram. In this model, we represent the real-world problem in the
pictorial form to make it easy for the stakeholders to understand. It is also
very easy for the developers to understand the system by just looking at the
ER diagram. We use the ER diagram as a visual tool to represent an ER
Model. ER diagram has the following three components:

o Entities: Entity is a real-world thing. It can be a person, place, or even a
concept. Example: Teachers, Students, Course, Building,
Department,etc are some of the entities of a School Management
System.

e Attributes: An entity contains a real-world property called attribute.
This is the characteristics of that attribute. Example: The entity teacher
has the property like teacher id, salary, age, etc.

e Relationship: Relationship tells how two attributes are related.
Example: Teacher works for a department.

¢ Relationship set: A relationship set is a set of relationships of the same
type. Formally it is a mathematical relation on (possibly non- distinct)
sets. If are entity sets, then a relationship set R is a subset of Where 1is
a relationship. For example, consider the two entity sets customer
and account.

e Key Constraints: All the values of primary key must be unique. The
value of primary key must not be null.

e Participation Constraints: We can capture participation constraints
involving one entity set in a binary relationship, but little else (without
resorting to CHECK constraints)

e Weak entities: In a relational database, a weak entity is an entity that
cannot be uniquely identified by its attributes alone; therefore, it must
use a foreign key in conjunction with its attributes to create a primary
key.

e Aggregation: In aggregation, the relation between two entities is
treated as a single entity. In aggregation, relationship with its
corresponding entities is aggregated into a higher-level entity.

3.1 TYPES OF ATTRIBUTES:

1. Simple Attributes

Simple attributes are atomic attributes with independence meaning
which cannot be further divided. For example, employee’s phone is an
atomic attribute.

2. Composite Attributes:

Composite are made up of more than one attributes. It can divide
into smaller subparts, which represent more basic attributes with
independent meanings. They sometimes form a hierarchy. The value of a
composite attribute is the combination of the values of its components
atomics attributes. For example, the Address attribute of the EMPLOYEE
entity can be subdivided into Street address, City, State and Zip. Composite
attributes are useful to model situations in which a user sometimes refers to
the composite attribute as a unit but at other times refers specifically to its
components.

valued attributes

Single valued attributes consist of individual or single value for a
particular entity. For example, Employee id attributes refers to only one
employee ID. Age attribute for a person. There may be instances where an
attribute has a set of values for a specific entity. Suppose we add to the
instructor entity set.

Multivalued Attributes:

Multi valued attributes has a group of values for a specific entity.
Multi valued attributes comes with upper and lower limits the number of
values to be specified for an entity. For example, an employee may have
more than one phone number.

Stored Attributes: Stored attributes consist of attributes that are fetched
directly from the entity. For Date of Birth

Derived Attributes: Data that is derived using the data stored in the stored
attributes set are known as Derived attributes. For example, Age can be
calculated using the stored date of birth attribute.

Entity type: an entity type defines a collection or set of entities that have
the same attributes. Each entity type in the database is described by its name
and attributes. For example, a college may want to store similar information
concerning each of the students. Students can be entity types that share the
same attributes, but each entity has its own values for each attribute.

Entity Set: The collection of all entities of a particular entity type in the
database at any point in time is called an entity set. The entity set is usually
referred to using the same name as the entity type. For example student
refers to both a type of entity as well as the current set of all student entities
in the database.

Relationship: An association among several entities is known as
Relationship.

RELATIONSHIP

Figure 3.2: Relationship

Relationship set:
A relationship set is a set of relationship of the same type. It is a

mathematical relation on n>=2 entity sets. Diamonds represents the relationship
sets. If E1,E2,E3....... En are entity set then a relationship set R is a subset
of {(el,e2....en) | el €El, e2 €E2.....en€En where (el,e2,...... en) is a
relationship.

|

Employee \Ha’aﬂ/ Address

Figure 3.3: Relationship set Degree
of relationship type
The degree of a relationship type is the number of participating
entity types. A relationship type of degree two is called binary which are the
most common one. A relationship type of degree three is called ternary.
Higher degree relationships are more complex. Relationship in

databases is often binary. Some relationships that appear to be non-binary
could actually be better represented by several binary relationships.

For example, one could create a ternary relationship parent, relating a child
to his mother and father, such a relationship could also be represented by
two binary relationships, mother and father relating a child to his mother
and father separately. Using the two relationships mother and father
provides us a record of a child’s mother, even if we are not aware of the
father’s identity; a null value would be required if the ternary relationship
parent is used. Using binary relationship sets is preferable in this case. For
simplicity purpose it is always possible to replace a non- binary (n-ary, for
n>2) relationship set by a number of distinct binary relationship sets.

Mapping Cardinality

The relationship set are of one to one, one to many, many to one or many to
many. To distinguish among these types, either a directed line (=) or an
undirected line ()between the relationship set and the entity set is drawn.

e One to one:

A directed line is drawn from the relationship set advisor to both
entity sets instructor and student. This indicates that an instructor
may advise at most one student, and a student may have at most one
advisor.

e One to many:

A directed line is drawn from the relationship set advisor to the
entry set instructor and an undirected line to the entity set student.
This indicates that an instructor may advise many students, but a
student may have at most one advisor.

e Many to one:

An undirected line drawn from the relationship set advisor to the
entity set instructor and a directed line to the entity set student. This
indicates that an instructor may advise at most one student, but a
student may have many advisors.

e Many to many:

an undirected line drawn from the relationship set advisor to both
entity sets instructor and student. This indicates that an instructor
may advise many students, and a student may have many advisors.

(a) (b)

Figure 3.4: mapping cardinalities

One to One One to many

A B

(a) (b)
Many to one Many to many
Key constraint:
A Key or uniqueness constraint on the attributes of entities helps to
identify relationship uniquely, and thus distinguish relationship from each
other. No two entities are allowed to have exactly the same.

Specialization

Specialization is a process of creating sub parts of an entity type.
Generalization is a bottom-up approach, while Specialization is a top- down
approach. One higher level entity can be broken down into two lower-level
entities by specialisation. The term "specialization" refers to a subset of an
entity set that shares certain common characteristics. Normally, the
superclass is described first, followed by the subclass and its related
attributes, and finally the relationship set. For example, In an

employee management system, EMPLOYEE entity can be specialized as
TESTER or DEVELOPER based on what role they play in the company.

EMPLOYEE

isA

TESTER DEVELOPER

Figure 3.5: Specialization

Generalization

It’s a reverse process of abstraction, where in the difference amongst
the entity sets are suppressed and they are generalized together into a single
entity type. Distinctions are made explicitly in case of generalization with
top-down approach. Commonality is defined using generalization and
expressed using containment relationship. It creates a relationship between
higher-level entities set to successive hierarch of subclass entity set. The
design process may also proceed in a bottom-up manner, in which multiple
entities sets are synthesized into a higher-level entity set on the basis of
common features. For example, Faculty and Student entities can be
generalized and create a higher-level entity Person.

Ferson

Faculty Student

Figure 3.6: Generalization

AGGREGATION

In aggregation, the relation between two entities is treated as a
single entity. In aggregation, relationship with its corresponding entities is
aggregated into a higher-level entity. For example, Center entity offers the
Course entity act as a single entity in the relationship which is in a
relationship with another entity visitor. In the real world, if a visitor visits a
coaching center then he will never enquiry about the Course only or just
about the Center instead he will ask the enquiry about both.

Center Course

Visitor

Figure 3.7: Aggregation

Summary of Notation in ER diagram

Meaaning

Entity

‘Wealk Enkty

.
[]
[
&

lndentifying Arfafionship
—C__ :} Ateribte
—(:;:} Koy Attributs
_{E__ 3 bhuitvn huedl Attribarte

Composie Stmibote
_ Dermvsd Afinbiuts
Total Perticipaton of 5; 0 R
Cardinality Ratio 1: Nior Exi5 in

Stucturnl Conabrmnt Uman, masy)
an Particioation of En B

Figure3.8: summary of ER notation

Entity Vs Attributes

While identifying the attributes of an entity set, it is sometimes not
clear whether a property should be modelled as an attribute or as an entity
set (and related to the first entity set using a relationship set). For example,
consider adding address information to the Employees entity set. One
option is to use an attribute address. This option is appropriate if we need to
record only one address per employee, and it suffices to think of an

address as a string. An alternative is to create an entity set called Addresses
and to record associations between employees and addresses using a
relationship.

Entity vs Relationship

The nature of ER modelling can thus make it difficult to recognize
underlying entities, and we might associate attributes with relationships
rather than the appropriate entities. In general, such mistakes lead to
redundant storage of the same information and can cause many problems.

RELATIONAL DATA MODEL

Unit Structure

4.0 Introduction

4.1 Relation

4.2 Attribute Types

4.3 Domain

4.4 Properties of Relations

4.5 Relational Model Notation
4.6 Characteristics of Relation

4.0 INTRODUCTION

In this chapter, we will study the concepts of relation, tuples and
attributes. We will further look at the meaning of the term integrity and the
various integrity constraints. The relational model is very simple and
elegant: a database is a collection of one or more relations, where each
relation is a table with rows and columns. This simple tabular representation
enables even novice users to understand the contents of a database, and it
permits the use of simple, high-level languages to query the data. The major
advantages of the relational model over the older data models are its simple
data representation and the ease with which even complex queries can be
expressed.

4.1 RELATION

A relation is a set of tuples. A database is a collection of relations. A
relation is a mathematical entity corresponding to a table. Each row in a
table represents a fact that corresponds to and entity or a relationship that
exists. Each row is called a tuple. Formally, the column headings of the
table are the attributes of a relation.

7

attributes
(or columns)

D name dept_name salary
10101 Srinivasan | Comp. 5ci. G000
12121 Wu Finance 0000 tuples
15151 .‘h.".lum r.t T\Tum.c -’.‘L":ICI[IIQI (or rows)
22222 | Einstein Physics 95000
32343 El Said History GO000
3¥56 | Gold Physics 87000
45565 | Katz Comp. 5ai. 75000
58583 | Califieri History 62000
76543 | Singh Finance BOOOO
Y6766 | Crick Biology 72000
835821 Brandt Comp. 5ci. 92000
98345 Kim Elec. Eng. B0000

Figure 4.1: Relation

4.2 ATTRIBUTE TYPES

The set of allowed values for each attribute is called the domain of
the attribute. Attribute values are (normally) required to be atomic; that is,
indivisible. The special value null is a member of every domain, indicated
that the value is “unknown”. The null value causes complications in the
definition of many operations. An attribute or a combination of attributes
that is used to identify the records uniquely is known as super Kkey.
Candidate key is defined as minimal super key or irreducible super key;
used to identify the records uniquely. A candidate key that is used by the
database designer for unique identification of each row in a table is known
as primary key. A primary Key can consist of one or more attributes of a
table, known as composite key. The candidate key not chosen by database
designer as a primary key is known as alternate key. A foreign key is an
attribute or combination of attribute in one table that points to the primary
key of another table.

4.3 DOMAIN

A relation is subset of Cartesian product of a list of domains. A
table with n attributes must be subset of D1 * D2 * D3 * * Dn. A
domain can be Atomic or Non-Atomic. Atomic Domains are indivisible.
Non-Atomic Domain contains composite values.

4.4 PROPERTIES OF RELATIONS

© © O O O ©

Name of the relation is distinct from all other relations.
Each relation cell contains exactly one atomic (single) value
Each attribute contains a distinct name

Attribute domain has no significance

tuple has no duplicate value

Order of tuple can have a different sequence

4.5 RELATIONAL MODEL NOTATION

Following notations used in Relational model

1. A relation schema R of degree n is denoted by R(A1,A2,.....An).

2. The uppercase letters Q, R and S denote relation names.

3. The lowercase letters q, r and s denote relation states.

4. The letters t, u and v denote tuples.

5.

In general, the name of a relation schema such as EMPLOYEE also
indicates the current set of tuples in that relation- the current relation
state whereas EMPLOYEES (Eid,Ename,...) refers only to the relation
schema.

An attribute can be qualified with the relation name R to which it
belongs by using the dot notation R.A. For example ‘EMPLOYEE.Eid’
or ‘EMPLOYEE. Ename’. all attribute name in a particular relation
must be distinct.

4.6 CHARACTERISTICS OF RELATION

Following are some of the characteristics of relation.

1. Ordering of tuples in a relation:

a)

b)

c)

2.

A relation is defined as a set of tuples. Mathematically elements of a set
have no order among them hence tuples in a relation do not have any
particular order.

However, in a file, records are physically stored on disk or in memory,
so there always is an order among the records.

When we display a relation as a table the rows are displayed in a certain
order.

Ordering of values within a tuple and an alternative definition

of a relation:

a)

according to the preceding definition of a relation, an n-tuple is an
ordered list of a n values, so the ordering of values in a tuple and hence

of attributes in a relation schema is important.

b) however, at a more abstract level, the order of attributes and their values
is not that important as long as the correspondence between attributes
and values is maintained.

3. Values and NULL:s in the tuples:

a) Each value in a tuple is an atomic value that is; it is not divisible into
components within the framework of the basic relational model. Hence
composite and multivalued attributes are not allowed.

b) This model is sometimes called the flat relational model.

¢) Much of the theory behind the relational model was developed with this
assumption in mind, which is called the first normal form assumption.

d) Hence multivalued attributes must be represented by separated
relations, and composite attributes are represented only by their simple
component attributes in the basic relational model.

RELATIONAL CONSTRAINTS

The meaning of constraint is Restriction. There are generally many
restrictions or constraints on the actual values in a database state.
Constraints on databases can generally be divided into five main categories.
Domain constraint
Tuple Uniqueness constraint
Key constraint
Entity Integrity constraint
Referential Integrity constraint

A

1. Domain Constraint

Domain constraint defines the domain or set of values for an
attribute. It specifies that the value taken by the attribute must be the atomic
value from its domain. The data type of domain includes string, character,
integer, time, date, currency, etc. The value of the attribute must be
available in the corresponding domain.

2. Tuple Uniqueness constraint
Tuple Uniqueness constraint specifies that all the tuples must be
necessarily unique in any relation.

3. Key constraint
Key constraint specifies that in any relation-All the values of
primary key must be unique. The value of primary key must not be null.

4. Entity Integrity constraint

The entity integrity constraint states that primary key value can't be
null. This is because the primary key value is used to identify individual
rows in relation and if the primary key has a null value, then we can't

identify those rows. A table can contain a null value other than the primary
key field.

5. Referential Integrity constraint
A referential integrity constraint is specified between two tables.

In the Referential integrity constraints, if a foreign key in Table 1
refers to the Primary Key of Table 2, then every value of the Foreign Key in
Table 1 must be null or be available in Table 2.

(Table 1)
EMP_NAME| NAME AGE D_No ——— Foreign key
1 Jack 20 1
2 Harry A0 24
) not defined as a Primary

4 Devil 33 13 key of table 2 and In table 1,

ry D_No is a foreign key
defined
Relationships
(Table 2)
¥
Primary Key — D_No D_Location

" Mumbai
24 Delhi
13 Noida

Figure 4.2: Referential integrity

90 o% o% %
O 09 0,0 00

ER TO TABLE

Unit Structure
5.1 Rules for converting ER to Table

5.1 RULES FOR CONVERTING ER TO TABLE

1. Convert all the entities in the diagram to tables.

2. All single valued attributes of an entity is converted to a column of the
table.

3. Key attribute in the ER diagram becomes the primary key of the table.
Declare the foreign key column, if applicable.

4. any multi valued attributes are converted into new table.
5. any composite attributes are merged into same table as different

columns. Derived attributes can be ignored.

For example:

ADDRESS @
STUDENT |— COURSE

1 > 1
-~
Teaches % 6
Cy
y
M M
LECTURER |- _1 SUBJECTS
Q-',L"l_wm_m @‘@ COURSE_ID

Figure 5.1: ER diagram

There are the following steps which need to be considered before
developing table:

Entity type becomes a table:
a) In the given ER diagram, LECTURE, STUDENT, SUBJECT and
COURSE forms individual tables.

All single-valued attribute becomes a column for the table:

a) In the STUDENT entity, STUDENT NAME and STUDENT ID from
the column of STUDENT table.

b) Similarlyy, COURSE NAME and COURSE ID form the column of
COURSE table and so on.

A Kkey attribute of the entity type represented by the primary key:
a) In the given ER diagram, COURSE ID, STUDENT ID, SUBJECT ID
and LECTURE _ID are the key attribute of the entity.

The multivalued attribute is represented by a separate table:

a) In the student table, a hobby is a multivalued attribute. So, it is not
possible to represent multiple values in a single column of STUDENT
table.

b) Hence we create a table STUD HOBBY with column name
STUDENT ID and HOBBY. Using both the column, we create a
composite key.

Composite attribute represented by components:

a) In the given ER diagram student address is a composite attribute. It
contains CITY, PIN, DOOR#, STREET and STATE. In the STUDENT
table, these attributes can merge as an individual column.

Derived attributes are not considered in the table:

a) In the STUDENT table, age is the derived attribute. It can be calculated
at any point of time by calculating the difference between current date
and Date of Birth.

STUDENT

STUDENT_ID
STUDENT_NAME
DOB
DOOR #
STREET
CITY
STATE

PIN
COURSE_ID

LECTURER

LECTURER_ID
LECTURER_NAME
COURSE_ID

SUBJECT

COURSE

COURSE_ID
COURSE_NAME

STUD_HOBBY

Figure 5.2: table structure of given ER diagram

STUDENT_ID

HOBBY

S
ozo
<

%

k4

SUBJECT_ID
SUBJECT_NAME
LECTURER_ID

Unit 11

6

SCHEMA REFINEMENT AND NORMAL
FORMS

Unit Structure

6.0 Objectives

6.1 Functional dependencies
6.2 Normalization

6.3 Types of Normal forms

6.4 Lossless join decomposition

6.0 OBJECTIVES

In this chapter, we'll look at what functional dependencies are, how
to recognise them, and how to infer functional dependencies using inference
rules. We'd dig deeper into data normalisation and the various normal forms
-INF,2NF,3NF and BCNF. We'll look at how larger tables can be broken
down into smaller ones without losing data at the end of this chapter.

6.1FUNCTIONALDEPENDENCIES

A functional dependency is a constraint between two sets of
attributes from the database. Suppose that our relational database schema
has n attributes A1, A2, ..., An; let us think of the whole database as being
described by a single universal. relation schema R = {A1, A2, ..., An}. We
do not imply that we will actually store the database as a single universal
table; we use this concept only in developing the formal theory of data
dependencies. A functional dependency is a property of the semantics or
meaning of the attributes. The database designers will use their
understanding of the semantics of the attributes of R—that is, how they
relate to one another—to specify the functional dependencies that should
hold on all relation states (extensions) r of R. Relation extensions r(R) that
satisfy the functional dependency constraints are called legal relation states
(or legal extensions) of R.

6.2 NORMALIZATION

The normalization is a process first proposed by Codd in the year
1972. Normalization of data can be considered a process of analysing the

given relation schemas based on their FDs and primary keys to achieve the
desirable properties of minimizing redundancy and minimizing the
insertion, deletion and update anomalies. It is a process which proceeds in
top-down fashion by evaluating each relation against the criteria for normal
forms and decomposing relations as necessary. The goal is to generate a set
of relation schemas that allows us to store information without unnecessary
redundancy. It also allows easy retrieval of information. The approach is to
design schemas that are in an appropriate normal form. To determine
whether a relation schema is in one of the desirable normal forms,
additional information about the real world is needed to be depicted in the
database. Normalisation is based on the functional dependencies.

6.3 TYPES OF NORMAL FORMS

FIRST NORMAL FORM

In the relational model, a domain is atomic if elements of the
domain are considered to be indivisible units.

A relation schema R is in first normal form (1NF) if the domains of
all attributes of R are atomic.

It is defined to disallow multivalued attributes, composite attributes
their combinations, relations within relations or relations as attribute values
within tuples. it states that domain of an attribute must include only atomic
(simple, indivisible) values and that the value of any attribute in a tuple
must be a single value from the domain of that attribute. the only attribute
values permitted by INF are single atomic values. For example, Relation
EMPLOYEE is not in INF because of multi-valued attribute
EMP_PHONE.

EMPLOYEE table:
EMP ID EMP NAME EMP PHONE EMP STATE
14 John 7272826385, up
9064738238
20 Harry 8574783832 Bihar
12 Sam 7390372389, Punjab
8589830302

The decomposition of the EMPLOYEE table into 1NF has been
shown below:

14 John 7272826385 uP

14 John 9064738238 uP

20 Harry 8574783832 Bihar

12 Sam 7390372389 Punjab

12 Sam 8589830302 Punjab
SECOND NORMAL FORM:

A relation schema R is in 2NF, if it satisfies INF and if every non-
prime attribute A in R is fully functionally dependent on primary key of R.
2NF is based on the concept of full functions dependency. A functional
dependency X—Y is a full functional dependency if removal of any
attribute A from X means that the dependency does not hold any more.
Let's assume, a school can store the data of teachers and the subjects they
teach. In a school, a teacher can teach more than one subject.
TEACHER table

TEACHER_ID SUBJECT TEACHER_AGE
25 Chemistry 30
25 Biology 30
47 English 35
83 Math 38
83 Computer 38

In the given table, non-prime attribute TEACHER AGE is
dependent on TEACHER ID which is a proper subset of a candidate key.
That's why it violates the rule for 2NF. To convert the given table into 2NF,
we decompose it into two tables:

TEACHER_DETAIL table:

TEACHER_ID TEACHER_AGE
25 30
47 35

83 38

TEACHER_SUBJECT table:

TEACHER_ID SUBJECT

25 Chemistry

25 Biology

47 English

a3 Math

33 Computer
THIRD NORMAL FORM

If a relation is in 2NF and does not have any transitive partial
dependency, it is in 3NF. The 3NF algorithm is used to decrease data
duplication. It's also used to ensure data consistency. The relation must be in
third normal form if there is no transitive dependency for non-prime
characteristics. For every non-trivial function dependency X Y, a relation is
in third normal form if it meets at least one of the following conditions.

1. Xis a super key
2. Y is a prime property, which means that each of its elements is part
of a candidate key.

EMPLOYEE_DETAIL table:

EMF_ID EMP_NAME EMF_ZIP EMFP_STATE EMP_CITY
222 Harry 201010 Up Moida

333 Stephan 02224 us Boston

4a4 Lan G007 Us Chicago

555 Katharine 06389 UK Morwich

G656 Jahm 462007 ME Bhopa

Super key in the table above:

{EMP_ID}, (EMP_ID, EMP_NAME}, {EMP_ID, EMP_NAME, EMP_ZIP}...s0 on

3.

Non-prime attributes: In the given table, all attributes except EMP_ID are
non-prime.

Here, EMP_STATE & EMP_CITY dependent on EMP_ZIP and EMP_ZIP
dependent on EMP ID. The non-prime attributes (EMP_STATE,
EMP_CITY) transitively dependent on super key(EMP_ID). It violates the
rule of third normal form.

That's why we need to move the EMP_CITY and EMP_STATE to the new
<EMPLOYEE ZIP> table, with EMP_ZIP as a Primary key.

EMPLOYEE table:

EMP_ID

222
333
444
555

666

EMPLOYEE_ZIP table:

EMP_ZIP

201010
02228
60007
06389

462007

BCNF (BOYCE CODD NORMAL FORM)

The advanced form of 3NF is BCNF. It's more stringent than 3NF.A
table is in BCNF if every functional dependency X — Y, X is the super key
of the table.The table should be in 3NF for BCNF, and LHS is super
important for every FD.Consider the following scenario: a corporation with
workers who work in multiple departments.

EMPLOYEE table:

EMP ID EMP COUNTRY

264 India

F6d Inecdia

154 UK

164]

EMP_NAME

Harry
Stephan
Lan
Katharine

John

EMP_STATE

up
us
us
UK

MP

EMP_ZIP
201010
02228
60007
06389

462007

EMP_CITY

Noida
Boston
Chicago
Norwich

Bhopal

In the above table Functional dependencies are as follows:

EMP_ID = EMP_COUNTRY

EMP_DEPT — {DEPT_TYPE, EMP_DEPT_NO}

Candidate key: {EMP-ID, EMP-DEPT}
The table is not in BCNF because neither EMP_DEPT nor EMP_ID

alone are keys.

To convert the given table into BCNF, we decompose it into three tables:

EMP_COUNTRY table:

264 India
264 India
EMP_DEPT table:

Designing D354 283
Testing D394 300
Stores D283 232

D394 300
D283 232
D283 549
Functional dependencies:

EMPIID — EMP_COUNTRY
EMP_DEPT - (DEPT_TYPE, EMP_DEPT_NO}

Candidate keys:

For the first table: EMP_ID
For the second table: EMP_DEPT
For the third table: {EMP_ID, EMP_DEPT}

Now, this is in BCNF because left side part of both the functional dependencies
is a key.

6.4 LOSSLESS JOIN DECOMPOSITION

Normalisation leads to decomposition of relation into multiple tables in
database. The decomposition should always be lossless to avoid
problems like loss of information. Decomposition should guarantee that
the join will result in the same relation as it was decomposed. A
relational table is decomposed in multiple tables, in such a way that the
content of the original table be obtained by joining the decomposed
parts. This is called lossless-join or non-additive join decomposition.
The lossless join decomposition is defined with respect to functional
dependencies.

%e % o% o
XX XR

RELATIONAL ALGEBRA

Unit structure:
7.1 Introduction
7.2 Selection

7.3 Projection
7.4 Set operations
7.5 Joins

7.6 Equi join and natural joins

7.1 INTRODUCTION

A procedural query language is relational algebra. It outlines a
step-by-step procedure for obtaining the query's result. It performs queries

with the help of operators.

‘ Relational Operation

N

Select
operation

Project
operation

Union
operation

Set
Intersection

Set
Difference

Cartesian
product

Rename
operation

Fig 2.1 : Types Of Operation In Relational Algebra

7.2 SELECTION OPERATION

The select operation finds tuples that match a predicate. It is denoted by

sigma (o).
Notation: ¢ p(r)
Where:

o is used for selection prediction

r is used for relation
p is used as a propositional logic formula which may use

connectors like: AND OR and NOT. These relational can use as

relational operators like =, #, >, <, >, <.

For example find all the loan details where branch name is “Perryride”.
o BRANCH NAME="perryride" (LOAN)

7.3 PROJECT OPERATION:

This operation displays a list of the properties we want to present in
the final product. The remaining attributes are removed from the table. It is
denoted by [].

Notation: [] Al, A2, An (1)

Where

Al, A2, A3 is used as an attribute name of relation r.
For example:

List the names and city of all customers.

[I NAME, CITY (CUSTOMER)

7.4 SET OPERATION

Union operation:

Assume you have two tuples, R and S. All tuples that are either in R or S, or
both in R and S, are included in the union operation. It eliminates the
duplicate tuples. It is denoted by U.

Notation: R U S

The following conditions must be met by a union operation:
e The attribute of the same number must be shared by R and S.
e Duplicate tuples are eliminated automatically.

Consider two relations, BORROW and DEPOSITOR.

[T CUSTOMER_NAME (BORROW) U [CUSTOMER_NAME (DEPOSITOR)

Set Operation:

Assume you have two tuples, R and S. All tuples in both R and S
are included in the set intersection operation.It is denoted by intersection
n.

Notation: RN S

For example:

Using the above DEPOSITOR table and BORROW table.

[] CUSTOMER_NAME (BORROW) N [[CUSTOMER_NAME (DE
POSITOR)

Set Difference:

Assume you have two tuples, R and S. All tuples that are in R but
not in S are included in the set intersection operation. It is denoted by
intersection minus (-).

Notation: R-S

Example: Using the above DEPOSITOR table and BORROW table
[] CUSTOMER NAME (BORROW) -
[T CUSTOMER _NAME (DEPOSITOR)

Cartesian product:

Each row in one table is combined with each row in the other table
using the Cartesian product. A cross product is another name for it. It is
denoted by X.

Notation: E X D

Rename Operation:

The output relation is renamed using the rename method. Rho (p) is
the symbol for it.For example, we can use the rename operator to rename
STUDENT relation to STUDENT.

p(STUDENTI1, STUDENT)

7.5 JOINS:

If and only if a specific join condition is satisfied, a Join action joins
related tuples from separate relations. It's indicated by.

Operation: (EMPLOYEE =~ SALARY)

Types of Joins:
e Natural Join:

A natural join is the set of tuples of all combinations in R and S that are equal
on their common attribute names.It is denoted by >.Let's use the
EMPLOYEE and SALARY tables.

[IJTEMP_NAME, SALARY (EMPLOYEE = SALARY)

e Outer Join:
The join operation is extended by the outer join operation. It's utilised to
deal with information that's lacking.

(EMPLOYEE = FACT_WORKERS)

An outer join is of three types. Left outer join, right outer
join and full outer join.

Left outer join:
The set of tuples in R and S that are equivalent on their shared
attribute names is called the left outer join.In the left outer join, tuples in R

have no matching tuples in S. It is denoted by ».Using the above
EMPLOYEE table and FACT WORKERS table.

EMPLOYEE >« FACT WORKERS

Right outer join:

The set of tuples in R and S that are equivalent on their shared
attribute names is called the right outer join.The set of tuples in R and S that
are equivalent on their shared attribute names is called the right outer join.It
is denoted by ».Using the above EMPLOYEE table and FACT WORKERS

Relation.
EMPLOYEE > FACT WORKERS

Full outer join:

The full outer join is like a left or right join, except it includes all
rows from both tables.Tuples in R that have no matching tuples in S and
tuples in S that have no matching tuples in R in their common attribute
name are used in full outer join.It is denoted by ».Using the above
EMPLOYEE table and FACT WORKERS table.

EMPLOYEE » FACT _WORKERS

7.6 EQUI-JOIN:

An inner join is another name for it. It's the most prevalent type of
connection. It is based on data that has been matched according to the
equality criteria. The comparison operator is used in the equi join.

CUSTOMER = PRODUCT

DDL STATEMENTS

Unit structure:

8.1 Creating Databases

8.2 Using Databases

8.3 Creating Tables with integrity constraints
8.4 Altering Tables

8.5 Renaming Tables

8.6 Dropping Tables

8.7 Backing Up and Restoring databases

8.1 CREATING DATABASES:

SQL DDL commands are used to create schemas and tables and
gives an overview of basic data types used in creating a database. SQL uses
some terms such as table, row and column which are knows as relation,
tuple and attribute respectively. The basic command is CREATE command.
It can not only create table but also schemas, domains and views.

CREATE DATABASE Database Name;

In this syntax, Database Name specifies the name of the database
which we want to create in the system. Just after the 'Create Database'
keyword, we must type the database name in the query. The database we
wish to make should have a clear and distinct name that can be easily
recognised. The name of the database should be no more than 128
characters long.

CREATE TABLE command: In a database, the Construct TABLE
statement is used to create tables.If you wish to make a table, you'll need to
give it a name and specify each column's data type.

Create table "tablename"
("column1" "data type",
"column2" "data type",
"column3" "data type",

"columnN" "data type");
For example:

Create table Employee(
Eid varchar2(20),
Enamechar(30))

DATATYPES:
CHAR(Size)

VARCHAR(Size)

BINARY (Size)

VARBINARY (Size)

TEXT(Size)

TINYTEXT

MEDIUMTEXT

LONGTEXT

ENUM(vall,

val3,...)

SET(
vall,val2,val3,

BLOB(size)

val2,

)

It is used to specify a fixed length string that can
contain numbers, letters, and special characters.
Its size can be 0 to 255 characters. Default is 1.

It is used to specify a variable length string that
can contain numbers, letters, and special
characters. Its size can be from 0 to 65535
characters.

It is equal to CHAR() but stores binary byte
strings. Its size parameter specifies the column
length in the bytes. Default is 1.

It is equal to VARCHAR() but stores binary byte
strings. Its size parameter specifies the maximum
column length in bytes.

It holds a string that can contain a maximum
length of 255 characters.

It holds a string with a maximum length of 255
characters.

It holds a string with a maximum length of
16,777,215.

It holds a string with a maximum length of
4,294,967,295 characters.

It is used when a string object having only one
value, chosen from a list of possible values. It
contains 65535 values in an ENUM list. If you
insert a value that is not in the list, a blank value
will be inserted.

It is used to specify a string that can have 0 or
more values, chosen from a list of possible
values. You can list up to 64 values at one time
in a SET list.

It is used for BLOBs (Binary Large Objects). It
can hold up to 65,535 bytes.

8.3 CREATING TABLES WITH

INTEGRITY CONSTRAINTS:

NOT NULL — Ensures that a column cannot have NULL value.

e DEFAULT — Provides a default value for a column when none is
specified.

e UNIQUE — Ensures that all values in a column are different.

e PRIMARY Key — Uniquely identifies each row/record in a
database table.

e FOREIGN Key — Uniquely identifies a row/record in any of the
given database table.

e CHECK — The CHECK constraint ensures that all the values in a
column satisfies certain conditions.

e INDEX — Used to create and retrieve data from the database very
quickly.

8.4 ALTERING TABLES:

ALTER TABLE command is used to add, delete or modify columns in an
existing table. You should also use the ALTER TABLE command to add
and drop various constraints on an existing table. The basic syntax of an
ALTER TABLE command to add a New Column in an existing table is as

follows.

ALTER TABLE table_name ADD column_namedatatype;
The basic syntax of an ALTER TABLE command to DROP COLUMN
in an existing table is as follows.

ALTER TABLE table name DROP COLUMN column_name;

DROP TABLE statement is used to remove a table definition and all the
data, indexes, triggers, constraints and permission specifications for that
table.

The basic syntax of this DROP TABLE statement is as follows —

DROP TABLE table name;

8.5 RENAME OPERATION:

ALTER TABLE table name RENAME TO new_table name;

8.6 BACKING UP AND RESTORING DATA:

Reasons of Failure in a Database

There can be multiple reasons of failure in a database because of

which a database backup and recovery plan is required. Some of these
reasons are:

User Error - Normally, user error is the biggest reason of data
destruction or corruption in a database. To rectify the error, the database
needs to be restored to the point in time before the error occurred.

Hardware Failure - This can also lead to loss of data in a database.
The database is stored on multiple hard drives across various locations.
These hard drives may sometimes malfunction leading to database
corruption. So, it is important to periodically change them.

Catastrophic Event - A catastrophic event can be a natural calamity
like a flood or earthquake or deliberate sabotage such as hacking of the
database. Either way, the database data may be corrupted, and backup
may be required.

Methods of Backup

The different methods of backup in a database are:

Full Backup - This method takes a lot of time as the full copy of the
database is made including the data and the transaction records.

Transaction Log - Only the transaction logs are saved as the backup in
this method. To keep the backup file as small as possible, the previous
transaction log details are deleted once a new backup record is made.

Differential Backup - This is similar to full back up in that it stores
both the data and the transaction records. However only that
information is saved in the backup that has changed since the last full
backup. Because of this, differential backup leads to smaller files.

Database Recovery

There are two methods that are primarily used for database

recovery. These are:

e Log based recovery - In log-based recovery, logs of all database
transactions are stored in a secure area so that in case of a system
failure, the database can recover the data. All log information, such
as the time of the transaction, its data etc. should be stored before
the transaction is executed.

e Shadow paging - In shadow paging, after the transaction is
completed, its data is automatically stored for safekeeping. So, if the
system crashes in the middle of a transaction, changes made by it
will not be reflected in the database.

9 % o% %
A XX AN G X g

DML STATEMENTS

Unit Structure

9.1 DML Commands

9.2 Conditional select

9.3 In clause (Set membership Test)
9.4 Between clause (Range Test)
9.5 Order By clause

9.6 Group By

9.7Aggregate functions

9.1 DML COMMANDS

DML commands are used to modify the database. It is responsible
for all form of changes in the database.The command of DML is not auto-
committed that means it can't permanently save all the changes in the
database. They can be rollback.

Here are some commands that come under DML;

o INSERT
o UPDATE
o DELETE

INSERT: The INSERT statement is a SQL query. It is used to
insert data into the row of a table.

Syntax:
INSERT INTO TABLE NAME

(coll, col2, col3, col N)
VALUES (valuel, value2, value3, valueN);

For example:
INSERT INTO javatpoint (Author, Subject) VALUES ("Sonoo", "DBMS");

UPDATE: This command is used to update or modify the value of a column in
the table.

Syntax:
UPDATE table name SET [column_namel= valuel, column na
meN = valueN] [WHERE CONDITION]

For example:
UPDATE students
SET User Name = 'Sonoo'
WHERE Student_Id ='3'

DELETE: It is used to remove one or more row from a table.

Syntax:
DELETE FROM table name [WHERE condition];

For example:
DELETE FROM javatpoint
WHERE Author="Sonoo";

9.2 CONDITIONAL SELECT

SELECT statement is used to fetch the data from a database table which
returns this data in the form of a result table. These result tables are called
result-sets.

The basic syntax of the SELECT statement is as follows —

SELECT columnl, column2, columnN FROM table name;

Here, column1, column?... are the fields of a table whose values you
want to fetch. If you want to fetch all the fields available in the field, then
you can use the following syntax.

SELECT * FROM table_name;
For example:
Select * from employee;

WHERE clause is used to specify a condition while fetching the data from
a single table or by joining with multiple tables. If the given condition is
satisfied, then only it returns a specific value from the table. You should use
the WHERE clause to filter the records and fetching only the necessary
records. The WHERE clause is not only used in the SELECT statement, but
it is also used in the UPDATE, DELETE statement, etc.

The basic syntax of the SELECT statement with the WHERE clause is
as shown below.

SELECT columnl, column2, columnN
FROM table name
WHERE [condition]

You can specify a condition using the comparison or logical operators like
> <, =, LIKE, NOT, etc.

The following code is an example which would fetch the ID, Name and
Salary fields from the CUSTOMERS table, where the salary is greater than
2000 —

SQL> SELECT ID, NAME, SALARY
FROM CUSTOMERS

WHERE SALARY >2000;

This would produce the following result —
|ID | NAME | SALARY |

| 4 | Chaitali| 6500.00 |

|5 | Hardik | 8500.00 |

|6 | Komal |4500.00 |

|7 | Mufty | 10000.00 |

9.3 IN OPERATOR (SET MEMBERSHIP TEST):

The IN conditional operator actually performs a set membership
test. To put it another way, it's used to see if a value (expressed before the
keyword IN) is "in" the list of values provided after the keyword IN. For
example

SELECT employeeid, lastname, salary
FROM employee info
WHERE lastname IN ('"Hernandez', 'Jones', 'Roberts', 'Ruiz');

This statement will select the employeeid, lastname, salary from the
employee info table where the lastname is equal to either: Hernandez,
Jones, Roberts, or Ruiz. It will return the rows if it is ANY of these values.

9.4 BETWEEN (RANGE TEST):

The BETWEEN conditional operator is used to test to see whether
or not a value (stated before the keyword BETWEEN) is "between" the two
values stated after the keyword BETWEEN.For example:

SELECT employeeid, age, lastname, salary
FROM employee info
WHERE age BETWEEN 30 AND 40;

This statement will select the employeeid, age, lastname, and salary
from the employee info table where the age is between 30 and 40
(including 30 and 40).

9.5 ORDER BY clause:

ORDER BY clause is used to sort the data in ascending or
descending order, based on one or more columns. Some databases sort the
query results in an ascending order by default.

The basic syntax of the ORDER BY clause is as follows —
SELECT column-list

FROM table name

[WHERE condition]

[ORDER BY columnl, column2, ..columnN] [ASC | DESC];

In the ORDER BY clause, you can utilise more than one column. Make
sure that whichever column you're using to sort is included in the column-
list. For example:

SQL> SELECT * FROM CUSTOMERS
ORDER BY NAME, SALARY;

9.6 GROUP BY operator:

GROUP BY clause is used in collaboration with the SELECT
statement to arrange identical data into groups. This GROUP BY clause
follows the WHERE clause in a SELECT statement and precedes the
ORDER BY clause.

The basic syntax of a GROUP BY clause is shown in the following
code block. The GROUP BY clause must follow the conditions in the
WHERE clause and must precede the ORDER BY clause if one is used.

SELECT columnl, column2
FROM table name WHERE

[conditions]

GROUP BY columnl, column2
ORDER BY columnl, column2

Consider the CUSTOMERS table is having the following records —
| ID | NAME | AGE | ADDRESS | SALARY |

|1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan| 25 | Delhi | 1500.00 |

|3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali|] 25 | Mumbai | 6500.00 |

|5 | Hardik | 27 | Bhopal | 8500.00 |

|6 | Komal |22 |MP | 4500.00 |

|7 | Mufty |24 |Indore | 10000.00 |

If you want to know the total amount of the salary on each customer, then
the GROUP BY query would be as follows.

SQL>SELECT NAME, SUM(SALARY) FROM CUSTOMERS
GROUP BY NAME;

This would produce the following result —
| NAME | SUM(SALARY) |

| Chaitali| 6500.00 |

| Hardik | 8500.00 |

| kaushik | 2000.00 |

| Khilan | 1500.00 |

| Komal | 4500.00 |

| Muffy | 10000.00 |

| Ramesh | 2000.00 |

9.7 AGGREGATE FUNCTION:

Aggregation function is used to perform the calculations on multiple
rows of a single column of a table. It returns a single value.It is also used to
summarize the data. There are five aggregate functions which are follows:

1) COUNT
2) MAX

3) MIN

4) AVG

5) SUM

1. COUNT FUNCTION

COUNT function is used to Count the number of rows in a database
table. It can work on both numeric and non-numeric data types. COUNT
function uses the COUNT(*) that returns the count of all the rows in a
specified table. COUNT(*) considers duplicate and Null.

Syntax: COUNT(*) or COUNT([ALL|DISTINCT] expression)

2. SUM Function

Sum function is used to calculate the sum of all selected columns. It
works on numeric fields only.

Syntax: SUM() or SUM([ALL|DISTINCT] expression)
Example: SUM()
SELECT SUM(COST) FROM PRODUCT MAST;

3. AVG function

The AVG function is used to calculate the average value of the numeric type.
AVG function returns the average of all non-Null values.

Syntax: AVG() or AVG([ALL|DISTINCT] expression)
Example:

SELECT AVG(COST)

FROM PRODUCT MAST;

4. MAX Function

MAX function is used to find the maximum value of a
certain column. This function determines the largest
value of all selected values of a column. Syntax:

MAX() or MAX([ALL | DISTINCT] expression)

Example:
1. SELECT MAX(RATE)
2. FROM PRODUCT MAST;

5. MIN Function

MIN function is used to find the minimum value of a certain column. This
function determines the smallest value of all selected values of a column.
SyntaxMIN() or MIN([ALL|DISTINCT] expression)

Example:

SELECT MIN(RATE)

FROM PRODUCT MAST;

Unit - 1

10

FUNCTINS, JOIN, SUBQUERIES, VIEWS,

DATA PROTECTION
AND DCL STATEMENTS

Unit Structure

10.0
10.1
10.2

10.3

10.4

10.5

10.6

10.7

Objectives

Introduction

Functions

10.2.1 String Functions
10.2.2 Math Functions
10.2.3 Date Functions
Join

10.3.1 Equi joins
10.3.2 Non-Equi joins
Subqueries

10.4.1 Nested subqueries, subqueries with IN

10.4.2 subqueries with ALL
10.4.3 subqueries with ANY
10.4.4 correlated subqueries

10.4.5 subqueries withEXISTS

10.4.6 subqueries restrictions
Database Protection

10.5.1 Security Issues
10.5.2 Threats to Databases
10.5.3 Security Mechanisms
10.5.4 Role of DBA

Views

10.6.1 Create Views

10.6.2 DropViews

10.6.3 Update Views

DCL Statements

10.7.1 Privileges introduction
10.7.2 Granting/revoking privileges,

10.7.3 Viewing privileges,

10.8 List of References

10.9 Bibliography
10.10 Unit End Exercises

10.0 OBJECTIVES: -

After going through this unit, you will be able to:
e [Learn functions in SQL, like math string and date
e state the DCL statements in SQL
e describe the basic concepts in views, subqueries, join and system
privilege
e illustrate the role of a DBA

10.1 INTRODUCTION: -

A Subquery or Inner query or a Nested query is a query within another SQL
query and embedded within the WHERE clause. A subquery is used to
return data that will be used in the main query as a condition to further
restrict the data to be retrieved.

Views can join and simplify multiple tables into a single virtual table.
Views can act as aggregated tables, where the database engine aggregates
data (sum, average, etc.) and presents the calculated results as part of the
data. Views can hide the complexity of data.

SQL functions are sub-programs, which are commonly used and re-used
throughout SQL database applications for processing or manipulating data.
All SQL database systems have DDL (data definition language) and DML
(data manipulation language) tools to support the creation and maintenance
of databases.

A JOIN clause is used to combine rows from two or more tables, based on a
related column between them.

A privilege is a right to execute a particular type of SQL statement or to
access another user's object. Some examples of privileges include the right
to: Connect to the database (create a session) Create a table.

10.2 FUNCTIONS: -

10.2.1 String Functions:

CONCAT:
It merges two or more strings or a string and a data value together

Example:
SELECT CONCAT('summer ','18") FROM DUAL;

INSTR:

The INSTR() function returns the position of the first occurrence of a string in
another string.

Example:

SELECT INSTR("RamSham.com", "3") AS MatchPosition;

LEFT:

This function returns the leftmost n characters from the string str. If the string is
empty, it returns NULL.

Example:

SELECT LEFT('RamSham', 4);

RIGHT:

This function returns the rightmost n characters from the string str. If the
string is empty, it returns NULL.

Example:

SELECT RIGHT('RamSham', 5);

MID:

The MID() function extracts a substring from a string (starting at any position).
Example:

SELECT MID("SQL Tutorial", 5, 3) AS ExtractString;

LENGTH:
Find outs the length of given string.

Example:
SELECT LENGTH (‘abcd’) FROM DUAL

LOWER:
Converts a string to all lowercase characters.

Example:
SELECT LOWER (‘ABCD’) FROM DUAL

UPPER:
Converts a string to all uppercase characters.

Example:
SELECT UPPER (‘abcd’) FROM DUAL

REPLACE:

It returns character string with each occurrence of search string replaced with
[repstring]

Example:

SELECT REPLACE (‘Tick and Tock’, ‘T’,’C’) FROM DUAL

STRCMP:

This function compares both the strings strl and str2. It returns 0 if both
strings are equal, 1 if strl is greater than str2 and -1 if if str2 is greater than
strl.

Example:
SELECT STRCMP('HARRY', 'HARRY");

TRIM:

The TRIM() function removes the space character OR other specified
characters from the start or end of a string.

Example:

SELECT TRIM('#! ' FROM ' #SQL Tutorial! ') AS TrimmedString;

LTRIM:
Removesleading spaces from a string

Example:
SELECT LTRIM (‘abcd) FROM DUAL;

RTRIM:

Removes trailing spaces from a string
Example:

SELECT RTRIM (‘abed’) FROM DUAL;
10.2.2 Math

Functions ABS:

This function returns the absolute value of X.

Example:
Select abs(-6);

CEIL:

This returns the smallest integer value that is either more than X or equal to
it.

Example:

SELECT CEIL(5.7);

FLOOR:

This returns the largest integer value that is either less than X or equal to it.
Example:

SELECT FLOOR(5.7);

MOD:

The variable X is divided by Y and their remainder is returned.
Example:
SELECT MOD(9,5);

POW:

This function returns the value of x raised to the power of Y
Example:
SELECT POWER(2,5);

SQRT:
This function returns the square root of X.

Example:
SELECT SQRT(9);

ROUND:

This function returns the value of X rounded off to the whole integer that is
nearest to it.

Example:

SELECT ROUND(5.7);

10.2.3 Date Functions :-

ADDDATE:

ADDDATE() is a synonym for DATE _ADD().

Example:

SELECT DATE_ADD('1998-01-02', INTERVAL 31 DAY);

DATEDIFF:

DATEDIFF() returns exprl . expr2 expressed as a value in days from one
date to the other. Both exprl and expr2 are date or date-and-time
expressions. Only the date parts of the values are used in the calculation.
Example :-

SELECT DATEDIFF('1997-12-31 23:59:59','1997-12-30");

DAY:

The DAY() is a synonym for the DAYOFMONTH() function. Returns the
day of the month for date, in the range 0 to 31.

Example:

SELECT DAYOFMONTH('1998-02-03");

MONTH:
Returns the month for date, in the range 0 to 12.

Example:
SELECT MONTH('1998-02-03")

YEAR:

Returns the year for date, in the range 1000 to 9999, or 0 for the .zero. date.
Example:

SELECT YEAR('98-02-03");

HOUR:

Returns the hour for time. The range of the return value is 0 to 23 for time-
of-day values. However, the range of TIME values actually is much larger,
so HOUR can return values greater than 23.

Example:

SELECT HOUR('10:05:03");

MIN:
Returns the minute for time, in the range 0 to 59.

Example:
SELECT MINUTE('98-02-03 10:05:03");

SEC:
Returns the second for time, in the range 0 to 59.

Example:
SELECT SECOND('10:05:03");

NOW:

Returns the current date and time as a value in 'YYYY-MM-DD
HH:MM:SS' or YYYYMMDDHHMMSS format, depending on whether
the function is used in a string or numeric context. This value is expressed
in the current time zone.

Example:

SELECT NOWY();

REVERSE:
The REVERSE() function reverses a string and returns the result.

Example:
SELECT REVERSE('SQL Tutorial');

10.3 JOINS

e Joins are used to relate information in different tables.

e A Join condition is a part of the sql query that retrieves rows from
two or more tables.

e A SQL Join condition is used in the SQL WHERE Clause of select,
update, delete statements.

Syntax for joining two tables is:

SELECT coll, col2, col3...

FROM table namel, table name2

WHERE table namel.col2 = table name2.coll;

If a sql join condition is omitted or if it is invalid the join operation will
result in a Cartesian product. The Cartesian product returns a number of
rows equal to the product of all rows in all the tables being joined.

Example:

If the first table has 20 rows and the second table has 10 rows, the result
will be 20 * 10, or 200 rows.

This query takes a long time to execute.

Let us use the below two tables to explain the sql join conditions.

Database table "product';

Product_id Product_name Supplier_name Unit_price
100 Camera Nikon 300
101 Television LG 100
102 Refrigerator Videocon 150
103 IPod Apple 75
104 Mobile Nokia 50
Database table "order_items"’;
order_id product id total units customer
5100 104 30 Infosys
5101 102 5 Satyam
5102 103 25 Wipro
5103 101 10 TCS

Joins can be classified into Equi join and Non Equi join.
1. SQL Equi joins
2. SQL Non equi joins

10.3.1 SQLEqui joins
It is a simple sql join condition which uses the equal sign as the comparison
operator. Two types of Equijoins are SQL Outer join and SQL Inner join.

Example:
We can get Information about a customer who purchased a product and the
quantity of product.

An Equi-join is classified into two categories:
a) SQL Inner Join
b) SQL Outer Join

a) SQL Inner Join:
All the rows returned by the sql query satisfy the sql join condition specified.

Example:
To display the product information for each order the query will be as given
below.

Since retrieving the data from two tables, you need to identify the common
column between these two tables, which is the product _id.

QUERY:

SELECT order_id, product name, unit price, supplier name,
total units

FROM product, order_items

WHERE order_items.product_id = product.product _id;

The columns must be referenced by the table name in the join condition,
because product id is a column in both the tables and needs a way to be
identified.

b) SQL Outer Join:

e OQuter join condition returns all rows from both tables which satisfy
the join condition along with rows which do not satisfy the join
condition from one of the tables.

e The syntax differs for different RDBMS implementation.

e Few of them represent the join conditions as” LEFT OUTER JOIN"
and "RIGHT OUTER JOIN".

Example
Display all the product data along with order items data, with null values
displayed for order items if a product has no order item.

QUERY

SELECT p.product_id, p.product_name, o.order_id, o.total_units
FROM order_items o, product p

WHERE o.product_id (+) = p.product_id;

Output:
Product id | product name | order id | total units
100 Camera

101 Television 5103 10
102 Refrigerator 5101 5
103 1Pod 5102 25

SQL Self Join:

A Self Join is a type of sql join which is used to join a table to it,
particularly when the table has a FOREIGN KEY that references its own
PRIMARY KEY.

It is necessary to ensure that the join statement defines an alias for both copies
of the table to avoid column ambiguity.

Example

SELECT a.sales_person_id, a.name, a.manager_id, b.sales_person_id,
b.name

FROM sales_person a, sales_person b

WHERE a.manager_id = b.sales_person_id;

10.3.2 SQL NON-EQUI JOIN:

A Non Equi Join is a SQL Join whose condition is established using all
comparison operators except the equal (=) operator.
Like >=, <=, <, >

Example:
Find the names of students who are not studying either Economics, the sql
query would be like, (let’s use Employee table defined earlier.)

QUERY:
SELECT first name, last name, subject FROM Employee
WHERE subject !="Economics'

Output:
first name last name subject
Anajali Bhagwat Maths
Shekar Gowda Maths
Rahul Sharma Science
Stephen Fleming Science

10.4 SUBQUERIES

A subquery is a SELECT statement with another SQL statement, like in the
example below.

SELECT *

FROM product

WHERE id IN (SELECT product_idFROM provider_offer WHERE
provider_id = 156);

Subqueries are further classified as either a correlated subquery or a nested
subquery. They are usually constructed in such a way to return:

a table

SELECT MAX(average.average price)

FROM (SELECTproduct_category,

AVG(price) AS average price FROM product GROUP BY
product_category) average;

or a value
SELECT id

FROM purchase
WHERE value >(SELECT AVG(value) FROM purchasec);

10.4.1 NestedSubqueries: -
Nested subqueries are subqueries that don’t rely on an outer query. In other
words, both queries in a nested subquery may be run as separate queries.

This type of subquery could be used almost everywhere, but it usually takes
one of these formats:

SELECT

FROM

WHERE [NOT] IN (subquery)

SELECT *FROM clientWHERE city IN (SELECT city FROM provider);

The example subquery returns all clients that are FROM the same city as
the product providers.

The IN operator checks if the value is within the table and retrieves the
matching rows.

SELECTFROMWHERE expression comparison_operator [ANY]|
ALL] (subquery)

10.4.2Subquery With ALL Operator:
The ALL operator compares a value to every value FROM the result table.

For example, the following query returns all of the models and producers
of bikes that have a price greater than the most expensive headphones.

SELECT producer, model

FROM product

WHERE product_category = 'bike'

AND price >ALL(SELECT price FROM product WHERE
product_category = 'headphones’);

Similar subquery but with ANY operator:

10.4.3 Subquery With ANY Operator:
The ANY operator compares a value to each value in a table and evaluates
whether or not the result of an inner query contains at least one row.

The following query returns all of the models and producers of bikes that
have a price greater than at least one of the headphones.

SELECT producer, model
FROM product
WHERE product_category = 'bike'

AND price >ANY(SELECT price FROM product WHERE
product_category = 'headphones');

You can also nest a subquery in another subquery. For example:

Subquery Nested in Another Subquery Using IN Operator:
This query returns producers and models of bikes that exist in provider’s
offers FROM the USA.

SELECT producer, model

FROM product

WHERE product_category = 'bike'

AND id IN (SELECT distinct product_ idFROMprovider_offer
WHERE provider_id IN (SELECT id FROM provider WHERE
country ='USA'));

The same could be done using joins.

SELECT product.producer, product.model
FROM product, provider_offer, provider
WHERE provider_offer.product_id = product.id
AND provider_offer.provider_id = provider.id
AND product_category = 'bike’

AND provider.country = 'USA';

10.4.4 CorrelatedSubqueries:-

Subqueries are correlated when the inner and outer queries are
interdependent, that is, when the outer query is a query that contains a
subquery and the subquery itself is an inner query. Users that know
programming concepts may compare it to a nested loop structure.

Let’s start with a simple example.

The inner query calculates the average value and returns it. In the outer
query’s WHERE clause, we filter only those purchases which have a value
greater than the inner query’s returned value.

Subquery Correlated in WHERE Clause

SELECT id
FROM purchase p1
WHERE date > '2013-07-15'
AND value >(SELECT AVG(value) FROM purchase p2 WHERE
pl.date = p2.date);

The query returns purchases after 15/07/2014 with a total price greater than
the average value FROM the same day.

The equivalent example, but with joining tables.

SELECT pl.id
FROM purchase p1, purchase p2
WHERE pl.date = p2.date

AND pl.date> '2013-07-15'

GROUP BY pl.idHAVING pl.value > AVG(p2.value);

This example can also be written as a SELECT statement with a subquery
correlated in a FROM clause.

The subquery returns the table that contains the average value for each
purchase for each day. We join this result with the Purchase table on
column ‘date’ to check the condition date > *15/07/2014'.

SELECT id
FROM
purchase,
(
SELECT date, AVG(value) AS average value
FROM purchase
WHERE date > '2013-07-15'
GROUP BY date
) average
WHERE purchase.date = average.date
AND purchase.date> '2013-07-15'
AND purchase.value>average.average value;

Usually, this kind of subquery should be avoided because indexes can’t be
used on a temporary table in memory.

10.4.5 Subquery With EXISTS:-

The EXISTS operator checks if the row FROM the subquery matches any
row in the outer query. If there’s no data matched, the EXISTS operator
returns FALSE.

Syntax
SELECTFROMWHERE [NOT] EXISTS (subquery)

Example:
This Query returns all clients that ordered after 10/07/2013.

SELECT id, company_name
FROM client
WHERE EXISTS(
SELECT *
FROM purchase
WHERE client.id = purchase.client_id
WHERE date > '2013-07-10'
)

When a subquery is used, the query optimizer performs additional steps

before the results FROM the subquery are used. If a query that contains a
subquery can be written using a join, it should be done this way. Joins
usually allow the query optimizer to retrieve the data in a more efficient
way.

10.4.6 Subquery Restrictions:-
A subquery is subject to these restrictions:

e The subquery select list can consist of only one column name,
except in the exists subquery, where an (*) is usually used in place
of the single column name. You can use an asterisk (¥) in a nested
select statement that is not an exists subquery.

e Do not specify more than one column name. Qualify column names
with table or view names if there is ambiguity about the table or
view to which they belong.

e Subqueries can be nested inside the WHERE or HAVING clause of
an outer select, insert, update, or delete statement, inside another
subquery, or in a select list. Alternatively, you can write many
statements that contain subqueries as joins; Adaptive Server
processes such statements as joins.

e In Transact-SQL, a subquery can appear almost anywhere an
expression can be used, if it returns a single value. SQL derived
tables can be used in the from clause of a subquery wherever the
subquery is used.

e You cannot use subqueries in an order by, group by, or compute by
list.

e You cannot include a for browse clause in a subquery.

e You cannot include a union clause in a subquery unless it is part of a
derived table expression within the subquery.

e The select list of an inner subquery introduced with a comparison
operator can include only one expression or column name, and the
subquery must return a single value. The column you name in the
where clause of the outer statement must be join-compatible with
the column you name in the subquery select list.

e You cannot include text, unitext, or image datatypes in subqueries.

e Subqueries cannot manipulate their results internally, that is, a
subquery cannot include the order by clause, the compute clause, or
the into keyword.

e (orrelated (repeating) subqueries are not allowed in the select
clause of an updatable cursor defined by declare cursor.

e There is a limit of 50 nesting levels.

e The maximum number of subqueries on each side of a union is 50.

e The where clause of a subquery can contain an aggregate function
only if the subquery is in a having clause of an outer query and the
aggregate value is a column from a table in the from clause of the
outer query.

e The result expression from a subquery is subject to the same limits
as for any expression. The maximum length of an expression is
16K.

10.5 DATABASE PROTECTION:

Database security is the protection of the database against intentional and
unintentional threats that may be computer-based or non-computer-based.
Database security is the business of the entire organization as all people use
the data held in the organization's database and any loss or corruption to
data would affect the day-to-day operation of the organization and the
performance of the people. Therefore, database security encompasses
hardware, software, infrastructure, people and data of the organization.

Now there is greater emphasis on database security than in the past as the
amount of data stored in corporate database is increasing and people are
depending more on the corporate data for decision-making, customer
service management, supply chain management and so on. Any loss or
unavailability to the corporate data will cripple today's organization and will
seriously affect its performance. Now the unavailability of the database for
even a few minutes could result in serious losses to the organization.

10.5.1 Security Issues

Database security is a broad area that addresses many issues, including the
following:

e Various legal and ethical issues regarding the right to access
certain information.

for example, some information may be deemed to be private and
can-not be accessed legally by unauthorized organizations or
persons. In the United States, there are numerous laws governing
privacy of information.

e Policy issues at the governmental, institutional, or corporate
level as to what kinds of information should not be made
publicly available.

for example, credit ratings and personal medical records.

o System-related issues such as the system levels at which various
security functions should be enforced.

for example, whether a security function should be handled at the

physical hardware level, the operating system level, or the DBMS
level.

The need in some organizations to identify multiple security
levels and to categorize the data and users based on these
classifications.

for example, top secret, secret, confidential, and unclassified. The
security policy of the organization with respect to permitting access
to various classifications of data must be enforced.

10.5.2 Threats to Databases.

Threats to databases can result in the loss or degradation of some or all of
the following commonly accepted security goals: integrity, avail-ability, and
confidentiality.

Loss of integrity. Database integrity refers to the requirement that
information be protected from improper modification. Modification
of data includes creation, insertion, updating, changing the status of
data, and deletion. Integrity is lost if unauthorized changes are made
to the data by either intentional or accidental acts. If the loss of
system or data integrity is not corrected, continued use of the
contaminated system or corrupted data could result in inaccuracy,
fraud, or erroneous decisions.

Loss of availability. Database availability refers to making objects
available to a human user or a program to which they have a
legitimate right.

Loss of confidentiality. Database confidentiality refers to the
protection of data from unauthorized disclosure. The impact of
unauthorized disclosure of confidential information can range from
violation of the Data Privacy Act to the jeopardization of national
security. Unauthorized, unanticipated, or unintentional disclosure
could result in loss of public confidence, embarrassment, or legal
action against the organization.

To protect databases against these types of threats, it is common to
implement four kinds of control measures: access control, inference control,
flow control, and encryption.

10.5.3 Security Mechanisms
To protect the database, we must take security measures at several levels:

Physical: The sites containing the computer systems must be
secured against armed or surreptitious entry by intruders.

Human: Users must be authorized carefully to reduce the chance of
any such user giving access to an intruder in exchange for a bribe or
other favours.

Operating System: No matter how secure the database system is,

weakness in operating system security may serve as a means of
unauthorized access to the database.

e Network: Since almost all database systems allow remote access
through terminals or networks, software-level security within the
network software is as important as physical security, both on the
Internet and in networks private to an enterprise.

e Database System: Some database-system users may be authorized
to access only a limited portion of the database. Other users may be
allowed to issue queries, but may be forbidden to modify the data. It
is responsibility of the database system to ensure that these
authorization restrictions are not violated.

10.5.4 Discretionary security mechanisms.

These are used to grant privileges to users, including the capability to
access specific data files, records, or fields in a specified mode (such as
read, insert, delete, or update).

Discretionary Access Control Based on Granting and Revoking
Privileges

The typical method of enforcing discretionary access control in a database
system is based on the granting and revoking of privileges. Let us consider
privileges in the context of a relational DBMS. In particular, we will discuss
a system of privileges somewhat similar to the one originally developed for
the SQL language (see Chapters 4 and 5). Many current relational DBMSs
use some variation of this tech-nique. The main idea is to include
statements in the query language that allow the DBA and selected users to
grant and revoke privileges.

1. Types of Discretionary Privileges

In SQL2 and later versions, the concept of an authorization identifier is
used to refer, roughly speaking, to a user account (or group of user
accounts). For simplicity, we will use the words user or account
interchangeably in place of authorization identifier. The DBMS must
provide selective access to each relation in the database based on specific
accounts. Operations may also be controlled; thus, having an account does
not necessarily entitle the account holder to all the functionality provided by
the DBMS. Informally, there are two levels for assigning privileges to use
the database system:

e The account level. At this level, the DBA specifies the particular
privileges that each account holds independently of the relations in
the database.

e The relation (or table) level. At this level, the DBA can control the
privilege to access each individual relation or view in the database.

o References privilege on R. This gives the account the capability to
reference (or refer to) a relation R when specifying integrity

constraints. This privilege can also be restricted to specific attributes of
R.

Notice that to create a view, the account must have the SELECT privilege
on all relations involved in the view definition in order to specify the query
that corresponds to the view.

2. Specifying Privileges through the Use of Views

The mechanism of views is an important discretionary authorization
mechanism in its own right. For example, if the owner A of a relation R
wants another account B to be able to retrieve only some fields of R, then A
can create a view V of R that includes only those attributes and then grant
SELECT on V to B. The same applies to limiting B to retrieving only
certain tuples of R; a view V can be created by defining the view by means
of a query that selects only those tuples from R that A wants to allow B to
access.

3. Revoking of Privileges

In some cases it is desirable to grant a privilege to a user temporarily. For
example, the owner of a relation may want to grant the SELECT privilege
to a user for a specific task and then revoke that privilege once the task is
completed. Hence, a mechanism for revoking privileges is needed. In SQL a
REVOKE command is included for the purpose of cancelling privileges.

4. Propagation of Privileges Using the GRANT OPTION

Whenever the owner A of a relation R grants a privilege on R to another
account B, the privilege can be given to B with or without the GRANT
OPTION. If the GRANT OPTION is given, this means that B can also grant
that privilege on R to other accounts. Suppose that B is given the GRANT
OPTION by A and that B then grants the privilege on R to a third account
C, also with the GRANT OPTION. In this way, privileges on R can
propagate to other accounts without the knowledge of the owner of R. If the
owner account A now revokes the privilege granted to B, all the privileges
that B propagated based on that privilege should automatically be revoked
by the system.

It is possible for a user to receive a certain privilege from two or more
sources. For example, A4 may receive a certain UPDATE R privilege from
both A2 and A3. In such a case, if A2 revokes this privilege from A4, A4
will still continue to have the privilege by virtue of having been granted it
from A3. If A3 later revokes the privilege from A4, A4 totally loses the
privilege. Hence, a DBMS that allows propagation of privi-leges must keep
track of how all the privileges were granted so that revoking of priv-ileges
can be done correctly and completely.

Role of DBA

A person having who has central control over data and programs that access
the data is called DBA. Following are the functions of the DBA.

Schema definition: DBA creates database schema by executing
Data Definition Language (DDL) statements.

Storage structure and access method definition

Schema and physical organization modification: If any changes
are to be made in the original schema, to fit the need of your
organization, then these changes are carried out by the DBA.

Granting of authorization for data access: DBA can decide which
parts of data can be accessed by which users. Before any user access
the data, DBMS checks which rights are granted to the user by the
DBA.

Routine maintenance: DBA has to take periodic backups of the
database, ensure that enough disk space is available to store new
data, ensure that performance of DBMS ix not degraded by any
operation carried out by the users.

Performance monitoring: Here DBMS should respond to changes
in requirements, i.e.,changing details of storage and access thereby
organising the system so as to get the performance that is * best for
the enterprise'.

10.6 VIEWS: -

Definition:

A view is a virtual table that consists of columns from one or more
tables.

A virtual table is like a table containing fields but it does not contain
any data. In run time it contains the data and after that it gets free.

But table stores the data in database occupy some space.

Just like table, view contains Rows and Columns which is fully
virtual based table.

Base Table -The table on which view is defined is called as Base
table.

10.6.1 Creating a VIEW

This statement is used to create a view.

Syntax:

CREATE VIEW view_name

The CREATE statement assigns a name to the view and also gives
the query which defines the view.

To create the view, one should must have privileges to access all of
the base tables on which view is defined.

e The create view can change name of column in view as per
requirements.

Horizontal View

A Horizontal view will restrict the user’s access to only a few rows of the
table.

Example:

Define a view for Sue (employee number 1004) containing only orders placed
by customers assigned to her.

CREATE VIEW SUEORDERS AS SELECT *
FROM ORDERS WHERE CUST IN

(SELECT CUST_NUM FROM CUSTOMERS WHERE
CUST_REP=1004)

Vertical View

A vertical view restricts a user’s access to only certain columns of a table.
Ex:

CREATE VIEW EMP_ADDRESS AS

SELECT EMPNO, NAME, ADDRI1, ADDR2, CITY FROM
EMPLOYEE

ROW/COLUMN SUBSET VIEW.

e Views can be used to restrict a user to access only selected set of rows
and columns of a table in a database.

e This view generally helps us to visualize how view can represent the
base table.

° This type of view is combination of both horizontal and vertical

views. Ex:

CREATE VIEW STUDENTS_PASSED AS SELECT ROLLNO,
NAME, PERCENTAGE

FROM STUDENTS
WHERE RESULT ="PASS’
Grouped View

e A grouped view is one in which query includes GROUPBY
CLAUSE.

e [t is used to group related rows of data and produce only one result
row for each group.

Ex:
Find summary information of Employee Salaries in sales Department.

CREATE VIEW Summary_ Empl_Sal (

Total Employees, Minimum_salary, Maximum_Salary,
Average_salary, Total_salary)

AS
SELECT COUNT(EmpID),

Min(Salary), Max(Salary), Avg(Salary), SUM(Salary), FROM
Employee

GROUP BY Department HAVING Department="Sales’;
View Call

SELELCT *FROM Summary_Empl_Sal

The above Query will give,

Total No. Of Employees in sales Department, Minimum Salary in sales
Department.

Maximum Salaryin sales Department. Average Salaryin sales
Department.

Total Salary of Employees in sales Department.

Joined Views
e A Query based on more than one base table is called as Joined View.
e [tis also called as Complex View

e This gives a way to simplify multi table queries by joining two or
more table query in the view definition that draws its data from
multiple tables and presents the query results as a single view.

e The view once it is ready we can retrieve data from multiple tables
without joining any table simply by accessing a view created.

Ex:

Company database find out all EMPLOYEES for respective
DEPARTMENTS.

CREATE VIEW Emp_Details As

Select Employee,EmpID, Department, DeptID, Department,
DeptName From

Where Employee.DeptID=Department.DeptID;
View Call
SELECT * FROMEmp_Details

10.6.2 DROPPING VIEW

When a view is no longer needed, it can be removed by using DROP VIEW
statement.

Syntax:
DROP VIEW <VIEW NAME> [CASCADE/RESTRICT]
CASCADE: It deletes the view with all dependent view on original view.

RESTRICT: It deletes the view only if they’re in no other view depends
on this view.

Example:

Consider that we have view VABC and VPQR. ViewVPQR depends on VABC.

Query:
DROP view VABC

If we drop VABC, then cascading affect takes place and view VPQR is also
dropped.

Thus, default option for dropping a view is CASCADE. The CASCADE
option tells DBMS to delete not only the named view, but also query views
that depend on its definition. But,

QUERY:
DROP view VABC RESTRICT

Here, the query will fail because of RESTRICT option tells DBMS to
remove the view only if no other views depend on it. Since VPQR depends
on VABC, will cause an error.

10.6.3 UPDATING VIEWS
e Records can be updated, inserted, and deleted though views.

e UPDATAEBLE VIEWS are those in which views are used against
INSERT, DELETE and UPDATE statements.

The following conditions must be fulfilled for view updates:

e DISTINCT must not be specified; that is, duplicate rows must not
be eliminated from the query results.

e The FROM clause must specify only one updateable table; that is,
the view must have a Single source table for which the user has the
required privileges. If the source table is itself a view, then that view
must meet these criteria.

e FEach select item must be a simple column reference; the select list
cannot contain expressions, calculated columns, or column
functions.

e The WHERE clause must not include a subquery; only simple row-
by-row search conditions may appear.

e The query must not include a GROUP BY or a HAVING clause.

The following code block has an example to update the age of Ramesh.
UPDATE CUSTOMERS_VIEW

SET AGE =35

WHERE name = 'Ramesh';

This would ultimately update the base table CUSTOMERS and the same
would reflect in the view itself.

10.7 DCLSTATEMENTS: -

10.7.1 Introduction to Database privileges:

When multiple users can access database objects, authorization can be
controlled to these objects with privileges. Every object has an owner.
Privileges control if a user can modify an object owned by another user.
Privileges are granted or revoked either by the instance administrator, a user
with the ADMIN privilege or, for privileges to a certain object, by the
owner of the object.

1) System Privileges:

System privileges are privileges given to users to allow them to perform certain
functions that deal with managing the database and the server

e.g Create user, Create table, Drop table etc.

2) Object Privileges:

Object privileges are privileges given to users as rights and restrictions to
change contents of database object — where database objects are things like
tables, stored procedures, indexes, etc.

Ex. Select,insert,delete,update,execute,references etc

Data Control Language(DCL) is used to control privilege in Database. To
perform any operation in the database, such as for creating tables,
sequences or views we need privileges.

10.7.2 DCL defines two commands: -
e Grant: Gives user access privileges to database.
e Revoke: Take back permissions from user.

Procedure for granting privileges:

Grant:This command is used to give permission to user to dooperations on
the other user’s object.

Syntax:

Grant<object privileges>on<objectname>to<username>[with grant
option] ;

Example:

GRANTSELECT, UPDATE ON student FROM BCA, MCA;

Procedure for revoking privileges:

Revoke: This command is used to withdraw the privileges that has been

granted to a user.

Syntax:
Revoke<object privileges>on<object name>from<username> ;

Example:
REVOKE SELECT, UPDATE ON student FROM BCA, MCA;

10.7.3 Viewing Privileges:

v’ To Allow a User to create Session
grant create session to username;

v To Allow a User to create Table
grant create table to username;

v To provide User with some Space on Tablespace to store Table
alter user username quota unlimited on system;

v To Grant all privilege to a User
Grantsysdba to username

v To Grant permission to Create any Table
grant create any table to username

¢’ To Grant permission to Drop any Table
grant drop any table to username

v/ To take back Permissions revoke
create table from username

	1
	INTRODUCTION TO DBMS
	Unit Structure
	1.0​OBJECTIVES
	1.1​INTRODUCTION
	1.2​OVERVIEW
	1.3​ADVANTAGES
	Data Administration:
	Reduced Application Development Time:

	1.4​TYPES OF USERS IN DBMS:
	Database Administrator:
	Naive users:
	Application programmers:
	Sophisticated users:
	Specialized users:

	1.5​LEVELS OF ABSTRACTION IN A DBMS:
	Physical Level:
	Logical Level:
	View Level:

	1.6​DATA INDEPENDENCE:
	Physical Data Independence:
	Logical Data Independence:

	1.7​DBMS ARCHITECTURE
	Figure 1.2: Database Architecture
	Query Processor Components:
	Application Architectures:

	2
	DATA MODELS
	Unit Structure
	2.0​INTRODUCTION
	2.1​TYPES OF DATA MODELS:
	2.1.1​Entity Relationship Model
	2.1.2​Object Oriented Model
	2.1.3​Physical data model
	2.1.4​Relational data model
	2.1.5​Network data model
	2.1.6​Hierarchical data model
	2.1.7​Client server architecture:
	Figure 2.1: Client/Server architecture

	3
	ENTITY RELATIONSHIP MODEL
	Unit Structure
	3.0 INTRODUCTION
	3.1 TYPES OF ATTRIBUTES:
	1.​Simple Attributes
	2.​Composite Attributes:
	Figure 3.1: Composite attribute Single valued attributes
	Multivalued Attributes:
	Figure 3.2: Relationship
	Figure 3.3: Relationship set Degree of relationship type
	Mapping Cardinality
	●​One to one:
	●​One to many:
	●​Many to one:
	●​Many to many:
	One to One​One to many
	Specialization
	Figure 3.5: Specialization
	AGGREGATION
	Entity vs Relationship

	4
	RELATIONAL DATA MODEL
	Unit Structure
	4.0​INTRODUCTION
	4.1​RELATION
	4.2​ATTRIBUTE TYPES
	4.3​DOMAIN
	4.4​PROPERTIES OF RELATIONS
	4.5​RELATIONAL MODEL NOTATION
	4.6​CHARACTERISTICS OF RELATION
	1.​Ordering of tuples in a relation:
	2.​Ordering of values within a tuple and an alternative definition of a relation:
	3.​Values and NULLs in the tuples:
	RELATIONAL CONSTRAINTS

	5
	ER TO TABLE
	Unit Structure
	5.1 RULES FOR CONVERTING ER TO TABLE
	Figure 5.1: ER diagram
	Entity type becomes a table:
	All single-valued attribute becomes a column for the table:
	A key attribute of the entity type represented by the primary key:
	The multivalued attribute is represented by a separate table:
	Composite attribute represented by components:
	Derived attributes are not considered in the table:
	Figure 5.2: table structure of given ER diagram

	6
	SCHEMA REFINEMENT AND NORMAL FORMS
	Unit Structure
	6.0​OBJECTIVES
	6.1​FUNCTIONALDEPENDENCIES
	6.2​NORMALIZATION
	6.3​TYPES OF NORMAL FORMS
	FIRST NORMAL FORM
	SECOND NORMAL FORM:

	6.4​LOSSLESS JOIN DECOMPOSITION

	7
	RELATIONAL ALGEBRA
	Unit structure:
	7.1​INTRODUCTION
	7.2​SELECTION OPERATION
	Where:

	7.3​PROJECT OPERATION:
	Where

	7.4​SET OPERATION
	Union operation:
	Set Operation:
	∏ CUSTOMER_NAME (BORROW) ∩ ∏ CUSTOMER_NAME (DE POSITOR)
	Set Difference:
	Cartesian product:
	Rename Operation:

	7.5​JOINS:
	Types of Joins:
	●​Outer Join:
	Left outer join:
	Full outer join:

	7.6​EQUI-JOIN:
	Unit structure:

	8.1 CREATING DATABASES:
	CREATE DATABASE Database_Name;

	8.3​CREATING TABLES WITH INTEGRITY CONSTRAINTS:
	8.4​ALTERING TABLES:
	ALTER TABLE table_name ADD column_namedatatype;
	ALTER TABLE table_name DROP COLUMN column_name;

	8.5​RENAME OPERATION:
	8.6​BACKING UP AND RESTORING DATA:
	Reasons of Failure in a Database
	Methods of Backup
	Database Recovery

	9
	DML STATEMENTS
	Unit Structure
	9.1​DML COMMANDS
	9.2​CONDITIONAL SELECT
	SELECT column1, column2, columnN FROM table_name;
	SELECT * FROM table_name;
	The basic syntax of the SELECT statement with the WHERE clause is as shown below.

	9.3​IN OPERATOR (SET MEMBERSHIP TEST):
	9.4​BETWEEN (RANGE TEST):
	9.5​ORDER BY clause:
	The basic syntax of the ORDER BY clause is as follows −

	9.6​GROUP BY operator:
	Consider the CUSTOMERS table is having the following records −
	If you want to know the total amount of the salary on each customer, then the GROUP BY query would be as follows.
	This would produce the following result −

	9.7​AGGREGATE FUNCTION:
	1.​COUNT FUNCTION
	2.​SUM Function
	3.​AVG function
	4.​MAX Function
	5.​MIN Function

	10
	FUNCTINS, JOIN, SUBQUERIES, VIEWS, DATA PROTECTION
	Unit Structure
	10.0 OBJECTIVES: -
	10.1 INTRODUCTION: -
	CONCAT:
	INSTR:
	LEFT:
	RIGHT:
	MID:
	LENGTH:
	LOWER:
	UPPER:
	REPLACE:
	STRCMP:
	TRIM:
	LTRIM:
	RTRIM:
	10.2.2​Math Functions ABS:

	CEIL:
	FLOOR:
	MOD:
	POW:
	SQRT:
	ROUND:
	10.2.3​Date Functions :- ADDDATE:

	DATEDIFF:
	DAY:
	MONTH:
	YEAR:
	HOUR:
	MIN:
	SEC:
	NOW:
	REVERSE:

	10.3​JOINS
	Database table "product";
	10.3.1​SQLEqui joins
	a)​SQL Inner Join:
	Example:
	b)​SQL Outer Join:
	SELECT p.product_id, p.product_name, o.order_id, o.total_units FROM order_items o, product p
	SQL Self Join:
	10.3.2​SQL NON-EQUI JOIN:
	SELECT first_name, last_name, subject FROM Employee WHERE subject != 'Economics'

	10.4​SUBQUERIES
	SELECT *
	FROM product
	SELECT MAX(average.average_price) FROM (SELECTproduct_category,

	SELECT FROM
	WHERE [NOT] IN (subquery)
	SELECTFROMWHERE​expression​comparison_operator​[ANY| ALL] (subquery)
	10.4.3​Subquery With ANY Operator:
	Subquery Nested in Another Subquery Using IN Operator:
	10.4.5​Subquery With EXISTS:-
	SELECTFROMWHERE [NOT] EXISTS (subquery)

	WHERE EXISTS(SELECT *
	FROM purchase
	10.4.6​Subquery Restrictions:-
	10.5.1​Security Issues
	●​Various legal and ethical issues regarding the right to access certain information.
	●​Policy issues at the governmental, institutional, or corporate level as to what kinds of information should not be made publicly available.
	●​System-related issues such as the system levels at which various security functions should be enforced.
	●​The need in some organizations to identify multiple security levels and to categorize the data and users based on these classifications.
	10.5.2​Threats to Databases.
	10.5.3​Security Mechanisms
	10.5.4​Discretionary security mechanisms.
	Discretionary Access Control Based on Granting and Revoking Privileges
	1.​Types of Discretionary Privileges
	2.​Specifying Privileges through the Use of Views
	3.​Revoking of Privileges
	4.​Propagation of Privileges Using the GRANT OPTION
	Role of DBA

	10.6​VIEWS: -
	10.6.1​Creating a VIEW
	CREATE VIEW view_name
	Horizontal View
	CREATE VIEW SUEORDERS AS SELECT * FROM ORDERS WHERE CUST IN
	Vertical View

	CREATE VIEW STUDENTS_PASSED AS SELECT ROLLNO,
	Grouped View

	AS
	SELELCT *FROM Summary_Empl_Sal
	Joined Views

	10.6.2​DROPPING VIEW
	DROP VIEW <VIEW NAME> [CASCADE/RESTRICT]
	DROP view VABC
	DROP view VABC RESTRICT

	10.6.3​UPDATING VIEWS
	UPDATE CUSTOMERS_VIEW SET AGE = 35
	WHERE name = 'Ramesh';

	10.7​DCLSTATEMENTS: -
	10.7.1​Introduction to Database privileges:
	1)​System Privileges:
	2)​Object Privileges:
	10.7.2​DCL defines two commands: -
	Procedure for granting privileges:
	GRANTSELECT, UPDATE ON student FROM BCA, MCA;
	REVOKE SELECT, UPDATE ON student FROM BCA, MCA;

