
Unit-1 

1 

INTRODUCTION TO DBMS 

 
Unit Structure 
1.0​Objectives 
1.1​Introduction to DBMS 
1.2​Overview of DBMS 
1.3​Advantages of DBMS 
1.4​Levels of abstraction 
1.5​Data independence 
1.6​DBMS architecture 

 

1.0​OBJECTIVES 
 

After going through this unit, you will able to: 
●​ To introduce the concept of the DBMS with respect to the relational 

model. 
●​ Define database, DBMS, overview of DBMS, level of abstraction, 

DBMS architecture. 
●​ Learning Data models and its different types. 
●​ Designing the database schema with the use of appropriate data 

types for storage of data in database. 
●​ To create, manipulate, query and back up the databases. 

 

1.1​INTRODUCTION 
 

A database is a collection of information that is organized so that it 
can be easily accessed, managed and updated. Database systems are 
designed to manage large bodies of information. Management of data 
involves both defining structures for storage of information and providing 
mechanisms for the manipulation of information. In addition, the database 

 



system must ensure the safety of the information stored, despite system 
crashes or attempts at unauthorized access. If data are to be shared among 
several users, the system must avoid possible anomalous results. Because 
information is so important in most organizations, computer scientists have 
developed a large body of concepts and techniques for managing data. 

 



DATABASE MANAGEMENT SYSTEM 
A database-management system (DBMS) is a collection of 

interrelated data and a set of programs to access those data. This is a 
collection of related data with an implicit meaning and hence is a database. 

 

1.2​OVERVIEW 
 

The collection of data, usually referred to as the database, contains 
information relevant to an enterprise. The primary goal of a DBMS is to 
provide a way to store and retrieve database information that is both 
convenient and efficient. By data, we mean known facts that can be 
recorded and that have implicit meaning. For example, consider the names, 
telephone numbers, and addresses of the people you know. You may have 
recorded this data in an indexed address book, or you may have stored it on 
a diskette, using a personal computer and software such as DBASE IV or V, 
Microsoft ACCESS, or EXCEL. A datum – a unit of data – is a symbol or a 
set of symbols which is used to represent something. This relationship 
between symbols and what they represent is the essence of what we mean 
by information. Hence, information is interpreted data – data supplied with 
semantics. Knowledge refers to the practical use of information. While 
information can be transported, stored or shared without many difficulties 
the same cannot be said about knowledge. Knowledge necessarily involves 
a personal experience. Referring back to the scientific experiment, a third 
person reading the results will have information about it, while the person 
who conducted the experiment personally will have knowledge about it. 
The DBMS is a general purpose software system that facilitates the process 
of defining constructing and manipulating databases for various 
applications. 

 

1.3​ADVANTAGES 
 

Data Independence: Application programs should be as 
independent as possible from details of data representation and storage. The 
DBMS can provide an abstract view of the data to insulate application code 
from such details. 

 
Efficient Data Access: A DBMS utilizes a variety of sophisticated 
techniques to store and retrieve data efficiently. This feature is especially 
important if the data is stored on external storage devices. 

 
Data Integrity and Security: If data is always accessed through the 
DBMS, the DBMS can enforce integrity constraints on the data. For 
example, before inserting salary information for an employee, the DBMS 
can check that the department budget is not exceeded. Also, the DBMS can 
enforce access controls that govern what data is visible to different classes 
of users. 

 



Concurrent Access and Crash Recovery: A database system allows 
several users to access the database concurrently. Answering different 
questions from different users with the same (base) data is a central aspect 
of an information system. Such concurrent use of data increases the 
economy of a system. An example for concurrent use is the travel database 
of a bigger travel agency. The employees of different branches can access 
the database concurrently and book journeys for their clients. Each travel 
agent sees on his interface if there are still seats available for a specific 
journey or if it is already fully booked. A DBMS also protects data from 
failures such as power failures and crashes etc. by the recovery schemes 
such as backup mechanisms and log files etc. 

Data Administration: 
When several users share the data, centralizing the administration of 

data can offer significant improvements. Experienced professionals, who 
understand the nature of the data being managed, and how different groups 
of users use it, can be responsible for organizing the data representation to 
minimize redundancy and fine-tuning the storage of the data to make 
retrieval efficient. 

 
Reduced Application Development Time: 

DBMS supports many important functions that are common to 
many applications accessing data stored in the DBMS. This, in conjunction 
with the high-level interface to the data, facilitates quick development of 
applications. Such applications are also likely to be more robust than 
applications developed from scratch because many important tasks are 
handled by the DBMS instead of being implemented by the application. 

 
1.4​TYPES OF USERS IN DBMS: 

 

 
Database Administrator: 

One of the main reasons for using DBMSs is to have central control 
of both the data and the programs that access those data. A person who has 
such central control over the system is called a database administrator 
(DBA). DBA is responsible for authorizing access to the database, 
coordinating and monitoring its use, and acquiring software and hardware 
resources as needed. 

 
Naive users: 

Naive users are unsophisticated users who interact with the system 
by invoking one of the application programs that have been written 
previously. For example, a bank teller who needs to transfer $50 from 
account A to account B invokes a program called transfer. This program 
asks the teller for the amount of money to be transferred, the account from 
which the money is to be transferred, and the account to which the money is 
to be transferred. 

 



Application programmers: 
Application programmers are computer professionals who write 

application programs. Application programmers can choose from many 
tools to develop user interfaces. Rapid application development (RAD) 
tools are tools that enable an application programmer to construct forms and 
reports without writing a program. 

 
Sophisticated users: 

Sophisticated users interact with the system without writing 
programs. Instead, they form their requests in a database query language. 
They submit each such query to a query processor, whose function is to 
break down DML statements into instructions that the storage manager 
understands. Analysts who submit queries to explore data in the database 
fall in this category. 

 
Specialized users: 

Specialized users are sophisticated userswho write specialized 
database applications that do not fit into the traditional data-processing 
framework. 

 

1.5​LEVELS OF ABSTRACTION IN A DBMS: 
 

Hiding certain details of how the data are stored and maintained. A 
major purpose of database system is to provide users with an “Abstract 
View” of the data. In DBMS there are 3 levels of data abstraction. The goal 
of the abstraction in the DBMS is to separate the users request and the 
physical storage of data in the database. 

 
Physical Level: 

●​ The lowest Level of Abstraction describes “How” the data are 
actually stored. 

●​ The physical level describes complex low level data structures in 
detail. 

 
Logical Level: 

●​ This level of data Abstraction describes “What” data are to be stored 
in the database and what relationships exist among those data. 

●​ Database Administrators use the logical level of abstraction. 

 
View Level: 

●​ It is the highest level of data Abstracts that describes only part of 
entire database. 

 



●​ Different users require different types of data elements from each 
database. 

●​ The system may provide many views for the some database. 

 
Figure 1.1: Level of Abstraction 

 

1.6​DATA INDEPENDENCE: 
 

 
A very important advantage of using DBMS is that it offers Data 

Independence. The ability to modify a scheme definition in one level 
without affecting a scheme definition in a higher level is called data 
independence. 

There are two types: 
1.​Physical Data Independence 
2.​Logical Data Independence 

 
Physical Data Independence: 

●​ The ability to modify the physical schema without causing 
application programs to be rewritten. 

●​ Modifications at this level are usually to improve performance. 

 
Logical Data Independence: 

●​ The ability to modify the conceptual schema without causing 
application programs to be rewritten 

●​ Usually done when logical structure of database is altered 

●​ Logical data independence is harder to achieve as the application 
programs are usually heavily dependent on the logical structure of 
the data. 

 



 

1.7​DBMS ARCHITECTURE 
 

A database system is partitioned into modules that deal with each of 
the responsibilities of the overall system. The functional components of a 
database system can be broadly divided into the storage manager and the 
query processor components. 

The storage manager is important because databases typically 
require a large amount of storage space. Some Big organizations Database 
ranges from Giga bytes to Terabytes. So the main memory of computers 
cannot store this much information, the information is stored on disks. Data 
are moved between disk storage and main memory as needed. The query 
processor also very important because it helps the database system simplify 
and facilitate access to data. So quick processing of updates and queries is 
important. It is the job of the database system to translate updates and 
queries written in a nonprocedural language. 

 

Figure 1.2: Database Architecture 

 



Storage Manager: 
A storage manager is a program module that provides the interface 

between the low-level data stored in the database and the application 
programs and queries submitted to the system. The storage manager is 
responsible for the interaction with the file manager. The storage manager 
translates the various DML statements into low-level file-system 
commands. Thus, the storage manager is responsible for storing, retrieving, 
and updating data in the database. 

 
Storage Manager Components: 
Authorization and integrity manager: It tests for the satisfaction of 
integrity constraints and checks the authority of users to access data. 

Transaction manager which ensures that the database itself remains in a 
consistent state despite system failures, and that concurrent transaction 
executions proceed without conflicting. 

File manager: which manages the allocation of space on disk storage and 
the data structures used to representing information stored on disk. 

Buffer manager:It is responsible for fetching data from disk storage into 
main memory. Storage manager implements several data structures as part 
of the physical system implementation. Data files are used to store the 
database itself. Data dictionary is used to stores metadata about the structure 
of the database, in particular the schema of the database. 

 
Query Processor Components: 

DDL interpreter:It interprets DDL statements and records the definitions 
in the data dictionary. 

DML compiler: It translates DML statements in a query language into an 
evaluation plan consisting of low-level instructions that the query 
evaluation engine understands. 

Query evaluation engine:It executes low-level instructions generated by 
the DML compiler. 

Application Architectures: 

Most users of a database system today are not present at the site of 
the database system, but connect to it through a network. We can therefore 
differentiate between client machines, on which remote database users’ 
work, and server machines, on which the database system runs. 

 
 

❖❖❖❖ 

 



2 
 

DATA MODELS 

Unit Structure 
2.0 Introduction 
2.1 Types of Data Models 

 

2.0​INTRODUCTION 
 

 
Data models define how the logical structure of a database is 

modelled. Data Models are fundamental entities to introduce abstraction in 
a DBMS. Data models define how data is connected to each other and how 
they are processed and stored inside the system. The very first data model 
could be flat data-models, where all the data used are to be kept in the 
same plane. Earlier data models were not so scientific; hence they were 
prone to introduce lots of duplication and update anomalies. The following 
models are 

 

2.1​TYPES OF DATA MODELS: 
 

 
An Object Based Logical Model also known as conceptual data 

model which provides representation according to the way many users 
perceive data. Most popular conceptual data model is Entity Relationship 
Model which is based on the concepts of entity, relationship and attributes. 
Object based logical models provide flexible structuring capabilities and 
allow data constraints to be specified explicitly. 

 
2.1.1​Entity Relationship Model 

The ER (Entity relationship) based on the collection of basic 
objects, called entities and relationships among these objects. The 
diagrammatic notation associated with ER model, are also known as ER 
diagrams. The ER model employs three basic concepts entity sets 
relationship sets and attributes. An entity is an object in the real world that 
is distinguishable from all other objects. An entity set is a set of entities of 
the same type that share the same properties or attributes. Attributes are 
descriptive properties possessed by all members of an entity set. 

2.1.2​Object Oriented Model 
The object-oriented data model is an adaptation of the object- 

oriented programming language paradigm to database systems. The model 
is based on the concept of encapsulating data and code that operates on that 
data in an object. Entities in the sense of the ER model are 

 



represented as objects with attributes values represented by instance 
variables within the object. The values stored in an instance variable are 
itself an object. Thus, a containment relationship i.e., is-part-of relationship 
is established among objects. 

 
2.1.3​Physical data model 

This model provides details of how data is stored on the computer 
storage media and meant for software specialist. This model hides many 
details of data storage on disk but can be implemented on a computer 
system directly. I is used in traditional commercial DBMS and based on the 
concepts of record structure with fixed format; hence it is also known as 
record based data model. The use of fixed length records simply the 
physical implementation of the database. The relational model is a primary 
data model in commercial data processing application. 

2.1.4​Relational data model 
This model uses a collection of tables to represent both data and the 

relationship among data. Tables are known as relations in relational 
database. Each relation consists of multiple columns and each column has 
unique name. This table has one column for each domain and one row for 
each tuple. Each column has a unique name which is called as attribute of 
the relation. The set of attributes are called as relation schema. 

 
2.1.5​Network data model 

The network model allows more general connections among the 
nodes. Network model has the ability to handle many –to – much 
relationship. The network data model is an abstraction of the design 
concepts used in the implementation of database. 

 
2.1.6​Hierarchical data model 

Data is sorted hierarchically in a tree like structure using parent 
child relationship, either in top down or bottom-up approach. This model 
uses pointers to navigate between stored data using hierarchical tree. Based 
on one-to-many relation. 

 
2.1.7​Client server architecture: 

The client/server architecture was developed to deal with computing 
environment in which a large number of PCs, workstations, file servers, 
printers, data base servers, Web servers, e-mail servers, and other software 
and equipment are connected via a network. The idea is to define 
specialized servers with specific functionalities. For example, it is possible 
to connect a number of PCs or small workstations as clients to a file server 
that maintains the files of the client machines. Another machine can be 
designated as a printer server by being connected to various printers; all 
print requests by the clients are forwarded to this machine. Webservers or 
e-mail servers also fall into the specialized server category. The resources 
provided by specialized servers can be accessed by many client machines. 
The clientmachines provide the user with the appropriate interfaces to 
utilize these servers, as well as with local processing power to run local 

 



applications. This concept can be carried over to other software packages, 
with specialized programs such as a CAD(computer-aided design) package 
being stored on specific server machines and being made accessible to 
multiple clients. Some machines would be client sites only (for example, 
diskless workstations or workstations or PCs with disks that have only 
client software installed). 

 
 

Figure 2.1: Client/Server architecture 
 
 
 
 

❖❖❖❖ 

 



3 
 

ENTITY RELATIONSHIP MODEL 

Unit Structure 
3.0 Introduction 
3.1 Types of Attributes 

 

3.0 INTRODUCTION 
 

 
Entity-Relationship Model or simply ER Model is a high-level data 

model diagram. In this model, we represent the real-world problem in the 
pictorial form to make it easy for the stakeholders to understand. It is also 
very easy for the developers to understand the system by just looking at the 
ER diagram. We use the ER diagram as a visual tool to represent an ER 
Model. ER diagram has the following three components: 

 
●​ Entities: Entity is a real-world thing. It can be a person, place, or even a 

concept. Example: Teachers, Students, Course, Building, 
Department,etc are some of the entities of a School Management 
System. 

●​ Attributes: An entity contains a real-world property called attribute. 
This is the characteristics of that attribute. Example: The entity teacher 
has the property like teacher id, salary, age, etc. 

●​ Relationship: Relationship  tells  how  two  attributes  are related. 
Example: Teacher works for a department. 

●​ Relationship set: A relationship set is a set of relationships of the same 
type. Formally it is a mathematical relation on (possibly non- distinct) 
sets. If are entity sets, then a relationship set R is a subset of Where  is  
a relationship.  For  example,  consider  the  two entity sets customer 
and account. 

●​ Key Constraints: All the values of primary key must be unique. The 
value of primary key must not be null. 

●​ Participation Constraints: We can capture participation constraints 
involving one entity set in a binary relationship, but little else (without 
resorting to CHECK constraints) 

●​ Weak entities: In a relational database, a weak entity is an entity that 
cannot be uniquely identified by its attributes alone; therefore, it must 
use a foreign key in conjunction with its attributes to create a primary 
key. 

 



●​ Aggregation: In aggregation, the relation between two entities is 
treated as a single entity. In aggregation, relationship with its 
corresponding entities is aggregated into a higher-level entity. 

 

3.1 TYPES OF ATTRIBUTES: 
 

 
1.​Simple Attributes 

Simple attributes are atomic attributes with independence meaning 
which cannot be further divided. For example, employee’s phone is an 
atomic attribute. 

 
2.​Composite Attributes: 

Composite are made up of more than one attributes. It can divide 
into smaller subparts, which represent more basic attributes with 
independent meanings. They sometimes form a hierarchy. The value of a 
composite attribute is the combination of the values of its components 
atomics attributes. For example, the Address attribute of the EMPLOYEE 
entity can be subdivided into Street_address, City, State and Zip. Composite 
attributes are useful to model situations in which a user sometimes refers to 
the composite attribute as a unit but at other times refers specifically to its 
components. 

 
 
 
 
 
 
 
 

 
Figure 3.1: Composite attribute Single 

valued attributes 
Single valued attributes consist of individual or single value for a 

particular entity. For example, Employee id attributes refers to only one 
employee ID. Age attribute for a person. There may be instances where an 
attribute has a set of values for a specific entity. Suppose we add to the 
instructor entity set. 

 
Multivalued Attributes: 

Multi valued attributes has a group of values for a specific entity. 
Multi valued attributes comes with upper and lower limits the number of 
values to be specified for an entity. For example, an employee may have 
more than one phone number. 

 



Stored Attributes: Stored attributes consist of attributes that are fetched 
directly from the entity. For Date_of_Birth 

Derived Attributes: Data that is derived using the data stored in the stored 
attributes set are known as Derived attributes. For example, Age can be 
calculated using the stored date_of _birth attribute. 

Entity type: an entity type defines a collection or set of entities that have 
the same attributes. Each entity type in the database is described by its name 
and attributes. For example, a college may want to store similar information 
concerning each of the students. Students can be entity types that share the 
same attributes, but each entity has its own values for each attribute. 

Entity Set: The collection of all entities of a particular entity type in the 
database at any point in time is called an entity set. The entity set is usually 
referred to using the same name as the entity type. For example student 
refers to both a type of entity as well as the current set of all student entities 
in the database. 

Relationship: An association among several entities is known as 
Relationship. 

 

Figure 3.2: Relationship 
 
 

Relationship set: 
A relationship set is a set of relationship of the same type. It is a 

mathematical relation on n>=2 entity sets. Diamonds represents the relationship 
sets. If E1,E2,E3…….En are entity set then a relationship set R is a subset 
of {(e1,e2….en) | e1 ∈E1, e2 ∈E2…..en∈En where (e1,e2,……en) is a 
relationship. 

 

Figure 3.3: Relationship set Degree 
of relationship type 

The degree of a relationship type is the number of participating 
entity types. A relationship type of degree two is called binary which are the 
most common one. A relationship type of degree three is called ternary. 
Higher degree relationships are more complex. Relationship in 

 



databases is often binary. Some relationships that appear to be non-binary 
could actually be better represented by several binary relationships. 

 
For example, one could create a ternary relationship parent, relating a child 
to his mother and father, such a relationship could also be represented by 
two binary relationships, mother and father relating a child to his mother 
and father separately. Using the two relationships mother and father 
provides us a record of a child’s mother, even if we are not aware of the 
father’s identity; a null value would be required if the ternary relationship 
parent is used. Using binary relationship sets is preferable in this case. For 
simplicity purpose it is always possible to replace a non- binary (n-ary, for 
n>2) relationship set by a number of distinct binary relationship sets. 

Mapping Cardinality 
The relationship set are of one to one, one to many, many to one or many to 
many. To distinguish among these types, either a directed line (  ) or an 
undirected line (  )between the relationship set and the entity set is drawn. 

●​ One to one: 

A directed line is drawn from the relationship set advisor to both 
entity sets instructor and student. This indicates that an instructor 
may advise at most one student, and a student may have at most one 
advisor. 

●​ One to many: 
A directed line is drawn from the relationship set advisor to the 
entry set instructor and an undirected line to the entity set student. 
This indicates that an instructor may advise many students, but a 
student may have at most one advisor. 

●​ Many to one: 
An undirected line drawn from the relationship set advisor to the 
entity set instructor and a directed line to the entity set student. This 
indicates that an instructor may advise at most one student, but a 
student may have many advisors. 

●​ Many to many: 
an undirected line drawn from the relationship set advisor to both 
entity sets instructor and student. This indicates that an instructor 
may advise many students, and a student may have many advisors. 

 



 
 

Figure 3.4: mapping cardinalities 
 
 

One to One​ One to many 

 
Many to one​ Many to many 

Key constraint: 
A Key or uniqueness constraint on the attributes of entities helps to 

identify relationship uniquely, and thus distinguish relationship from each 
other. No two entities are allowed to have exactly the same. 

 
Specialization 

Specialization is a process of creating sub parts of an entity type. 
Generalization is a bottom-up approach, while Specialization is a top- down 
approach. One higher level entity can be broken down into two lower-level 
entities by specialisation. The term "specialization" refers to a subset of an 
entity set that shares certain common characteristics. Normally, the 
superclass is described first, followed by the subclass and its related 
attributes, and finally the relationship set. For example, In an 

 



employee management system, EMPLOYEE entity can be specialized as 
TESTER or DEVELOPER based on what role they play in the company. 

Figure 3.5: Specialization 
 

Generalization 
It’s a reverse process of abstraction, where in the difference amongst 

the entity sets are suppressed and they are generalized together into a single 
entity type. Distinctions are made explicitly in case of generalization with 
top-down approach. Commonality is defined using generalization and 
expressed using containment relationship. It creates a relationship between 
higher-level entities set to successive hierarch of subclass entity set. The 
design process may also proceed in a bottom-up manner, in which multiple 
entities sets are synthesized into a higher-level entity set on the basis of 
common features. For example, Faculty and Student entities can be 
generalized and create a higher-level entity Person. 

 



 
Figure 3.6: Generalization 

 
AGGREGATION 

In aggregation, the relation between two entities is treated as a 
single entity. In aggregation, relationship with its corresponding entities is 
aggregated into a higher-level entity. For example, Center entity offers the 
Course entity act as a single entity in the relationship which is in a 
relationship with another entity visitor. In the real world, if a visitor visits a 
coaching center then he will never enquiry about the Course only or just 
about the Center instead he will ask the enquiry about both. 

 
Figure 3.7: Aggregation 

 



Summary of Notation in ER diagram 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure3.8: summary of ER notation 
Entity Vs Attributes 

While identifying the attributes of an entity set, it is sometimes not 
clear whether a property should be modelled as an attribute or as an entity 
set (and related to the first entity set using a relationship set). For example, 
consider adding address information to the Employees entity set. One 
option is to use an attribute address. This option is appropriate if we need to 
record only one address per employee, and it suffices to think of an 

 



address as a string. An alternative is to create an entity set called Addresses 
and to record associations between employees and addresses using a 
relationship. 

 
Entity vs Relationship 

The nature of ER modelling can thus make it difficult to recognize 
underlying entities, and we might associate attributes with relationships 
rather than the appropriate entities. In general, such mistakes lead to 
redundant storage of the same information and can cause many problems. 

 
 
 

 

❖❖❖❖ 

 



4 
RELATIONAL DATA MODEL 

Unit Structure 
4.0​Introduction 
4.1​Relation 
4.2​Attribute Types 
4.3​Domain 
4.4​Properties of Relations 
4.5​Relational Model Notation 
4.6​Characteristics of Relation 

 

4.0​INTRODUCTION 
 

 
In this chapter, we will study the concepts of relation, tuples and 

attributes. We will further look at the meaning of the term integrity and the 
various integrity constraints. The relational model is very simple and 
elegant: a database is a collection of one or more relations, where each 
relation is a table with rows and columns. This simple tabular representation 
enables even novice users to understand the contents of a database, and it 
permits the use of simple, high-level languages to query the data. The major 
advantages of the relational model over the older data models are its simple 
data representation and the ease with which even complex queries can be 
expressed. 

 

4.1​RELATION 
 

A relation is a set of tuples. A database is a collection of relations. A 
relation is a mathematical entity corresponding to a table. Each row in a 
table represents a fact that corresponds to and entity or a relationship that 
exists. Each row is called a tuple. Formally, the column headings of the 
table are the attributes of a relation. 

 



attributes 
(or columns) 

 
 
 
 

 
tuples 

(or rows) 
 
 
 
 
 
 
 
 
 

Figure 4.1: Relation 
 

4.2​ATTRIBUTE TYPES 
 

The set of allowed values for each attribute is called the domain of 
the attribute. Attribute values are (normally) required to be atomic; that is, 
indivisible. The special value null is a member of every domain, indicated 
that the value is “unknown”. The null value causes complications in the 
definition of many operations. An attribute or a combination of attributes 
that is used to identify the records uniquely is known as super key. 
Candidate key is defined as minimal super key or irreducible super key; 
used to identify the records uniquely. A candidate key that is used by the 
database designer for unique identification of each row in a table is known 
as primary key. A primary Key can consist of one or more attributes of a 
table, known as composite key. The candidate key not chosen by database 
designer as a primary key is known as alternate key. A foreign key is an 
attribute or combination of attribute in one table that points to the primary 
key of another table. 

 

4.3​DOMAIN 
 

A relation is subset of Cartesian product of a list of domains. A 
table with n attributes must be subset of D1 * D2 * D3 * …… * Dn. A 
domain can be Atomic or Non-Atomic. Atomic Domains are indivisible. 
Non-Atomic Domain contains composite values. 

 



 

4.4​PROPERTIES OF RELATIONS 
 

o​ Name of the relation is distinct from all other relations. 
o​ Each relation cell contains exactly one atomic (single) value 
o​ Each attribute contains a distinct name 
o​ Attribute domain has no significance 
o​ tuple has no duplicate value 
o​ Order of tuple can have a different sequence 

 

4.5​RELATIONAL MODEL NOTATION 
 

 
Following notations used in Relational model 

1.​A relation schema R of degree n is denoted by R(A1,A2,…..An). 

2.​The uppercase letters Q, R and S denote relation names. 

3.​The lowercase letters q, r and s denote relation states. 

4.​The letters t, u and v denote tuples. 

5.​ In general, the name of a relation schema such as EMPLOYEE also 
indicates the current set of tuples in that relation- the current relation 
state whereas EMPLOYEES (Eid,Ename,…) refers only to the relation 
schema. 

6.​ An attribute can be qualified with the relation name R to which it 
belongs by using the dot notation R.A. For example ‘EMPLOYEE.Eid’ 
or ‘EMPLOYEE. Ename’. all attribute name in a particular relation 
must be distinct. 

 

4.6​CHARACTERISTICS OF RELATION 
 

 
Following are some of the characteristics of relation. 

1.​Ordering of tuples in a relation: 
a)​ A relation is defined as a set of tuples. Mathematically elements of a set 

have no order among them hence tuples in a relation do not have any 
particular order. 

b)​ However, in a file, records are physically stored on disk or in memory, 
so there always is an order among the records. 

c)​ When we display a relation as a table the rows are displayed in a certain 
order. 

 
2.​ Ordering of values within a tuple and an alternative definition 
of a relation: 
a)​ according to the preceding definition of a relation, an n-tuple is an 

ordered list of a n values, so the ordering of values in a tuple and hence 

 



of attributes in a relation schema is important. 

 



b)​ however, at a more abstract level, the order of attributes and their values 
is not that important as long as the correspondence between attributes 
and values is maintained. 

 
3.​Values and NULLs in the tuples: 

a)​ Each value in a tuple is an atomic value that is; it is not divisible into 
components within the framework of the basic relational model. Hence 
composite and multivalued attributes are not allowed. 

b)​This model is sometimes called the flat relational model. 

c)​ Much of the theory behind the relational model was developed with this 
assumption in mind, which is called the first normal form assumption. 

d)​ ​Hence multivalued attributes must be represented by separated 
relations, and composite attributes are represented only by their simple 
component attributes in the basic relational model. 

 
RELATIONAL CONSTRAINTS 

The meaning of constraint is Restriction. There are generally many 
restrictions or constraints on the actual values in a database state. 
Constraints on databases can generally be divided into five main categories. 
1.​ Domain constraint 
2.​ Tuple Uniqueness constraint 
3.​ Key constraint 
4.​ Entity Integrity constraint 
5.​ Referential Integrity constraint 

 
1.​Domain Constraint 

Domain constraint defines the domain or set of values for an 
attribute. It specifies that the value taken by the attribute must be the atomic 
value from its domain. The data type of domain includes string, character, 
integer, time, date, currency, etc. The value of the attribute must be 
available in the corresponding domain. 

 
2.​Tuple Uniqueness constraint 

Tuple Uniqueness constraint specifies that all the tuples must be 
necessarily unique in any relation. 

 
3.​Key constraint 

Key constraint specifies that in any relation-All the values of 
primary key must be unique. The value of primary key must not be null. 

 
4.​Entity Integrity constraint 

The entity integrity constraint states that primary key value can't be 
null. This is because the primary key value is used to identify individual 
rows in relation and if the primary key has a null value, then we can't 
identify those rows. A table can contain a null value other than the primary 
key field. 

 



5.​Referential Integrity constraint 
A referential integrity constraint is specified between two tables. 

 
In the Referential integrity constraints, if a foreign key in Table 1 

refers to the Primary Key of Table 2, then every value of the Foreign Key in 
Table 1 must be null or be available in Table 2. 

 
Figure 4.2: Referential integrity 

 
 
 
 

❖❖❖❖ 

 



5 
ER TO TABLE 

 
Unit Structure 
5.1​Rules for converting ER to Table 

 

5.1 RULES FOR CONVERTING ER TO TABLE 
 

 
1.​Convert all the entities in the diagram to tables. 

2.​ All single valued attributes of an entity is converted to a column of the 
table. 

3.​ Key attribute in the ER diagram becomes the primary key of the table. 
Declare the foreign key column, if applicable. 

4.​any multi valued attributes are converted into new table. 

5.​ any composite attributes are merged into same table as different 
columns. Derived attributes can be ignored. 

 
For example: 

Figure 5.1: ER diagram 

 



There are the following steps which need to be considered before 
developing table: 

 
Entity type becomes a table: 
a) In the given ER diagram, LECTURE, STUDENT, SUBJECT and 

COURSE forms individual tables. 

 
All single-valued attribute becomes a column for the table: 
a)​ In the STUDENT entity, STUDENT_NAME and STUDENT_ID from 

the column of STUDENT table. 

b)​ Similarly, COURSE_NAME and COURSE_ID form the column of 
COURSE table and so on. 

 
A key attribute of the entity type represented by the primary key: 
a)​ In the given ER diagram, COURSE_ID, STUDENT_ID, SUBJECT_ID 

and LECTURE_ID are the key attribute of the entity. 

 
The multivalued attribute is represented by a separate table: 

a)​ In the student table, a hobby is a multivalued attribute. So, it is not 
possible to represent multiple values in a single column of STUDENT 
table. 

b)​ ​Hence we create a table STUD_HOBBY with column name 
STUDENT_ID and HOBBY. Using both the column, we create a 
composite key. 

 
Composite attribute represented by components: 
a)​ In the given ER diagram student address is a composite attribute. It 

contains CITY, PIN, DOOR#, STREET and STATE. In the STUDENT 
table, these attributes can merge as an individual column. 

 
Derived attributes are not considered in the table: 
a)​ In the STUDENT table, age is the derived attribute. It can be calculated 

at any point of time by calculating the difference between current date 
and Date of Birth. 

 



 
Figure 5.2: table structure of given ER diagram 

 
 
 
 
 
 
 

❖❖❖❖ 

 



Unit II 

6 
SCHEMA REFINEMENT AND NORMAL 

FORMS 

Unit Structure 
6.0​Objectives 
6.1​Functional dependencies 
6.2​Normalization 
6.3​Types of Normal forms 
6.4​Lossless join decomposition 

 

6.0​OBJECTIVES 
 

In this chapter, we'll look at what functional dependencies are, how 
to recognise them, and how to infer functional dependencies using inference 
rules. We'd dig deeper into data normalisation and the various normal forms 
-1NF,2NF,3NF and BCNF. We'll look at how larger tables can be broken 
down into smaller ones without losing data at the end of this chapter. 

 
6.1​FUNCTIONALDEPENDENCIES 

 

 
A functional dependency is a constraint between two sets of 

attributes from the database. Suppose that our relational database schema 
has n attributes A1, A2, … , An; let us think of the whole database as being 
described by a single universal. relation schema R = {A1, A2, … , An}. We 
do not imply that we will actually store the database as a single universal 
table; we use this concept only in developing the formal theory of data 
dependencies. A functional dependency is a property of the semantics or 
meaning of the attributes. The database designers will use their 
understanding of the semantics of the attributes of R—that is, how they 
relate to one another—to specify the functional dependencies that should 
hold on all relation states (extensions) r of R. Relation extensions r(R) that 
satisfy the functional dependency constraints are called legal relation states 
(or legal extensions) of R. 

 

6.2​NORMALIZATION 
 

The normalization is a process first proposed by Codd in the year 
1972. Normalization of data can be considered a process of analysing the 

 



given relation schemas based on their FDs and primary keys to achieve the 
desirable properties of minimizing redundancy and minimizing the 
insertion, deletion and update anomalies. It is a process which proceeds in 
top-down fashion by evaluating each relation against the criteria for normal 
forms and decomposing relations as necessary. The goal is to generate a set 
of relation schemas that allows us to store information without unnecessary 
redundancy. It also allows easy retrieval of information. The approach is to 
design schemas that are in an appropriate normal form. To determine 
whether a relation schema is in one of the desirable normal forms, 
additional information about the real world is needed to be depicted in the 
database. Normalisation is based on the functional dependencies. 

 

6.3​TYPES OF NORMAL FORMS 
 

 
FIRST NORMAL FORM 

 
In the relational model, a domain is atomic if elements of the 

domain are considered to be indivisible units. 
 

A relation schema R is in first normal form (1NF) if the domains of 
all attributes of R are atomic. 

 
It is defined to disallow multivalued attributes, composite attributes 

their combinations, relations within relations or relations as attribute values 
within tuples. it states that domain of an attribute must include only atomic 
(simple, indivisible) values and that the value of any attribute in a tuple 
must be a single value from the domain of that attribute. the only attribute 
values permitted by 1NF are single atomic values. For example, Relation 
EMPLOYEE is not in 1NF because of multi-valued attribute 
EMP_PHONE. 

 

 
The decomposition of the EMPLOYEE table into 1NF has been 

shown below: 

 



 

SECOND NORMAL FORM: 
A relation schema R is in 2NF, if it satisfies 1NF and if every non- 

prime attribute A in R is fully functionally dependent on primary key of R. 
2NF is based on the concept of full functions dependency. A functional 
dependency X→Y is a full functional dependency if removal of any 
attribute A from X means that the dependency does not hold any more. 
Let's assume, a school can store the data of teachers and the subjects they 
teach.  In  a  school,  a  teacher  can  teach  more  than  one  subject. 

 
 

In the given table, non-prime attribute TEACHER_AGE is 
dependent on TEACHER_ID which is a proper subset of a candidate key. 
That's why it violates the rule for 2NF. To convert the given table into 2NF, 
we decompose it into two tables: 

 

 



 
 

THIRD NORMAL FORM 
If a relation is in 2NF and does not have any transitive partial 

dependency, it is in 3NF. The 3NF algorithm is used to decrease data 
duplication. It's also used to ensure data consistency. The relation must be in 
third normal form if there is no transitive dependency for non-prime 
characteristics. For every non-trivial function dependency X Y, a relation is 
in third normal form if it meets at least one of the following conditions. 

1.​ X is a super key 
2.​ Y is a prime property, which means that each of its elements is part 

of a candidate key. 

3.​ 

Non-prime attributes: In the given table, all attributes except EMP_ID are 
non-prime. 

Here, EMP_STATE & EMP_CITY dependent on EMP_ZIP and EMP_ZIP 
dependent on EMP_ID. The non-prime attributes (EMP_STATE, 
EMP_CITY) transitively dependent on super key(EMP_ID). It violates the 
rule of third normal form. 

That's why we need to move the EMP_CITY and EMP_STATE to the new 
<EMPLOYEE_ZIP> table, with EMP_ZIP as a Primary key. 

 



 
 

BCNF (BOYCE CODD NORMAL FORM) 
The advanced form of 3NF is BCNF. It's more stringent than 3NF.A 

table is in BCNF if every functional dependency X → Y, X is the super key 
of the table.The table should be in 3NF for BCNF, and LHS is super 
important for every FD.Consider the following scenario: a corporation with 
workers who work in multiple departments. 

 

 
Candidate key: {EMP-ID, EMP-DEPT} 

The table is not in BCNF because neither EMP_DEPT nor EMP_ID 
alone are keys. 
To convert the given table into BCNF, we decompose it into three tables: 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Candidate keys: 

 
For the first table: EMP_ID 
For the second table: EMP_DEPT 
For the third table: {EMP_ID, EMP_DEPT} 
Now, this is in BCNF because left side part of both the functional dependencies 
is a key. 

 



 

6.4​LOSSLESS JOIN DECOMPOSITION 
 

Normalisation leads to decomposition of relation into multiple tables in 
database. The decomposition should always be lossless to avoid 
problems like loss of information. Decomposition should guarantee that 
the join will result in the same relation as it was decomposed. A 
relational table is decomposed in multiple tables, in such a way that the 
content of the original table be obtained by joining the decomposed 
parts. This is called lossless-join or non-additive join decomposition. 
The lossless join decomposition is defined with respect to functional 
dependencies. 

 
 
 
 
 
 
 
 
 

❖❖❖❖ 

 



7 
 

RELATIONAL ALGEBRA 

Unit structure: 
7.1​Introduction 
7.2​Selection 
7.3​Projection 
7.4​Set operations 
7.5​Joins 
7.6​Equi join and natural joins 

 

7.1​INTRODUCTION 
 

 
A procedural query language is relational algebra. It outlines a 

step-by-step procedure for obtaining the query's result. It performs queries 
with the help of operators. 

Fig 2.1 : Types Of Operation In Relational Algebra 
 

7.2​SELECTION OPERATION 
 

The select operation finds tuples that match a predicate. It is denoted by 
sigma (σ). 
Notation: σ p(r) 

Where: 
σ is used for selection prediction 
r is used for relation 
p is used as a propositional logic formula which may use 
connectors like: AND OR and NOT. These relational can use as 
relational operators like =, ≠, ≥, <, >, ≤. 

 



For example find all the loan details where branch name is “Perryride”. 
σ BRANCH_NAME="perryride" (LOAN) 

 

7.3​PROJECT OPERATION: 
 

 
This operation displays a list of the properties we want to present in 

the final product. The remaining attributes are removed from the table. It is 
denoted by ∏. 
Notation: ∏ A1, A2, An (r) 
Where 
A1, A2, A3 is used as an attribute name of relation r. 
For example: 
List the names and city of all customers. 
∏ NAME, CITY (CUSTOMER) 

 

7.4​SET OPERATION 
 

 
Union operation: 
Assume you have two tuples, R and S. All tuples that are either in R or S, or 
both in R and S, are included in the union operation. It eliminates the 
duplicate tuples. It is denoted by ∪. 

Notation: R ∪ S 

The following conditions must be met by a union operation: 
●​ The attribute of the same number must be shared by R and S. 
●​ Duplicate tuples are eliminated automatically. 

Consider two relations, BORROW and DEPOSITOR. 
∏ CUSTOMER_NAME (BORROW) ∪ ∏ CUSTOMER_NAME (DEPOSITOR) 

Set Operation: 
Assume you have two tuples, R and S. All tuples in both R and S 

are included in the set intersection operation.It is denoted by intersection 
∩. 
Notation: R ∩ S 

 
For example: 
Using the above DEPOSITOR table and BORROW table. 
∏ CUSTOMER_NAME (BORROW) ∩ ∏ CUSTOMER_NAME (DE 
POSITOR) 

 
Set Difference: 

Assume you have two tuples, R and S. All tuples that are in R but 
not in S are included in the set intersection operation. It is denoted by 
intersection minus (-). 

Notation: R - S 

 



Example: Using the above DEPOSITOR table and BORROW table 
∏ CUSTOMER_NAME (BORROW) - 
∏ CUSTOMER_NAME (DEPOSITOR) 

 
Cartesian product: 

Each row in one table is combined with each row in the other table 
using the Cartesian product. A cross product is another name for it. It is 
denoted by X. 

 
Notation: E X D 

 
Rename Operation: 

The output relation is renamed using the rename method. Rho (ρ) is 
the symbol for it.For example, we can use the rename operator to rename 
STUDENT relation to STUDENT1. 

ρ(STUDENT1, STUDENT) 
 

7.5​JOINS: 
 

 
If and only if a specific join condition is satisfied, a Join action joins 

related tuples from separate relations. It's indicated by⋈. 

Operation: (EMPLOYEE ⋈ SALARY) 

Types of Joins: 
●​ Natural Join: 

A natural join is the set of tuples of all combinations in R and S that are equal 
on their common attribute names.It is denoted by ⋈.Let's use the 
EMPLOYEE and SALARY tables. 

∏EMP_NAME, SALARY (EMPLOYEE ⋈ SALARY) 

●​ Outer Join: 
The join operation is extended by the outer join operation. It's utilised to 
deal with information that's lacking. 

(EMPLOYEE ⋈ FACT_WORKERS) 

An outer join is of three types. Left outer join, right outer 
join and full outer join. 

Left outer join: 
The set of tuples in R and S that are equivalent on their shared 

attribute names is called the left outer join.In the left outer join, tuples in R 
have no matching tuples in S. It is denoted by ⟕.Using the above 
EMPLOYEE table and FACT_WORKERS table. 

EMPLOYEE ⟕ FACT_WORKERS 

 



Right outer join: 
The set of tuples in R and S that are equivalent on their shared 

attribute names is called the right outer join.The set of tuples in R and S that 
are equivalent on their shared attribute names is called the right outer join.It 
is denoted by ⟕.Using the above EMPLOYEE table and FACT_WORKERS 
Relation. 

EMPLOYEE ⟕ FACT_WORKERS 

Full outer join: 
The full outer join is like a left or right join, except it includes all 

rows from both tables.Tuples in R that have no matching tuples in S and 
tuples in S that have no matching tuples in R in their common attribute 
name are used in full outer join.It is denoted by ⟕.Using the above 
EMPLOYEE table and FACT_WORKERS table. 

EMPLOYEE ⟕ FACT_WORKERS 
 

7.6​EQUI-JOIN: 
 

 
An inner join is another name for it. It's the most prevalent type of 

connection. It is based on data that has been matched according to the 
equality criteria. The comparison operator is used in the equi join. 

 
CUSTOMER ⋈ PRODUCT 

 
 
 
 

 

❖❖❖❖ 

 



8 
DDL STATEMENTS 

Unit structure: 
8.1​Creating Databases 
8.2​Using Databases 
8.3​Creating Tables with integrity constraints 
8.4​Altering Tables 
8.5​Renaming Tables 
8.6​Dropping Tables 
8.7​Backing Up and Restoring databases 

 

8.1 CREATING DATABASES: 
 

 
SQL DDL commands are used to create schemas and tables and 

gives an overview of basic data types used in creating a database. SQL uses 
some terms such as table, row and column which are knows as relation, 
tuple and attribute respectively. The basic command is CREATE command. 
It can not only create table but also schemas, domains and views. 

CREATE DATABASE Database_Name; 
 

In this syntax, Database_Name specifies the name of the database 
which we want to create in the system. Just after the 'Create Database' 
keyword, we must type the database name in the query. The database we 
wish to make should have a clear and distinct name that can be easily 
recognised. The name of the database should be no more than 128 
characters long. 

CREATE TABLE command: In a database, the Construct TABLE 
statement is used to create tables.If you wish to make a table, you'll need to 
give it a name and specify each column's data type. 

 
Create table "tablename" 
("column1" "data type", 
"column2" "data type", 
"column3" "data type", 
... 
"columnN" "data type"); 
For example: 
Create table Employee( 
Eid varchar2(20), 
Enamechar(30)) 

 



DATATYPES: 

CHAR(Size) It is used to specify a fixed length string that can 
contain numbers, letters, and special characters. 
Its size can be 0 to 255 characters. Default is 1. 

VARCHAR(Size) It is used to specify a variable length string that 
can contain numbers, letters, and special 
characters. Its size can be from 0 to 65535 
characters. 

BINARY(Size) It is equal to CHAR() but stores binary byte 
strings. Its size parameter specifies the column 
length in the bytes. Default is 1. 

VARBINARY(Size) It is equal to VARCHAR() but stores binary byte 
strings. Its size parameter specifies the maximum 
column length in bytes. 

TEXT(Size) It holds a string that can contain a maximum 
length of 255 characters. 

TINYTEXT It holds a string with a maximum length of 255 
characters. 

MEDIUMTEXT It holds a string with a maximum length of 
16,777,215. 

LONGTEXT It holds a string with a maximum length of 
4,294,967,295 characters. 

ENUM(val1,​ val2, 
val3,...) 

It is used when a string object having only one 
value, chosen from a list of possible values. It 
contains 65535 values in an ENUM list. If you 
insert a value that is not in the list, a blank value 
will be inserted. 

SET( 
val1,val2,val3,​ ) 

It is used to specify a string that can have 0 or 
more values, chosen from a list of possible 
values. You can list up to 64 values at one time 
in a SET list. 

BLOB(size) It is used for BLOBs (Binary Large Objects). It 
can hold up to 65,535 bytes. 

 

 



 

8.3​ CREATING TABLES WITH 

INTEGRITY CONSTRAINTS: 
 

●​ NOT NULL − Ensures that a column cannot have NULL value. 

●​ DEFAULT − Provides a default value for a column when none is 
specified. 

●​ UNIQUE − Ensures that all values in a column are different. 

●​ PRIMARY Key − Uniquely identifies each row/record in a 
database table. 

●​ FOREIGN Key − Uniquely identifies a row/record in any of the 
given database table. 

●​ CHECK − The CHECK constraint ensures that all the values in a 
column satisfies certain conditions. 

●​ INDEX − Used to create and retrieve data from the database very 
quickly. 

 

8.4​ALTERING TABLES: 
 

ALTER TABLE command is used to add, delete or modify columns in an 
existing table. You should also use the ALTER TABLE command to add 
and drop various constraints on an existing table. The basic syntax of an 
ALTER TABLE command to add a New Column in an existing table is as 
follows. 

ALTER TABLE table_name ADD column_namedatatype; 
The basic syntax of an ALTER TABLE command to DROP COLUMN 

in an existing table is as follows. 
 

ALTER TABLE table_name DROP COLUMN column_name; 
 

DROP TABLE statement is used to remove a table definition and all the 
data, indexes, triggers, constraints and permission specifications for that 
table. 

The basic syntax of this DROP TABLE statement is as follows − 
 

DROP TABLE table_name; 
 

8.5​RENAME OPERATION: 
 

 
ALTER TABLE table_name RENAME TO new_table_name; 

 



 

8.6​BACKING UP AND RESTORING DATA: 
Reasons of Failure in a Database 

There can be multiple reasons of failure in a database because of 
which a database backup and recovery plan is required. Some of these 
reasons are: 

●​ User Error - Normally, user error is the biggest reason of data 
destruction or corruption in a database. To rectify the error, the database 
needs to be restored to the point in time before the error occurred. 

●​ Hardware Failure - This can also lead to loss of data in a database. 
The database is stored on multiple hard drives across various locations. 
These hard drives may sometimes malfunction leading to database 
corruption. So, it is important to periodically change them. 

●​ Catastrophic Event - A catastrophic event can be a natural calamity 
like a flood or earthquake or deliberate sabotage such as hacking of the 
database. Either way, the database data may be corrupted, and backup 
may be required. 

Methods of Backup 
The different methods of backup in a database are: 

●​ Full Backup - This method takes a lot of time as the full copy of the 
database is made including the data and the transaction records. 

●​ Transaction Log - Only the transaction logs are saved as the backup in 
this method. To keep the backup file as small as possible, the previous 
transaction log details are deleted once a new backup record is made. 

●​ Differential Backup - This is similar to full back up in that it stores 
both the data and the transaction records. However only that 
information is saved in the backup that has changed since the last full 
backup. Because of this, differential backup leads to smaller files. 

 
Database Recovery 

There are two methods that are primarily used for database 
recovery. These are: 

●​ Log based recovery - In log-based recovery, logs of all database 
transactions are stored in a secure area so that in case of a system 
failure, the database can recover the data. All log information, such 
as the time of the transaction, its data etc. should be stored before 
the transaction is executed. 

●​ Shadow paging - In shadow paging, after the transaction is 
completed, its data is automatically stored for safekeeping. So, if the 
system crashes in the middle of a transaction, changes made by it 
will not be reflected in the database. 

 

❖❖❖❖ 

 



9 
DML STATEMENTS 

Unit Structure 
9.1​DML Commands 
9.2​Conditional select 
9.3​In clause (Set membership Test) 
9.4​Between clause (Range Test) 
9.5​Order By clause 
9.6​ Group By 
9.7Aggregate functions 

 

9.1​DML COMMANDS 
 

 
DML commands are used to modify the database. It is responsible 

for all form of changes in the database.The command of DML is not auto- 
committed that means it can't permanently save all the changes in the 
database. They can be rollback. 

Here are some commands that come under DML: 
o​ INSERT 
o​ UPDATE 
o​ DELETE 

 
INSERT: The INSERT statement is a SQL query. It is used to 

insert data into the row of a table. 

Syntax: 
INSERT INTO TABLE_NAME 
(col1, col2, col3,​ col N) 
VALUES (value1, value2, value3,​ valueN); 

 
For example: 
INSERT INTO javatpoint (Author, Subject) VALUES ("Sonoo", "DBMS"); 

UPDATE: This command is used to update or modify the value of a column in 
the table. 

 
Syntax: 

UPDATE table_name SET [column_name1= value1,​ column_na 
meN = valueN] [WHERE CONDITION] 

 



For example: 
UPDATE students 
SET User_Name = 'Sonoo' 
WHERE Student_Id = '3' 

 
DELETE: It is used to remove one or more row from a table. 

 
Syntax: 

DELETE FROM table_name [WHERE condition]; 
 

For example: 
DELETE FROM javatpoint 
WHERE Author="Sonoo"; 

 

9.2​CONDITIONAL SELECT 
 

 
SELECT statement is used to fetch the data from a database table which 
returns this data in the form of a result table. These result tables are called 
result-sets. 

 
The basic syntax of the SELECT statement is as follows − 

 
SELECT column1, column2, columnN FROM table_name; 

Here, column1, column2... are the fields of a table whose values you 
want to fetch. If you want to fetch all the fields available in the field, then 
you can use the following syntax. 

 
SELECT * FROM table_name; 
For example: 
Select * from employee; 

 
WHERE clause is used to specify a condition while fetching the data from 
a single table or by joining with multiple tables. If the given condition is 
satisfied, then only it returns a specific value from the table. You should use 
the WHERE clause to filter the records and fetching only the necessary 
records. The WHERE clause is not only used in the SELECT statement, but 
it is also used in the UPDATE, DELETE statement, etc. 

 
The basic syntax of the SELECT statement with the WHERE clause is 
as shown below. 
SELECT column1, column2, columnN 

FROM table_name 

WHERE [condition] 

You can specify a condition using the comparison or logical operators like 
>, <, =, LIKE, NOT, etc. 

 



The following code is an example which would fetch the ID, Name and 
Salary fields from the CUSTOMERS table, where the salary is greater than 
2000 − 

SQL> SELECT ID, NAME, SALARY 

FROM CUSTOMERS 

WHERE SALARY >2000; 

This would produce the following result − 

| ID | NAME​ | SALARY  | 

| 4 | Chaitali| 6500.00 | 

|5 | Hardik  | 8500.00 | 

|6 | Komal​ | 4500.00 | 

|7 | Muffy​ | 10000.00 | 
 

9.3​IN OPERATOR (SET MEMBERSHIP TEST): 
 

 
The IN conditional operator actually performs a set membership 

test. To put it another way, it's used to see if a value (expressed before the 
keyword IN) is "in" the list of values provided after the keyword IN. For 
example 

SELECT employeeid, lastname, salary 

FROM employee_info 

WHERE lastname IN ('Hernandez', 'Jones', 'Roberts', 'Ruiz'); 

This statement will select the employeeid, lastname, salary from the 
employee_info table where the lastname is equal to either: Hernandez, 
Jones, Roberts, or Ruiz. It will return the rows if it is ANY of these values. 

 

9.4​BETWEEN (RANGE TEST): 
 

 
The BETWEEN conditional operator is used to test to see whether 

or not a value (stated before the keyword BETWEEN) is "between" the two 
values stated after the keyword BETWEEN.For example: 

SELECT employeeid, age, lastname, salary 

FROM employee_info 

WHERE age BETWEEN 30 AND 40; 

This statement will select the employeeid, age, lastname, and salary 
from the employee_info table where the age is between 30 and 40 
(including 30 and 40). 

 



 

9.5​ORDER BY clause: 
 

ORDER BY clause is used to sort the data in ascending or 
descending order, based on one or more columns. Some databases sort the 
query results in an ascending order by default. 

 
The basic syntax of the ORDER BY clause is as follows − 

SELECT column-list 

FROM table_name 

[WHERE condition] 

[ORDER BY column1, column2, ..columnN] [ASC | DESC]; 

In the ORDER BY clause, you can utilise more than one column. Make 
sure that whichever column you're using to sort is included in the column- 
list. For example: 

SQL> SELECT * FROM CUSTOMERS 

ORDER BY NAME, SALARY; 
 

9.6​GROUP BY operator: 
 

GROUP BY clause is used in collaboration with the SELECT 
statement to arrange identical data into groups. This GROUP BY clause 
follows the WHERE clause in a SELECT statement and precedes the 
ORDER BY clause. 

 
The basic syntax of a GROUP BY clause is shown in the following 

code block. The GROUP BY clause must follow the conditions in the 
WHERE clause and must precede the ORDER BY clause if one is used. 

SELECT column1, column2 

FROM table_name WHERE 

[ conditions ] 

GROUP BY column1, column2 

ORDER BY column1, column2 

Consider the CUSTOMERS table is having the following records − 
| ID | NAME​ | AGE | ADDRESS  | SALARY  | 
|1 | Ramesh  | 32 | Ahmedabad | 2000.00 | 
| 2 | Khilan| 25 | Delhi​ | 1500.00 | 
|3 | kaushik | 23 | Kota​ | 2000.00 | 
| 4 | Chaitali| 25 | Mumbai​ | 6500.00 | 
|5 | Hardik  | 27 | Bhopal​ | 8500.00 | 
|6 | Komal​ | 22 | MP​ | 4500.00 | 
|7 | Muffy​ | 24 | Indore​ | 10000.00 | 

 



If you want to know the total amount of the salary on each customer, then 
the GROUP BY query would be as follows. 

SQL>SELECT NAME, SUM(SALARY) FROM CUSTOMERS 
GROUP BY NAME; 

 
This would produce the following result − 
| NAME​ | SUM(SALARY) | 
| Chaitali |​ 6500.00 | 
| Hardik  |​ 8500.00 | 
| kaushik |​ 2000.00 | 
| Khilan  |​ 1500.00 | 
| Komal​ |​ 4500.00 | 
| Muffy​ |​ 10000.00 | 
| Ramesh  |​ 2000.00 | 

 

9.7​AGGREGATE FUNCTION: 
 

 
Aggregation function is used to perform the calculations on multiple 

rows of a single column of a table. It returns a single value.It is also used to 
summarize the data. There are five aggregate functions which are follows: 

1)​ COUNT 
2)​ MAX 
3)​ MIN 
4)​ AVG 
5)​ SUM 

 
1.​ COUNT FUNCTION 

COUNT function is used to Count the number of rows in a database 
table. It can work on both numeric and non-numeric data types.COUNT 
function uses the COUNT(*) that returns the count of all the rows in a 
specified table. COUNT(*) considers duplicate and Null. 

Syntax: COUNT(*) or COUNT( [ALL|DISTINCT] expression ) 

 
2.​ SUM Function 

Sum function is used to calculate the sum of all selected columns. It 
works on numeric fields only. 

Syntax: SUM() or SUM( [ALL|DISTINCT] expression ) 

Example: SUM() 

SELECT SUM(COST) FROM PRODUCT_MAST; 

 



3.​ AVG function 

The AVG function is used to calculate the average value of the numeric type. 
AVG function returns the average of all non-Null values. 

Syntax: AVG() or AVG( [ALL|DISTINCT] expression ) 

Example: 

SELECT AVG(COST) 

FROM PRODUCT_MAST; 

4.​ MAX Function 
MAX function is used to find the maximum value of a 
certain column. This function determines the largest 
value of all selected values of a column. Syntax: 
MAX() or MAX( [ALL|DISTINCT] expression ) 

Example: 
1.​ SELECT MAX(RATE) 
2.​ FROM PRODUCT_MAST; 

 
5.​ MIN Function 
MIN function is used to find the minimum value of a certain column. This 
function determines the smallest value of all selected values of a column. 
SyntaxMIN() or MIN( [ALL|DISTINCT] expression ) 
Example: 
SELECT MIN(RATE) 
FROM PRODUCT_MAST; 

 
 
 
 
 

❖❖❖❖ 

 



Unit - III 

10 
FUNCTINS, JOIN, SUBQUERIES, VIEWS, 

DATA PROTECTION 
AND DCL STATEMENTS 

Unit Structure 
10.0​ Objectives 
10.1​ Introduction 
10.2​ Functions 

10.2.1​ String Functions 
10.2.2​ Math Functions 
10.2.3​ Date Functions 

10.3​ Join 
10.3.1​ Equi joins 
10.3.2​ Non-Equi joins 

10.4​ Subqueries 
10.4.1​ Nested subqueries, subqueries with IN 
10.4.2​ subqueries with ALL 
10.4.3​ subqueries with ANY 
10.4.4​ correlated subqueries 
10.4.5​ subqueries withEXISTS 
10.4.6​ subqueries restrictions 

10.5​ Database Protection 
10.5.1​ Security Issues 
10.5.2​ Threats to Databases 
10.5.3​ Security Mechanisms 
10.5.4​ Role of DBA 

10.6​ Views 
10.6.1​ Create Views 
10.6.2​ DropViews 
10.6.3​ Update Views 

10.7​ DCL Statements 
10.7.1​ Privileges introduction 
10.7.2​ Granting/revoking privileges, 
10.7.3​ Viewing privileges, 

 



10.8​ List of References 

 



10.9​ Bibliography 
10.10​ Unit End Exercises 

 

10.0 OBJECTIVES: - 
 

 
After going through this unit, you will be able to: 

●​ Learn functions in SQL, like math string and date 
●​ state the DCL statements in SQL 
●​ describe the basic concepts in views, subqueries, join and system 

privilege 
●​ illustrate the role of a DBA 

 

10.1 INTRODUCTION: - 
 

 
A Subquery or Inner query or a Nested query is a query within another SQL 
query and embedded within the WHERE clause. A subquery is used to 
return data that will be used in the main query as a condition to further 
restrict the data to be retrieved. 

 
Views can join and simplify multiple tables into a single virtual table. 
Views can act as aggregated tables, where the database engine aggregates 
data (sum, average, etc.) and presents the calculated results as part of the 
data. Views can hide the complexity of data. 

 
SQL functions are sub-programs, which are commonly used and re-used 
throughout SQL database applications for processing or manipulating data. 
All SQL database systems have DDL (data definition language) and DML 
(data manipulation language) tools to support the creation and maintenance 
of databases. 

A JOIN clause is used to combine rows from two or more tables, based on a 
related column between them. 

 
A privilege is a right to execute a particular type of SQL statement or to 
access another user's object. Some examples of privileges include the right 
to: Connect to the database (create a session) Create a table. 

 

 10.2 FUNCTIONS: -​  
 

10.2.1​String Functions: 
 

CONCAT: 
It merges two or more strings or a string and a data value together 
Example: 
SELECT CONCAT('summer ','18') FROM DUAL; 

 



 
 

INSTR: 
The INSTR() function returns the position of the first occurrence of a string in 
another string. 
Example: 
SELECT INSTR("RamSham.com", "3") AS MatchPosition; 

 
LEFT: 
This function returns the leftmost n characters from the string str. If the string is 
empty, it returns NULL. 
Example: 
SELECT LEFT('RamSham', 4); 

 
RIGHT: 
This function returns the rightmost n characters from the string str. If the 
string is empty, it returns NULL. 
Example: 
SELECT RIGHT('RamSham', 5); 

 
MID: 
The MID() function extracts a substring from a string (starting at any position). 
Example: 
SELECT MID("SQL Tutorial", 5, 3) AS ExtractString; 

 
LENGTH: 
Find outs the length of given string. 
Example: 
SELECT LENGTH (‘abcd’) FROM DUAL 

 
LOWER: 
Converts a string to all lowercase characters. 
Example: 
SELECT LOWER (‘ABCD’) FROM DUAL 

 
UPPER: 
Converts a string to all uppercase characters. 
Example: 
SELECT UPPER (‘abcd’) FROM DUAL 

 
REPLACE: 
It returns character string with each occurrence of search string replaced with 
[repstring] 
Example: 
SELECT REPLACE (‘Tick and Tock’, ‘T’,’C’) FROM DUAL 

 
STRCMP: 
This function compares both the strings str1 and str2. It returns 0 if both 
strings are equal, 1 if str1 is greater than str2 and -1 if if str2 is greater than 
str1. 

 



 
 

Example: 
SELECT STRCMP('HARRY', 'HARRY'); 

 
TRIM: 
The TRIM() function removes the space character OR other specified 
characters from the start or end of a string. 
Example: 
SELECT TRIM('#! ' FROM '​ #SQL Tutorial!​ ') AS TrimmedString; 

 
LTRIM: 
Removesleading spaces from a string 
Example: 
SELECT LTRIM (‘abcd) FROM DUAL; 

 
RTRIM: 
Removes trailing spaces from a string 
Example: 
SELECT RTRIM (‘abcd’) FROM DUAL; 
10.2.2​ Math 
Functions ABS: 
This function returns the absolute value of X. 
Example: 
Select abs(-6); 

 
CEIL: 
This returns the smallest integer value that is either more than X or equal to 
it. 
Example: 
SELECT CEIL(5.7); 

 
FLOOR: 
This returns the largest integer value that is either less than X or equal to it. 
Example: 
SELECT FLOOR(5.7); 

 
MOD: 
The variable X is divided by Y and their remainder is returned. 
Example: 
SELECT MOD(9,5); 

 
POW: 
This function returns the value of x raised to the power of Y 
Example: 
SELECT POWER(2,5); 

 



SQRT: 
This function returns the square root of X. 
Example: 
SELECT SQRT(9); 

 
ROUND: 
This function returns the value of X rounded off to the whole integer that is 
nearest to it. 
Example: 
SELECT ROUND(5.7); 
10.2.3​ Date Functions :- 
ADDDATE: 
ADDDATE() is a synonym for DATE_ADD(). 
Example: 
SELECT DATE_ADD('1998-01-02', INTERVAL 31 DAY); 

 
DATEDIFF: 
DATEDIFF() returns expr1 . expr2 expressed as a value in days from one 
date to the other. Both expr1 and expr2 are date or date-and-time 
expressions. Only the date parts of the values are used in the calculation. 
Example :- 
SELECT DATEDIFF('1997-12-31 23:59:59','1997-12-30'); 

 
DAY: 
The DAY() is a synonym for the DAYOFMONTH() function. Returns the 
day of the month for date, in the range 0 to 31. 
Example: 
SELECT DAYOFMONTH('1998-02-03'); 

 
MONTH: 
Returns the month for date, in the range 0 to 12. 
Example: 
SELECT MONTH('1998-02-03') 

 
YEAR: 
Returns the year for date, in the range 1000 to 9999, or 0 for the .zero. date. 
Example: 
SELECT YEAR('98-02-03'); 

 
HOUR: 
Returns the hour for time. The range of the return value is 0 to 23 for time- 
of-day values. However, the range of TIME values actually is much larger, 
so HOUR can return values greater than 23. 
Example: 
SELECT HOUR('10:05:03'); 

 



MIN: 
Returns the minute for time, in the range 0 to 59. 
Example: 
SELECT MINUTE('98-02-03 10:05:03'); 

 
SEC: 
Returns the second for time, in the range 0 to 59. 
Example: 
SELECT SECOND('10:05:03'); 

 
NOW: 
Returns the current date and time as a value in 'YYYY-MM-DD 
HH:MM:SS' or YYYYMMDDHHMMSS format, depending on whether 
the function is used in a string or numeric context. This value is expressed 
in the current time zone. 
Example: 
SELECT NOW(); 

 
REVERSE: 
The REVERSE() function reverses a string and returns the result. 
Example: 
SELECT REVERSE('SQL Tutorial'); 

 

10.3​JOINS 
 

 
●​ Joins are used to relate information in different tables. 
●​ A Join condition is a part of the sql query that retrieves rows from 

two or more tables. 
●​ A SQL Join condition is used in the SQL WHERE Clause of select, 

update, delete statements. 
 
 

Syntax for joining two tables is: 
SELECT col1, col2, col3... 
FROM table_name1, table_name2 
WHERE table_name1.col2 = table_name2.col1; 

 
If a sql join condition is omitted or if it is invalid the join operation will 
result in a Cartesian product. The Cartesian product returns a number of 
rows equal to the product of all rows in all the tables being joined. 

 
Example: 
If the first table has 20 rows and the second table has 10 rows, the result 
will be 20 * 10, or 200 rows. 
This query takes a long time to execute. 

 
Let us use the below two tables to explain the sql join conditions. 

 



Database table "product"; 
 

Product_id Product_name Supplier_name Unit_price 

100 Camera Nikon 300 

101 Television LG 100 

102 Refrigerator Videocon 150 

103 IPod Apple 75 

104 Mobile Nokia 50 

 
Database table "order_items"; 

 
order_id product_id total_units customer 
5100 104 30 Infosys 
5101 102 5 Satyam 
5102 103 25 Wipro 
5103 101 10 TCS 

Joins can be classified into Equi join and Non Equi join. 
1.​ SQL Equi joins 
2.​ SQL Non equi joins 

 
10.3.1​ SQLEqui joins 
It is a simple sql join condition which uses the equal sign as the comparison 
operator. Two types of Equijoins are SQL Outer join and SQL Inner join. 

 
Example: 
We can get Information about a customer who purchased a product and the 
quantity of product. 

 
An Equi-join is classified into two categories: 

a)​ SQL Inner Join 
b)​ SQL Outer Join 

 
a)​ SQL Inner Join: 

All the rows returned by the sql query satisfy the sql join condition specified. 
 

Example: 
To display the product information for each order the query will be as given 
below. 

 
Since retrieving the data from two tables, you need to identify the common 
column between these two tables, which is the product_id. 

 



QUERY: 
SELECT​ order_id,​ product_name,​ unit_price,​ supplier_name, 
total_units 
FROM product, order_items 
WHERE order_items.product_id = product.product_id; 

 
The columns must be referenced by the table name in the join condition, 
because product_id is a column in both the tables and needs a way to be 
identified. 

 
b)​ SQL Outer Join: 
●​ Outer join condition returns all rows from both tables which satisfy 

the join condition along with rows which do not satisfy the join 
condition from one of the tables. 

●​ The syntax differs for different RDBMS implementation. 
●​ Few of them represent the join conditions as” LEFT OUTER JOIN" 

and "RIGHT OUTER JOIN". 
 

Example 
Display all the product data along with order items data, with null values 
displayed for order items if a product has no order item. 

QUERY 
SELECT p.product_id, p.product_name, o.order_id, o.total_units 
FROM order_items o, product p 
WHERE o.product_id (+) = p.product_id; 

 
Output: 

Product_id product_name order_id total_units 
100 Camera   

101 Television 5103 10 
102 Refrigerator 5101 5 
103 IPod 5102 25 

 
SQL Self Join: 
A Self Join is a type of sql join which is used to join a table to it, 
particularly when the table has a FOREIGN KEY that references its own 
PRIMARY KEY. 

 
It is necessary to ensure that the join statement defines an alias for both copies 
of the table to avoid column ambiguity. 

 
Example 
SELECT a.sales_person_id, a.name, a.manager_id, b.sales_person_id, 
b.name 
FROM sales_person a, sales_person b 
WHERE a.manager_id = b.sales_person_id; 

 



10.3.2​SQL NON-EQUI JOIN: 
 

A Non Equi Join is a SQL Join whose condition is established using all 
comparison operators except the equal (=) operator. 
Like >=, <=, <, > 

 
Example: 
Find the names of students who are not studying either Economics, the sql 
query would be like, (let’s use Employee table defined earlier.) 

 
QUERY: 
SELECT first_name, last_name, subject FROM Employee 
WHERE subject != 'Economics' 

Output: 
first_name last_name subject 
Anajali Bhagwat Maths 
Shekar Gowda Maths 
Rahul Sharma Science 
Stephen Fleming Science 

 

10.4​SUBQUERIES 
 

 
A subquery is a SELECT statement with another SQL statement, like in the 
example below. 

 
SELECT * 
FROM product 
WHERE id IN (SELECT product_idFROM provider_offer WHERE 
provider_id = 156); 

 
Subqueries are further classified as either a correlated subquery or a nested 
subquery. They are usually constructed in such a way to return: 

 
a table 

 
SELECT MAX(average.average_price) 
FROM ( SELECTproduct_category, 
AVG(price)​ AS​ average_price​ FROM​ product​ GROUP​ BY 
product_category) average; 

 
or a value 

 
SELECT id 
FROM purchase 
WHERE value >( SELECT AVG(value) FROM purchasec); 

 



10.4.1​NestedSubqueries: - 
Nested subqueries are subqueries that don’t rely on an outer query. In other 
words, both queries in a nested subquery may be run as separate queries. 

 
This type of subquery could be used almost everywhere, but it usually takes 
one of these formats: 

 
SELECT 
FROM 
WHERE [NOT] IN (subquery) 
SELECT *FROM clientWHERE city IN (SELECT city FROM provider); 

The example subquery returns all clients that are FROM the same city as 
the product providers. 

 
The IN operator checks if the value is within the table and retrieves the 
matching rows. 

 
SELECTFROMWHERE​ expression​ comparison_operator​ [ANY| 
ALL] (subquery) 

 
10.4.2​Subquery With ALL Operator: 
The ALL operator compares a value to every value FROM the result table. 

 
For example, the following query returns all of the models and producers 
of bikes that have a price greater than the most expensive headphones. 

 
SELECT producer, model 
FROM product 
WHERE product_category = 'bike' 
AND​ price​ >ALL(​ SELECT​ price​ FROM​ product​ WHERE 
product_category = 'headphones'); 

Similar subquery but with ANY operator: 
 

10.4.3​Subquery With ANY Operator: 
The ANY operator compares a value to each value in a table and evaluates 
whether or not the result of an inner query contains at least one row. 

 
The following query returns all of the models and producers of bikes that 
have a price greater than at least one of the headphones. 

 
SELECT producer, model 
FROM product 
WHERE product_category = 'bike' 

 



AND​ price​ >ANY(SELECT​ price​ FROM​ product​ WHERE 
product_category = 'headphones'); 

You can also nest a subquery in another subquery. For example: 
 

Subquery Nested in Another Subquery Using IN Operator: 
This query returns producers and models of bikes that exist in provider’s 
offers FROM the USA. 

 
SELECT producer, model 
FROM product 
WHERE product_category = 'bike' 
AND id IN (SELECT distinct product_idFROMprovider_offer 
WHERE provider_id IN (SELECT id FROM provider WHERE 
country = 'USA' ) ); 

The same could be done using joins. 
 

SELECT product.producer, product.model 
FROM product, provider_offer, provider 
WHERE provider_offer.product_id = product.id 
AND provider_offer.provider_id = provider.id 
AND product_category = 'bike' 

AND provider.country = 'USA'; 
 

10.4.4​CorrelatedSubqueries:- 
Subqueries are correlated when the inner and outer queries are 
interdependent, that is, when the outer query is a query that contains a 
subquery and the subquery itself is an inner query. Users that know 
programming concepts may compare it to a nested loop structure. 

Let’s start with a simple example. 
 

The inner query calculates the average value and returns it. In the outer 
query’s WHERE clause, we filter only those purchases which have a value 
greater than the inner query’s returned value. 

 
Subquery Correlated in WHERE Clause 

 
SELECT id 
FROM purchase p1 
WHERE date > '2013-07-15' 

AND value >( SELECT AVG(value) FROM purchase p2 WHERE 
p1.date = p2.date ); 

 
The query returns purchases after 15/07/2014 with a total price greater than 
the average value FROM the same day. 

The equivalent example, but with joining tables. 

 



SELECT p1.id 
FROM purchase p1, purchase p2 
WHERE p1.date = p2.date 

AND p1.date> '2013-07-15' 
GROUP BY p1.idHAVING p1.value > AVG(p2.value); 

 
This example can also be written as a SELECT statement with a subquery 
correlated in a FROM clause. 

 
The subquery returns the table that contains the average value for each 
purchase for each day. We join this result with the Purchase table on 
column ‘date’ to check the condition date > ’15/07/2014'. 

 
SELECT id 
FROM 

purchase, 
( 

SELECT date, AVG(value) AS average_value 
FROM purchase 
WHERE date > '2013-07-15' 
GROUP BY date 

) average 
WHERE purchase.date = average.date 

AND purchase.date> '2013-07-15' 
AND purchase.value>average.average_value; 

 
Usually, this kind of subquery should be avoided because indexes can’t be 
used on a temporary table in memory. 

 
10.4.5​ Subquery With EXISTS:- 
The EXISTS operator checks if the row FROM the subquery matches any 
row in the outer query. If there’s no data matched, the EXISTS operator 
returns FALSE. 

Syntax 
SELECTFROMWHERE [NOT] EXISTS (subquery) 

Example: 
This Query returns all clients that ordered after 10/07/2013. 

SELECT id, company_name 
FROM client 
WHERE EXISTS( 

SELECT * 
FROM purchase 
WHERE client.id = purchase.client_id 
WHERE date > '2013-07-10' 

); 
When a subquery is used, the query optimizer performs additional steps 

 



before the results FROM the subquery are used. If a query that contains a 
subquery can be written using a join, it should be done this way. Joins 
usually allow the query optimizer to retrieve the data in a more efficient 
way. 

 
10.4.6​ Subquery Restrictions:- 
A subquery is subject to these restrictions: 

 
●​ The subquery_select_list can consist of only one column name, 

except in the exists subquery, where an (*) is usually used in place 
of the single column name. You can use an asterisk (*) in a nested 
select statement that is not an exists subquery. 

●​ Do not specify more than one column name. Qualify column names 
with table or view names if there is ambiguity about the table or 
view to which they belong. 

●​ Subqueries can be nested inside the WHERE or HAVING clause of 
an outer select, insert, update, or delete statement, inside another 
subquery, or in a select list. Alternatively, you can write many 
statements that contain subqueries as joins; Adaptive Server 
processes such statements as joins. 

●​ In Transact-SQL, a subquery can appear almost anywhere an 
expression can be used, if it returns a single value. SQL derived 
tables can be used in the from clause of a subquery wherever the 
subquery is used. 

●​ You cannot use subqueries in an order by, group by, or compute by 
list. 

●​ You cannot include a for browse clause in a subquery. 

●​ You cannot include a union clause in a subquery unless it is part of a 
derived table expression within the subquery. 

●​ The select list of an inner subquery introduced with a comparison 
operator can include only one expression or column name, and the 
subquery must return a single value. The column you name in the 
where clause of the outer statement must be join-compatible with 
the column you name in the subquery select list. 

●​ You cannot include text, unitext, or image datatypes in subqueries. 

●​ Subqueries cannot manipulate their results internally, that is, a 
subquery cannot include the order by clause, the compute clause, or 
the into keyword. 

●​ Correlated (repeating) subqueries are not allowed in the select 
clause of an updatable cursor defined by declare cursor. 

●​ There is a limit of 50 nesting levels. 

●​ The maximum number of subqueries on each side of a union is 50. 

 



●​ The where clause of a subquery can contain an aggregate function 
only if the subquery is in a having clause of an outer query and the 
aggregate value is a column from a table in the from clause of the 
outer query. 

●​ The result expression from a subquery is subject to the same limits 
as for any expression. The maximum length of an expression is 
16K. 

 

10.5​DATABASE PROTECTION: 
 

Database security is the protection of the database against intentional and 
unintentional threats that may be computer-based or non-computer-based. 
Database security is the business of the entire organization as all people use 
the data held in the organization's database and any loss or corruption to 
data would affect the day-to-day operation of the organization and the 
performance of the people. Therefore, database security encompasses 
hardware, software, infrastructure, people and data of the organization. 

Now there is greater emphasis on database security than in the past as the 
amount of data stored in corporate database is increasing and people are 
depending more on the corporate data for decision-making, customer 
service management, supply chain management and so on. Any loss or 
unavailability to the corporate data will cripple today's organization and will 
seriously affect its performance. Now the unavailability of the database for 
even a few minutes could result in serious losses to the organization. 

10.5.1​Security Issues 
 

Database security is a broad area that addresses many issues, including the 
following: 

 
●​ Various legal and ethical issues regarding the right to access 

certain information. 

for example, some information may be deemed to be private and 
can-not be accessed legally by unauthorized organizations or 
persons. In the United States, there are numerous laws governing 
privacy of information. 

●​ Policy issues at the governmental, institutional, or corporate 
level as to what kinds of information should not be made 
publicly available. 
for example, credit ratings and personal medical records. 

●​ System-related issues such as the system levels at which various 
security functions should be enforced. 
for example, whether a security function should be handled at the 

 



physical hardware level, the operating system level, or the DBMS 
level. 

●​ The need in some organizations to identify multiple security 
levels and to categorize the data and users based on these 
classifications. 
for example, top secret, secret, confidential, and unclassified. The 
security policy of the organization with respect to permitting access 
to various classifications of data must be enforced. 

 
10.5.2​Threats to Databases. 
Threats to databases can result in the loss or degradation of some or all of 
the following commonly accepted security goals: integrity, avail-ability, and 
confidentiality. 

 
●​ Loss of integrity. Database integrity refers to the requirement that 

information be protected from improper modification. Modification 
of data includes creation, insertion, updating, changing the status of 
data, and deletion. Integrity is lost if unauthorized changes are made 
to the data by either intentional or accidental acts. If the loss of 
system or data integrity is not corrected, continued use of the 
contaminated system or corrupted data could result in inaccuracy, 
fraud, or erroneous decisions. 

●​ Loss of availability. Database availability refers to making objects 
available to a human user or a program to which they have a 
legitimate right. 

●​ Loss of confidentiality. Database confidentiality refers to the 
protection of data from unauthorized disclosure. The impact of 
unauthorized disclosure of confidential information can range from 
violation of the Data Privacy Act to the jeopardization of national 
security. Unauthorized, unanticipated, or unintentional disclosure 
could result in loss of public confidence, embarrassment, or legal 
action against the organization. 

 
To protect databases against these types of threats, it is common to 
implement four kinds of control measures: access control, inference control, 
flow control, and encryption. 

 
10.5.3​Security Mechanisms 
To protect the database, we must take security measures at several levels: 

●​ Physical: The sites containing the computer systems must be 
secured against armed or surreptitious entry by intruders. 

●​ Human: Users must be authorized carefully to reduce the chance of 
any such user giving access to an intruder in exchange for a bribe or 
other favours. 

●​ Operating System: No matter how secure the database system is, 

 



weakness in operating system security may serve as a means of 
unauthorized access to the database. 

●​ Network: Since almost all database systems allow remote access 
through terminals or networks, software-level security within the 
network software is as important as physical security, both on the 
Internet and in networks private to an enterprise. 

●​ Database System: Some database-system users may be authorized 
to access only a limited portion of the database. Other users may be 
allowed to issue queries, but may be forbidden to modify the data. It 
is responsibility of the database system to ensure that these 
authorization restrictions are not violated. 

 
10.5.4​Discretionary security mechanisms. 
These are used to grant privileges to users, including the capability to 
access specific data files, records, or fields in a specified mode (such as 
read, insert, delete, or update). 

 
Discretionary Access Control Based on Granting and Revoking 
Privileges 
The typical method of enforcing discretionary access control in a database 
system is based on the granting and revoking of privileges. Let us consider 
privileges in the context of a relational DBMS. In particular, we will discuss 
a system of privileges somewhat similar to the one originally developed for 
the SQL language (see Chapters 4 and 5). Many current relational DBMSs 
use some variation of this tech-nique. The main idea is to include 
statements in the query language that allow the DBA and selected users to 
grant and revoke privileges. 

1.​Types of Discretionary Privileges 
In SQL2 and later versions, the concept of an authorization identifier is 
used to refer, roughly speaking, to a user account (or group of user 
accounts). For simplicity, we will use the words user or account 
interchangeably in place of authorization identifier. The DBMS must 
provide selective access to each relation in the database based on specific 
accounts. Operations may also be controlled; thus, having an account does 
not necessarily entitle the account holder to all the functionality provided by 
the DBMS. Informally, there are two levels for assigning privileges to use 
the database system: 

 
●​ The account level. At this level, the DBA specifies the particular 

privileges that each account holds independently of the relations in 
the database. 

●​ The relation (or table) level. At this level, the DBA can control the 
privilege to access each individual relation or view in the database. 

●​ References privilege on R. This gives the account the capability to 
reference (or refer to) a relation R when specifying integrity 

 



constraints. This privilege can also be restricted to specific attributes of 
R. 

 
Notice that to create a view, the account must have the SELECT privilege 
on all relations involved in the view definition in order to specify the query 
that corresponds to the view. 

 
2.​Specifying Privileges through the Use of Views 
The mechanism of views is an important discretionary authorization 
mechanism in its own right. For example, if the owner A of a relation R 
wants another account B to be able to retrieve only some fields of R, then A 
can create a view V of R that includes only those attributes and then grant 
SELECT on V to B. The same applies to limiting B to retrieving only 
certain tuples of R; a view V can be created by defining the view by means 
of a query that selects only those tuples from R that A wants to allow B to 
access. 

3.​Revoking of Privileges 
In some cases it is desirable to grant a privilege to a user temporarily. For 
example, the owner of a relation may want to grant the SELECT privilege 
to a user for a specific task and then revoke that privilege once the task is 
completed. Hence, a mechanism for revoking privileges is needed. In SQL a 
REVOKE command is included for the purpose of cancelling privileges. 

 
4.​Propagation of Privileges Using the GRANT OPTION 
Whenever the owner A of a relation R grants a privilege on R to another 
account B, the privilege can be given to B with or without the GRANT 
OPTION. If the GRANT OPTION is given, this means that B can also grant 
that privilege on R to other accounts. Suppose that B is given the GRANT 
OPTION by A and that B then grants the privilege on R to a third account 
C, also with the GRANT OPTION. In this way, privileges on R can 
propagate to other accounts without the knowledge of the owner of R. If the 
owner account A now revokes the privilege granted to B, all the privileges 
that B propagated based on that privilege should automatically be revoked 
by the system. 

It is possible for a user to receive a certain privilege from two or more 
sources. For example, A4 may receive a certain UPDATE R privilege from 
both A2 and A3. In such a case, if A2 revokes this privilege from A4, A4 
will still continue to have the privilege by virtue of having been granted it 
from A3. If A3 later revokes the privilege from A4, A4 totally loses the 
privilege. Hence, a DBMS that allows propagation of privi-leges must keep 
track of how all the privileges were granted so that revoking of priv-ileges 
can be done correctly and completely. 

 
Role of DBA 

A person having who has central control over data and programs that access 
the data is called DBA. Following are the functions of the DBA. 

 



●​ Schema definition: DBA creates database schema by executing 
Data Definition Language (DDL) statements. 

●​ Storage structure and access method definition 

●​ Schema and physical organization modification: If any changes 
are to be made in the original schema, to fit the need of your 
organization, then these changes are carried out by the DBA. 

●​ Granting of authorization for data access: DBA can decide which 
parts of data can be accessed by which users. Before any user access 
the data, DBMS checks which rights are granted to the user by the 
DBA. 

●​ Routine maintenance: DBA has to take periodic backups of the 
database, ensure that enough disk space is available to store new 
data, ensure that performance of DBMS ix not degraded by any 
operation carried out by the users. 

●​ Performance monitoring: Here DBMS should respond to changes 
in requirements, i.e.,changing details of storage and access thereby 
organising the system so as to get the performance that is ` best for 
the enterprise'. 

 

10.6​VIEWS: - 
 

Definition: 

●​ A view is a virtual table that consists of columns from one or more 
tables. 

●​ A virtual table is like a table containing fields but it does not contain 
any data. In run time it contains the data and after that it gets free. 

●​ But table stores the data in database occupy some space. 

●​ Just like table, view contains Rows and Columns which is fully 
virtual based table. 

●​ Base Table -The table on which view is defined is called as Base 
table. 

10.6.1​Creating a VIEW 

This statement is used to create a view. 

Syntax: 

CREATE VIEW view_name 

 
●​ The CREATE statement assigns a name to the view and also gives 

the query which defines the view. 

●​ To create the view, one should must have privileges to access all of 
the base tables on which view is defined. 

 



●​ The create view can change name of column in view as per 
requirements. 

Horizontal View 
A Horizontal view will restrict the user’s access to only a few rows of the 
table. 

Example: 

Define a view for Sue (employee number 1004) containing only orders placed 
by customers assigned to her. 

CREATE VIEW SUEORDERS AS SELECT * 

FROM ORDERS WHERE CUST IN 

(SELECT​ CUST_NUM​ FROM​ CUSTOMERS​ WHERE 
CUST_REP=1004) 

Vertical View 
A vertical view restricts a user’s access to only certain columns of a table. 

Ex: 

CREATE VIEW EMP_ADDRESS AS 

SELECT​ EMPNO,​ NAME,​ ADDR1,​ ADDR2,​ CITY​ FROM 
EMPLOYEE 

ROW/COLUMN SUBSET VIEW. 

●​ Views can be used to restrict a user to access only selected set of rows 
and columns of a table in a database. 

●​ This view generally helps us to visualize how view can represent the 
base table. 

●​ This type of view is combination of both horizontal and vertical 
views. Ex: 

CREATE  VIEW  STUDENTS_PASSED  AS  SELECT  ROLLNO, 
NAME, PERCENTAGE 

FROM STUDENTS 

WHERE RESULT =’PASS’ 

Grouped View 

●​ A grouped view is one in which query includes GROUPBY 
CLAUSE. 

●​ It is used to group related rows of data and produce only one result 
row for each group. 

Ex: 

Find summary information of Employee Salaries in sales Department. 

CREATE VIEW Summary_Empl_Sal ( 

 



Total_Employees, Minimum_salary, Maximum_Salary, 
Average_salary, Total_salary) 

AS 

SELECT COUNT(EmpID), 

Min(Salary),​ Max(Salary),​ Avg(Salary),​ SUM(Salary),​ FROM 
Employee 

GROUP BY Department HAVING Department=’Sales’; 

View Call 

SELELCT *FROM Summary_Empl_Sal 
The above Query will give, 

Total No. Of Employees in sales Department, Minimum Salary in sales 
Department. 

Maximum​ Salary in​ sales​ Department.​ Average​ Salary in​ sales 
Department. 

Total Salary of Employees in sales Department. 

Joined Views 

●​ A Query based on more than one base table is called as Joined View. 

●​ It is also called as Complex View 

●​ This gives a way to simplify multi table queries by joining two or 
more table query in the view definition that draws its data from 
multiple tables and presents the query results as a single view. 

●​ The view once it is ready we can retrieve data from multiple tables 
without joining any table simply by accessing a view created. 

Ex: 

Company​ database​ find​ out​ all​ EMPLOYEES​ for​ respective 
DEPARTMENTS. 

CREATE VIEW Emp_Details As 

Select​ Employee,EmpID,​ Department,​ DeptID,​ Department, 
DeptName From 

Where Employee.DeptID=Department.DeptID; 
View Call 

SELECT * FROMEmp_Details 

 
10.6.2​DROPPING VIEW 

When a view is no longer needed, it can be removed by using DROP VIEW 
statement. 

 



Syntax: 

DROP VIEW <VIEW NAME> [CASCADE/RESTRICT] 
CASCADE: It deletes the view with all dependent view on original view. 

RESTRICT: It deletes the view only if they’re in no other view depends 
on this view. 

Example: 

Consider that we have view VABC and VPQR. ViewVPQR depends on VABC. 

Query: 

DROP view VABC 

If we drop VABC, then cascading affect takes place and view VPQR is also 
dropped. 

Thus, default option for dropping a view is CASCADE. The CASCADE 
option tells DBMS to delete not only the named view, but also query views 
that depend on its definition. But, 

QUERY: 

DROP view VABC RESTRICT 

Here, the query will fail because of RESTRICT option tells DBMS to 
remove the view only if no other views depend on it. Since VPQR depends 
on VABC, will cause an error. 

 
10.6.3​UPDATING VIEWS 

●​ Records can be updated, inserted, and deleted though views. 

●​ UPDATAEBLE VIEWS are those in which views are used against 
INSERT, DELETE and UPDATE statements. 

The following conditions must be fulfilled for view updates: 

●​ DISTINCT must not be specified; that is, duplicate rows must not 
be eliminated from the query results. 

●​ The FROM clause must specify only one updateable table; that is, 
the view must have a Single source table for which the user has the 
required privileges. If the source table is itself a view, then that view 
must meet these criteria. 

●​ Each select item must be a simple column reference; the select list 
cannot contain expressions, calculated columns, or column 
functions. 

 
●​ The WHERE clause must not include a subquery; only simple row- 

by-row search conditions may appear. 

●​ The query must not include a GROUP BY or a HAVING clause. 

 



The following code block has an example to update the age of Ramesh. 

UPDATE CUSTOMERS_VIEW 

SET AGE = 35 

WHERE name = 'Ramesh'; 

This would ultimately update the base table CUSTOMERS and the same 
would reflect in the view itself. 

 

10.7​DCLSTATEMENTS: - 
 

 
10.7.1​Introduction to Database privileges: 
When multiple users can access database objects, authorization can be 
controlled to these objects with privileges. Every object has an owner. 
Privileges control if a user can modify an object owned by another user. 
Privileges are granted or revoked either by the instance administrator, a user 
with the ADMIN privilege or, for privileges to a certain object, by the 
owner of the object. 

 
1)​ System Privileges: 
System privileges are privileges given to users to allow them to perform certain 
functions that deal with managing the database and the server 
e.g Create user, Create table, Drop table etc. 

 
2)​ Object Privileges: 
Object privileges are privileges given to users as rights and restrictions to 
change contents of database object – where database objects are things like 
tables, stored procedures, indexes, etc. 
Ex. Select,insert,delete,update,execute,references etc 

 
Data Control Language(DCL) is used to control privilege in Database. To 
perform any operation in the database, such as for creating tables, 
sequences or views we need privileges. 

 
10.7.2​DCL defines two commands: - 

●​ Grant: Gives user access privileges to database. 
●​ Revoke: Take back permissions from user. 

 
Procedure for granting privileges: 
Grant:This command is used to give permission to user to dooperations on 
the other user’s object. 
Syntax: 
Grant<object​ privileges>on<objectname>to<username>[with​ grant 
option] ; 
Example: 
GRANTSELECT, UPDATE ON student FROM BCA, MCA; 

 
Procedure for revoking privileges: 

 



Revoke: This command is used to withdraw the privileges that has been 

 



granted to a user. 
 

Syntax: 
Revoke<object privileges>on<object name>from<username> ; 

 
Example: 
REVOKE SELECT, UPDATE ON student FROM BCA, MCA; 

 
10.7.3​Viewing Privileges: 

 
✔​ To Allow a User to create Session 

grant create session to username; 
 

✔​ To Allow a User to create Table 
grant create table to username; 

 
✔​ To provide User with some Space on Tablespace to store Table 

alter user username quota unlimited on system; 
 

✔​ To Grant all privilege to a User 
Grantsysdba to username 

 
✔​ To Grant permission to Create any Table 

grant create any table to username 
 

✔​ To Grant permission to Drop any Table 
grant drop any table to username 

 
✔​ To take back Permissions revoke 

create table from username 

 

 


	1 
	INTRODUCTION TO DBMS 
	Unit Structure 
	1.0​OBJECTIVES 
	1.1​INTRODUCTION 
	1.2​OVERVIEW 
	1.3​ADVANTAGES 
	Data Administration: 
	Reduced Application Development Time: 

	1.4​TYPES OF USERS IN DBMS: 
	Database Administrator: 
	Naive users: 
	Application programmers: 
	Sophisticated users: 
	Specialized users: 

	1.5​LEVELS OF ABSTRACTION IN A DBMS: 
	Physical Level: 
	Logical Level: 
	View Level: 

	1.6​DATA INDEPENDENCE: 
	Physical Data Independence: 
	Logical Data Independence: 

	1.7​DBMS ARCHITECTURE 
	Figure 1.2: Database Architecture 
	Query Processor Components: 
	Application Architectures: 



	2 
	DATA MODELS 
	Unit Structure 
	2.0​INTRODUCTION 
	2.1​TYPES OF DATA MODELS: 
	2.1.1​Entity Relationship Model 
	2.1.2​Object Oriented Model 
	2.1.3​Physical data model 
	2.1.4​Relational data model 
	2.1.5​Network data model 
	2.1.6​Hierarchical data model 
	2.1.7​Client server architecture: 
	Figure 2.1: Client/Server architecture 



	3 
	ENTITY RELATIONSHIP MODEL 
	Unit Structure 
	3.0 INTRODUCTION 
	3.1 TYPES OF ATTRIBUTES: 
	1.​Simple Attributes 
	2.​Composite Attributes: 
	Figure 3.1: Composite attribute Single valued attributes 
	Multivalued Attributes: 
	Figure 3.2: Relationship 
	Figure 3.3: Relationship set Degree of relationship type 
	Mapping Cardinality 
	●​One to one: 
	●​One to many: 
	●​Many to one: 
	●​Many to many: 
	One to One​One to many 
	Specialization 
	Figure 3.5: Specialization 
	AGGREGATION 
	Entity vs Relationship 




	4 
	RELATIONAL DATA MODEL 
	Unit Structure 
	4.0​INTRODUCTION 
	4.1​RELATION 
	4.2​ATTRIBUTE TYPES 
	4.3​DOMAIN 
	4.4​PROPERTIES OF RELATIONS 
	4.5​RELATIONAL MODEL NOTATION 
	4.6​CHARACTERISTICS OF RELATION 
	1.​Ordering of tuples in a relation: 
	2.​Ordering of values within a tuple and an alternative definition of a relation: 
	3.​Values and NULLs in the tuples: 
	RELATIONAL CONSTRAINTS 



	5 
	ER TO TABLE 
	Unit Structure 
	5.1 RULES FOR CONVERTING ER TO TABLE 
	Figure 5.1: ER diagram 
	Entity type becomes a table: 
	All single-valued attribute becomes a column for the table: 
	A key attribute of the entity type represented by the primary key: 
	The multivalued attribute is represented by a separate table: 
	Composite attribute represented by components: 
	Derived attributes are not considered in the table: 
	Figure 5.2: table structure of given ER diagram 



	6 
	SCHEMA REFINEMENT AND NORMAL FORMS 
	Unit Structure 
	6.0​OBJECTIVES 
	6.1​FUNCTIONALDEPENDENCIES 
	6.2​NORMALIZATION 
	6.3​TYPES OF NORMAL FORMS 
	FIRST NORMAL FORM 
	SECOND NORMAL FORM: 

	6.4​LOSSLESS JOIN DECOMPOSITION 


	7 
	RELATIONAL ALGEBRA 
	Unit structure: 
	7.1​INTRODUCTION 
	7.2​SELECTION OPERATION 
	Where: 

	7.3​PROJECT OPERATION: 
	Where 

	7.4​SET OPERATION 
	Union operation: 
	Set Operation: 
	∏ CUSTOMER_NAME (BORROW) ∩ ∏ CUSTOMER_NAME (DE POSITOR) 
	Set Difference: 
	Cartesian product: 
	Rename Operation: 


	7.5​JOINS: 
	Types of Joins: 
	●​Outer Join: 
	Left outer join: 
	Full outer join: 

	7.6​EQUI-JOIN: 
	Unit structure: 

	8.1 CREATING DATABASES: 
	CREATE DATABASE Database_Name; 

	8.3​CREATING TABLES WITH INTEGRITY CONSTRAINTS: 
	8.4​ALTERING TABLES: 
	ALTER TABLE table_name ADD column_namedatatype; 
	ALTER TABLE table_name DROP COLUMN column_name; 

	8.5​RENAME OPERATION: 
	8.6​BACKING UP AND RESTORING DATA: 
	Reasons of Failure in a Database 
	Methods of Backup 
	Database Recovery 



	9 
	DML STATEMENTS 
	Unit Structure 
	9.1​DML COMMANDS 
	9.2​CONDITIONAL SELECT 
	SELECT column1, column2, columnN FROM table_name; 
	SELECT * FROM table_name; 
	The basic syntax of the SELECT statement with the WHERE clause is as shown below. 

	9.3​IN OPERATOR (SET MEMBERSHIP TEST): 
	9.4​BETWEEN (RANGE TEST): 
	9.5​ORDER BY clause: 
	The basic syntax of the ORDER BY clause is as follows − 

	9.6​GROUP BY operator: 
	Consider the CUSTOMERS table is having the following records − 
	If you want to know the total amount of the salary on each customer, then the GROUP BY query would be as follows. 
	This would produce the following result − 

	9.7​AGGREGATE FUNCTION: 
	1.​COUNT FUNCTION 
	2.​SUM Function 
	3.​AVG function 
	4.​MAX Function 
	5.​MIN Function 




	10 
	FUNCTINS, JOIN, SUBQUERIES, VIEWS, DATA PROTECTION 
	Unit Structure 
	10.0 OBJECTIVES: - 
	10.1 INTRODUCTION: - 
	CONCAT: 
	INSTR: 
	LEFT: 
	RIGHT: 
	MID: 
	LENGTH: 
	LOWER: 
	UPPER: 
	REPLACE: 
	STRCMP: 
	TRIM: 
	LTRIM: 
	RTRIM: 
	10.2.2​Math Functions ABS: 

	CEIL: 
	FLOOR: 
	MOD: 
	POW: 
	SQRT: 
	ROUND: 
	10.2.3​Date Functions :- ADDDATE: 

	DATEDIFF: 
	DAY: 
	MONTH: 
	YEAR: 
	HOUR: 
	MIN: 
	SEC: 
	NOW: 
	REVERSE: 

	10.3​JOINS 
	Database table "product"; 
	10.3.1​SQLEqui joins 
	a)​SQL Inner Join: 
	Example: 
	b)​SQL Outer Join: 
	SELECT p.product_id, p.product_name, o.order_id, o.total_units FROM order_items o, product p 
	SQL Self Join: 
	10.3.2​SQL NON-EQUI JOIN: 
	SELECT first_name, last_name, subject FROM Employee WHERE subject != 'Economics' 


	10.4​SUBQUERIES 
	SELECT * 
	FROM product 
	SELECT MAX(average.average_price) FROM ( SELECTproduct_category, 

	SELECT FROM 
	WHERE [NOT] IN (subquery) 
	SELECTFROMWHERE​expression​comparison_operator​[ANY| ALL] (subquery) 
	10.4.3​Subquery With ANY Operator: 
	Subquery Nested in Another Subquery Using IN Operator: 
	10.4.5​Subquery With EXISTS:- 
	SELECTFROMWHERE [NOT] EXISTS (subquery) 

	WHERE EXISTS( SELECT * 
	FROM purchase 
	10.4.6​Subquery Restrictions:- 
	10.5.1​Security Issues 
	●​Various legal and ethical issues regarding the right to access certain information. 
	●​Policy issues at the governmental, institutional, or corporate level as to what kinds of information should not be made publicly available. 
	●​System-related issues such as the system levels at which various security functions should be enforced. 
	●​The need in some organizations to identify multiple security levels and to categorize the data and users based on these classifications. 
	10.5.2​Threats to Databases. 
	10.5.3​Security Mechanisms 
	10.5.4​Discretionary security mechanisms. 
	Discretionary Access Control Based on Granting and Revoking Privileges 
	1.​Types of Discretionary Privileges 
	2.​Specifying Privileges through the Use of Views 
	3.​Revoking of Privileges 
	4.​Propagation of Privileges Using the GRANT OPTION 
	Role of DBA 


	10.6​VIEWS: - 
	10.6.1​Creating a VIEW 
	CREATE VIEW view_name 
	Horizontal View 
	CREATE VIEW SUEORDERS AS SELECT * FROM ORDERS WHERE CUST IN 
	Vertical View 

	CREATE  VIEW  STUDENTS_PASSED  AS  SELECT  ROLLNO, 
	Grouped View 

	AS 
	SELELCT *FROM Summary_Empl_Sal 
	Joined Views 

	10.6.2​DROPPING VIEW 
	DROP VIEW <VIEW NAME> [CASCADE/RESTRICT] 
	DROP view VABC 
	DROP view VABC RESTRICT 

	10.6.3​UPDATING VIEWS 
	UPDATE CUSTOMERS_VIEW SET AGE = 35 
	WHERE name = 'Ramesh'; 


	10.7​DCLSTATEMENTS: - 
	10.7.1​Introduction to Database privileges: 
	1)​System Privileges: 
	2)​Object Privileges: 
	10.7.2​DCL defines two commands: - 
	Procedure for granting privileges: 
	GRANTSELECT, UPDATE ON student FROM BCA, MCA; 
	REVOKE SELECT, UPDATE ON student FROM BCA, MCA; 




