
go/designdoctemplate | template version: 2022-01 | contact: jeffpang@
all design docs must follow go/designdocinstructions

Deletion Vectors High Level Design
Table of Contents
Table of Contents

Part I: Design sketch
Motivation
Requirements

Functional requirements
Non-functional requirements

Proposal sketch
The Life and Death of a Deletion Vector

Step 1 - Initial Creation by a DML Command
Step 2 - Reading the Current State
Step 3 - DML with existing DVs
Step 4 - Full Compaction

High-level Anatomy of a Deletion Vector

Part II: Overview of changes needed in Delta
Protocol Changes
Scan Changes
File and Column Statistics
DML Commands
Table Utility Commands

Optimize
Vacuum
Convert to Delta
Describe History
Generate

Appendix - Delta Protocol Changes
Log Format Change

New Add Action Format
New Remove Action Format
DeletionVectorDescriptor Format

Derived Fields
JSON Example 1 — On Disk with Relative Path (with Random Prefix)
JSON Example 2 — On Disk with Absolute Path
JSON Example 3 — Inline

Action Reconciliation Changes
Duplicate Actions
Tombstones

©2020, Databricks Inc., All Rights Reserved. For internal use only.

http://go.corp.databricks.com/designdoctemplate
http://go.corp.databricks.com/designdocinstructions

File Statistics
Number of Records
Column Statistics

Deletion Vector Format

Part I: Design sketch

Motivation
During Delta DML operations, both the semantics of cloud file systems as well as our guarantees
about transaction history in Delta prevent us from performing any in-place updates to files. When
updates are small compared to the total file size (e.g., a single row per file), this leads to an
enormous performance burden of having to rewrite the entire file for a small change (aka
Copy-on-write). A large fraction of DML statements that update anything, update a very small %
of all the rows in the files they touch. Deletion Vectors (DVs) are a mechanism to deal with the case
where updates are storedmore efficiently, by avoiding the expensive rewrite of the unmodified
data.

Requirements
Functional requirements
MUST:

● Must be able to correctly read all Delta tables with DVs.
● Must be able to VACUUM tables with DVs correctly
● Must be able to OPTIMIZE tables with DVs correctly, including compacting the DVs with

their associated data files to improve scan performance
● Delta CDF Readers must be able to read CDF-enabled tables with DVs.

SHOULD:
● Should have amechanism to expose tables with DVs via manually created External

Manifests
● Should be able to return a Delta table with DVs into a state where pre-DV reader

implementations can read it (“downgrade”).

Non-functional requirements
● Writing the deletion vectors should be at least as fast as rewriting the parquet file 99% of

the time.
● Writing deletion vectors should not producemore PUT requests to cloud storage than

rewriting the parquet file 99% of the time.
● Overhead of reading files with DVs compared to the same file without a DV should be

bounded relative to the size of the underlying file (e.g. no more than 2x overhead).
● Number of GET requests to cloud storage for scans should not increase by more than 1 for

©2021, Databricks Inc., All Rights Reserved. For internal use only.

each file with a DV, compared to fully compacted files.

Proposal sketch
The solution proposed in this document is to augment the parquet files of a Delta table with
separate “Deletion Vector” (DV) files, instead of rewriting them immediately.A DV is an optimized
bitmap that represents a set of rows (of a particular parquet file) that are no longer valid
(“deleted”) in a particular version of a Delta Table. The n-th row of a Parquet file has row index
n, and is associated with the n-th bit of the DV.

DVs will be created by DML commands that delete or update existing data. As the name implies,
DVs are a natural representation for deleted rows. For updated rows, DVs are more of an “invalid”
marker for the old content of the row, while the current state is kept in a separate parquet file;
usually together with other updates and perhaps even inserts that happened during the same
command.

When reading a Delta table at a version that contains DVs, care must be taken to “ignore” (filter
out) the invalid rows during scans. As reading files with DVs is going to be somewhat slower than
reading a fully compacted file without DVs, the mechanism itself is a tradeoff between write and
read performance. When some fraction of invalid rows is reached, it likely becomes beneficial to
compact out the latest DV by rewriting the remaining valid rows into a new file, as subsequent
accesses (both in read-only and DML operations) will benefit from the reduced scan overhead.
Thus DVs are fundamentally a temporary construct that allows us to amortize rewrite costs.

The Life and Death of a Deletion Vector
To give an intuition of how Deletion Vectors would work in Delta, the following illustrates a
high-level “happy path” of a DV from initial creation to being eliminated by a completely
compacted file.

Step 1 - Initial Creation by a DML Command
Let’s say we start a Delta table at version v1with 2 files: file_a.parquet and
file_b.parquet. Each file has 1000 rows.
A simplified Delta Logmight look something like this:

Delta Log Snapshot at Version 1

Type Path DV Path★

AddFile file_a.parquet NULL

AddFile file_b.parquet NULL

★ For simplicity, we only include the DV path in the examples. However, depending on the chosen solution, this might
be replaced by an inlined DV, or (DV Path, Offset, Length) tuple for storing multiple DVs in a single file. See Protocol
Changes.

At this initial state, we then execute a DML command (say UPDATE) that updates 2 rows, both in

©2021, Databricks Inc., All Rights Reserved. For internal use only.

file_a.parquet at indices 24 and 42. The DML commands work in two phases
1. Find rows to modify: Read the table (after data skipping) to find out which files and specific

rows need to be updated. Based on that, generate the deletion vector file.
2. Write update rows: Read the rows to bemodified and write out updated rows.

At the end of this command, assuming the transactions succeeds, the new file
file_c.parquetwill be added to the delta log as a new version in which the original entry for
file_a.parquet is a tombstone and the new entry for the remaining legal rows from it
associates the DV file_a_dv_1.binwith the parquet file.

COMMIT 2

Type Path DV Path

RemoveFile file_a.parquet NULL

AddFile file_c.parquet NULL

AddFile file_a.parquet file_a_dv_1.bin

Delta Log Snapshot at Version 2

Type Path DV Path

Tombstones

RemoveFile file_a.parquet NULL

Current State

AddFile file_b.parquet NULL

AddFile file_c.parquet NULL

©2021, Databricks Inc., All Rights Reserved. For internal use only.

Delta Log Snapshot at Version 2

Type Path DV Path

AddFile file_a.parquet file_a_dv_1.bin

In the current Delta protocol, it is not legal for actions with the same file name to appear twice in
the same commit. With Deletion Vectors, wemodify the protocol so that the DV path becomes
part of the key. So then themodified rule is that the same (Path, DV Path) combination cannot
appear twice in the same commit.

Step 2 - Reading the Current State
Say we want to perform some query Q now that requires a full table scan. We can read the rows in
file_b.parquet and file_c.parquet as normal, but in order to read the correct rows of
file_a.parquetwemust also read the current DV file_a_dv_1.bin and then remove the
rows which have their indices in the DV before any further processing of Q.

Step 3 - DML with existing DVs
When a file that already has an associated DV gets updated again, wemust ultimately produce a
merged DV between the already invalid rows from before the DML command and the newly
invalidated rows from the command itself.
Let’s say we somehow delete rows 300–800 from file_a.parquet and all other files are
untouched by the operation. The high level flowmight look something like this:

©2021, Databricks Inc., All Rights Reserved. For internal use only.

As can be seen in the figure, the new DV file_a_dv_2.bin contains all entries from the
previous DV file_a_dv_1.bin plus the new entries (rows 300-800). The exact mechanism of
how the combined DV is produced is still subject to a more detailed design, and likely going to be
specific to the particular DML operation.
Whatever the mechanism, at the end of the operation wemust commit a new version of the Delta
table that adds a new entry for file_a.parquet using file_a_dv_2.bin and also marks the
entry for file_a.parquetwith file_a_dv_1.bin as removed, since it is no longer valid to
read with that DV.

COMMIT 3

Type Path DV Path

RemoveFile file_a.parquet file_a_dv_1.bin

AddFile file_a.parquet file_a_dv_2.bin

Delta Log Snapshot at Version 3

Type Path DV Path

Tombstones

RemoveFile file_a.parquet NULL

RemoveFile file_a.parquet file_a_dv_1.bin

Current State

AddFile file_b.parquet NULL

AddFile file_c.parquet NULL

AddFile file_a.parquet file_a_dv_2.bin

©2021, Databricks Inc., All Rights Reserved. For internal use only.

Step 4 - Full Compaction
At this point there are 503 (~50%) invalid rows in file_a.parquet. That means every time we
scan the file we read twice as much data as we really need to. This is probably more than we are
willing to pay, so we should compact out the DV and rewrite the remaining valid rows into a new
file. This could happen as part of an OPTIMIZE (Z-ORDER BY), or simply as part of the DML
operation that pushes the file over the “invalid row”-threshold. Whichever the mechanism used,
the resulting Delta Log should look something like this, where file_d.parquet contains the
rewritten rows from file_a.parquetminus the invalid rows in file_a_dv_2.bin:

COMMIT 4

Type Path DV Path

RemoveFile file_a.parquet file_a_dv_2.bin

AddFile file_d.parquet NULL

Delta Log Snapshot at Version 4

Type Path DV Path

Tombstones

RemoveFile file_a.parquet NULL

RemoveFile file_a.parquet file_a_dv_1.bin

RemoveFile file_a.parquet file_a_dv_2.bin

Current State

AddFile file_b.parquet NULL

AddFile file_c.parquet NULL

AddFile file_d.parquet NULL

High-level Anatomy of a Deletion Vector
Asmentioned before, Deletion Vectors are in essence sets of row indices, that is 64-bit integers.
As storing a literal set of 8 byte numbers becomes quite large more quickly than would be useful
for us, wemust store these sets in a compressed format. The fundamental building block of the
proposed implementation (identical to what is currently used in Low-ShuffleMerge) is the open
source RoaringBitmap library. RoaringBitmap is a flexible format for storing 32-bit integers that
automatically switches between three different encodings at the granularity of a 16-bit block:

1. Simple integer array when the number of values in the block is small.
2. Bitmap-compressed when the number of values in the block is large and sparse.
3. Run-length encoded when the number of values in the block is large, but clustered.

©2021, Databricks Inc., All Rights Reserved. For internal use only.

https://github.com/RoaringBitmap/RoaringBitmap

The serialization format is standardized and a C/C++ implementation is available as well, which
will be convenient for non-Java based Delta connectors (e.g. delta-rust).

Since RoaringBitmap only covers 32-bit integers (but tables can have files with more rows than
this), we extended the format for low-shufflemerge by keeping an array of 32-bit RoaringBitmaps.
This is feasible because we use them to store row indices, which by their very nature are not
arbitrarily sparse but are confined to a certain prefix of the 64-bit space starting at 0.

The proposed format for storing DVs in cloud storage is one (or more) of these
RoaringBitmapArrays per file, together with a checksum for each DV:

See the protocol details in the Appendix.

©2021, Databricks Inc., All Rights Reserved. For internal use only.

Part II: Overview of changes needed in Delta

Protocol Changes
We are going to store the following information for each data file with an associated DV:

● Path (absolute or relative) to the DV file + offset within the file + length (to allow fetching
exact ranges)

● OR: An inline serialized DV
● AND: Number of records removed by the DV

This gives us an array of options for how to store DVs:
(A) As separate files mapping 1:1 to data files
(B) As separate files mapping 1:N to data files – reducing the number of additional files created

compared to (A)
(C) Inlined into the Delta logs – optimal solution for the smallest DVs

The final proposed protocol is in the appendix.

Scan Changes

Wewill modify each query plan by inserting a Filter node containing DeletionVectorFilter on top of
Scan. DeletionVectorFilter is going to be an expression containing a map of data file to DV file. The
map is going to be distributed as a broadcast variable.

Using themap, input_file_name() and row indexes generated by the Scan operator, the Filter
operator will eliminate the deleted rows from the Scan’s output.

©2021, Databricks Inc., All Rights Reserved. For internal use only.

File and Column Statistics
The following statistics are currently stored in the Delta log:

● Per Parquet file: number of records.
● Per column in Parquet file: number of nulls, min, max.

The latter are not obligatory (can be omitted, e.g., if there’s too many columns) and themin/max
values are not guaranteed to be present in the data (e.g., string data is truncated, and protocol
spec does not require this).

With the introduction of the DVs, the status will be as follows:
● For each DV file, we’re going to store the number of removed rows.

○ The number of records for a Parquet file with DV can be calculated by subtracting
this value from the Parquet file stats.

○ We store row counts for Parquet file and DV file separately to be able to compute
the ratio of deleted rows down the line.

● The per-columnmin andmax values remain unchanged.
○ Amin/max range that is valid for a given set of rows will always be valid for a subset

of them.
○ Finding a narrower min/max range would be expensive (requiring us to reread and

aggregate the content of the Parquet file) and unlikely to provide substantial
improvements in uncontrived scenarios.

● The per-column null count will have to be treated as an upper bound for Parquet files with
associated DVs.

DML Commands
MERGE/UPDATE/DELETE: We will have to rewrite all the DMLs such that instead of COW, it will do
the following

- Scan the table for files that havematching data and need to updated (same as COW)
- This assumes that if there are existing DVs on those files, then we will be scanning

with them as detailed earlier.
- For lines in the touched files to be updated or deleted, write new deletion vectors to mark

those lines as “deleted”.
- Write the updated rows (as well as unmatched rows to be inserted), write them into new

files.
The detailed design of this will be elaborated later as the project progresses.

INSERT: No impact.

Table Utility Commands
Optimize
The Optimize command is responsible, among other things, for combining small data files into

©2021, Databricks Inc., All Rights Reserved. For internal use only.

https://github.com/delta-io/delta/blob/master/PROTOCOL.md#per-file-statistics
https://github.com/delta-io/delta/blob/master/PROTOCOL.md#per-file-statistics

larger ones. With the introduction of DV, it will additionally be responsible for compacting DVs
with their associated data files. Without making absolutely any changes to Optimize, it will still
work “correctly” (as in not produce incorrect data) as long as we use DVs to scan the files chosen
to be optimized (as detailed earlier). However, files that are more than the desired size but have a
significant amount of rowsmarked as deleted (that is, real valid data is < desired size) will not be
considered for compaction. So we will have to update Optimize to consider additional files based
on the fraction of rows not deleted by DVs.

Vacuum
VACUUM command has to be amended to correctly identify which DV files need to be removed and
when.

Convert to Delta
This command is only valid for a directory containing only Parquet data. In such a case, no change
to the command is required.

Describe History
The list of metrics available for each of the commands should be extended to account for the DVs.

Generate
External manifests produced with GENERATE are lists of Parquet files belonging to a specific
version of a Delta table. They are used to provide a method for Presto, Athena, Snowflake and
Redshift Spectrum to read from a Delta table. They can be generated either on demand (via
GENERATE command), or automatically (on each commit).

Since it’s not possible to include DVs in an external manifest, we will only allow generating them
for snapshots that contain no DVs. The user is going to be responsible for executing Full
Compaction either prior to the GENERATE command, or whenever they want a new version of the
external manifest to be automatically created.

RESTORE TABLE: The commandmust work across the “upgrade boundary”, but it will not
downgrade the protocol version.

©2021, Databricks Inc., All Rights Reserved. For internal use only.

https://docs.delta.io/latest/presto-integration.html
https://docs.delta.io/latest/presto-integration.html

Appendix - Delta Protocol Changes
In order to be able to associate a DV with a parquet file we need to make changes to the Delta
protocol. On the one hand, those are obvious extensions to the storage format to add the new
fields we require. On the other hand, we also need to adjust the action reconciliation rules to make
sure we still produce correct snapshots, as a DV field cannot simply be treated like yet another
metadata column. This is because reading a file with a DV is a correctness requirement, not a
performance improvement. Ignoring the DV would cause us to read an outdated and inconsistent
view of the data.
Given these constraints, the protocol changes proposed below will require a bump in both reader
and writer protocol versions.

Here is a short list of necessary changes:
● Add a new struct field to add and remove actions.
● Change the action uniqueness semantics from operating on path alone, to operating on a

(path, deletionVector.uniqueId) tuple.
● Adjust the duplicate file criteria to clarify which possible actions are legal with respect to

the tuple uniqueness.
● Add a new field to stats to mark explicitly whether they are currently accurate or

upper/lower bounds.

Log Format Change
We need to add a DV field to both the add and remove actions.

New fields are highlighted in green below.

New Add Action Format

Field Name Data Type Description

path String A relative path to a file from the root of the table
or an absolute path to a file that should be
added to the table. The path is a URI as
specified by RFC 2396 URI Generic Syntax,
which needs to be decoded to get the file path.

partitionValues Map[String,
String]

Amap from partition column to value for this
file.

size Long The size of this file in bytes

modificationTime Long The time this file was created, as milliseconds
since the epoch

dataChange Boolean When false the file must already be present in

©2021, Databricks Inc., All Rights Reserved. For internal use only.

the table or the records in the added file must
be contained in one or more remove actions in
the same version.

stats Statistics
Struct

Contains statistics (e.g., count, min/max values
for columns) about the data in this file

tags Map[String,
String]

Map containing metadata about this file

deletionVector DeletionVector
Descriptor
Struct

Either null (or absent in JSON) when no DV is
associated with this file, or a struct (described
below) that contains necessary information
about the DV that is associated with this file.

New Remove Action Format

Field Name Data Type Description

path String A relative path to a file from the root of the
table or an absolute path to a file that
should be removed from the table. The path
is a URI as specified by RFC 2396 URI
Generic Syntax, which needs to be decoded
to get the file path.

deletionTimestamp Option[Long] The time the deletion occurred,
represented as milliseconds since the
epoch

dataChange Boolean When false the records in the removed
file must be contained in one or more add
file actions in the same version

extendedFileMetadata Boolean When true the fields partitionValues,
size, and tags are present

partitionValues Map[String,
String]

Amap from partition column to value for
this file.

size Long The size of this file in bytes

tags Map[String,
String]

Map containing metadata about this file

deletionVector DeletionVector
Descriptor
Struct

Either null (or absent in JSON) when no DV
is associated with this file, or a struct
(described below) that contains necessary
information about the DV that is associated
with this file.

©2021, Databricks Inc., All Rights Reserved. For internal use only.

https://github.com/delta-io/delta/blob/master/PROTOCOL.md#Per-file-Statistics
https://github.com/delta-io/delta/blob/master/PROTOCOL.md#Per-file-Statistics

DeletionVectorDescriptor Format

Field Name Data Type Description

storageType String A single character to indicate how to access the DV. (See
below.)

pathOrInlineDv String Three format options are currently proposed:
● If storageType = ‘u’ then <random

prefix - optional><base85 encoded
uuid>: The deletion vector is stored in a file with
a path relative to the data directory of this Delta
table, and the file name can be reconstructed
from the UUID. See Derived Fields for how to
reconstruct the file name. The random prefix is
recovered as the extra characters before the (20
characters fixed length) uuid.

● If storageType = ‘i’ then <base85
encoded bytes>: The deletion vector is
stored inline in the log. The format used is the
same as when the DV is stored on disk (See
Deletion Vector Format).

● If storageType = ‘p’ then <absolute
path>: The DV is stored in a file with an absolute
path given by this path, which has the same
format as the path field in the add/remove
actions.

offset Option[Int] Start of the data for this DV in number of bytes from the
beginning of the file it is stored in. Always None (absent
in JSON) when storageType = ‘i’.

sizeInBytes Int Size of the serialized DV in bytes (raw data size, i.e.
before base85 encoding, if inline).

cardinality Long Number of rows the given DV logically removes from the
file.

The Base85 variant proposed is Z85, because it is JSON-friendly.

Derived Fields
Some fields that are necessary to use the DV are not stored explicitly but can be derived in code from the
stored fields.

Field Name Data Type Description Calculated As

uniqueId String Uniquely identifies a
DV for a given file.
This is used for
snapshot

If offset is None then
<storageType><pathOrInlineD
v>. Otherwise
<storageType><pathOrInlineD

©2021, Databricks Inc., All Rights Reserved. For internal use only.

https://rfc.zeromq.org/spec/32/

reconstruction to
differentiate the
same file with
different DVs in
successive versions.

v>@<offset>

absoluteP
ath

String/URI/
Path

The absolute path to
access the DV under.
Can be calculated for
relative path DVs by
providing a parent
directory path.

If storageType=’p’, just use the
already absolute path. If
storageType=’u’, the DV is stored
at <parent path>/<random
prefix>/deletion_vector_<uu
id in canonical textual
representation>.bin. This is not
a legal field if storageType=’i’, as
an inline DV has no absolute path.

JSON Example 1 — On Disk with Relative Path (with Random Prefix)
{

"storageType" : "u",
"pathOrInlineDv" : "ab^-aqEH.-t@S}K{vb[*k^",
"offset" : 4,
"sizeInBytes" : 40
"cardinality" : 6

}
Assuming that this DV is stored relative to an s3://mytable/ directory, the absolute path to be
resolved here would be:
s3://mytable/ab/deletion_vector_d2c639aa-8816-431a-aaf6-d3fe2512ff61.bin

JSON Example 2 — On Disk with Absolute Path
{

"storageType" : "p",
"pathOrInlineDv" :

"s3://mytable/deletion_vector_d2c639aa-8816-431a-aaf6-d3fe2512ff61.bin",
"offset" : 4,
"sizeInBytes" : 40
"cardinality" : 6

}

JSON Example 3 — Inline
{

"storageType" : "i",
"pathOrInlineDv" : "^Bg9^0rr910000000000iXQKl0rr91000f55c8Xg0@@D72lkbi5=-{L",
"sizeInBytes" : 44,
"cardinality" : 6

}
The row indices encoded in this DV are: 3, 4, 7, 11, 18, 29

©2021, Databricks Inc., All Rights Reserved. For internal use only.

Action Reconciliation Changes
These are the new action reconciliation rules, with changes highlighted in green and original text
crossed out and highlighted in red:

A given snapshot of the table can be computed by replaying the events committed to the table in
ascending order by commit version. A given snapshot of a Delta table consists of:

● A single protocol action
● A single metaData action
● Amap from appId to transaction version
● A collection of add actions with unique paths (path, deletionVector.uniqueId)

tuples.
● A collection of remove actions with unique paths (path,

deletionVector.uniqueId) tuples. The intersection of the paths (path,
deletionVector.uniqueId) tuples in the add collection and remove collection must
be empty. That means a file with a particular DV associated cannot exist in both the
remove and add collections; however, the same file can exist with different DVs, as
logically they represent different content. The remove actions act as tombstones, and
only exist for the benefit of the VACUUM command. Snapshot reads only return add actions
on the read path.

To achieve the requirements above, related actions from different delta files need to be
reconciled with each other:

● The latest protocol action seen wins
● The latest metaData action seen wins
● For transaction identifiers, the latest version seen for a given appIdwins
● All add actions for different paths (path, deletionVector.uniqueId) tuples need

to be accumulated as a list. The latest add action (from amore recent delta file) observed
for a given path (path, deletionVector.uniqueId) tuple wins.

● All remove actions for different paths (path, deletionVector.uniqueId) tuples
need to be accumulated as a list. If a remove action is received later (from amore recent
delta file) for the same paths (path, deletionVector.uniqueId) tuple as an add
operation, the corresponding add action should be removed from the add collection and
the file and DV combination needs to be tracked as part of the remove collection.

● If an add action is received later (from amore recent delta file) for the same (path,
deletionVector.uniqueId) tuple as a remove operation, the corresponding
remove action should be removed from the remove collection and the file and DV
combination needs to be tracked as part of the add collection.

©2021, Databricks Inc., All Rights Reserved. For internal use only.

Duplicate Actions
The current definition of a duplication action reads as follows:
“Since actions within a given Delta file are not guaranteed to be applied in order, it is not valid for
multiple file operations with the same path to exist in a single version.”

We propose the following addition to clarify what constitutes a legal table in the presence of
(path, deletionVector.uniqueId) tuples as unit of uniqueness (green highlights legal
situations, red highlights illegal situations):
For any commit…

● it is legal for the same parquet file to occur in an add action and a remove action, but with
two different DVs (or one not having a DV at all).

● it is legal for the same parquet file to be added and/or removed and also occur in an
AddCDCFile action.

● it is illegal for the same parquet file to be added twice or removed twice, once without a DV
and once with a DV

● it is illegal for the same parquet file to be added twice or removed twice with two different
DVs.

For an elaboration on this subject, see this document.

Tombstones
In order clarify the lazy deletion behaviour with tombstones in the presence of DVs, we propose
the following reformulation of the particular paragraph from the specification (changes
highlighted in green and original text crossed out and highlighted in red):
“The remove action includes a timestamp that indicates when the removal occurred. Physical
deletion of the file parquet and DV files can happen lazily after some user-specified expiration time
threshold. This delay allows concurrent readers to continue to execute against a stale snapshot of
the data. A remove action should remain in the state of the table as a tombstone until it has
expired. A tombstone expires when the creation timestamp of the latest delta commit file exceeds
the expiration threshold added to the remove action timestamp.”

File Statistics

Number of Records
The stats.numRecords field now indicates only the physical number of rows in the file, while
before the physical and logical number of rows were identical. For files with associated DVs the
current logical number of rows can be calculated as stats.numRecords -
deletionVector.cardinality.

©2021, Databricks Inc., All Rights Reserved. For internal use only.

https://docs.google.com/document/d/1qmUMJfjbAFIQWyyYi5QTI3_n2kEQbMXfcM92EeQnhpM/edit?pli=1

Column Statistics
Currently the Delta specification gives the following (somewhat impossible) definition of its
column statistics:

Name Description

nullCount The number of null values for this column

minValues A value smaller than all values present in the
file for this column.

maxValues A value larger than all values present in the file
for this column

In the presence of DVs, we want to give ourselves the option to have the statistics somewhat
outdated, i.e. not reflecting deleted rows, yet. But we also want to be able to, for example, lazily
update them to be accurate again. Tomake it clear which of those two states the stats for all
columns are currently in, we add a boolean flag stats.tightBounds to clarify whether the
bounds are tight (i.e. the min/maxValue exists in the valid state of the file) orwide bounds (i.e.
the minValue is <= all valid values in the file, and the maxValue >= all valid values in the file).
These upper/lower bounds are sufficient information for data skipping, but cannot be used to
calculate aggregations such as max(column) frommetadata alone.

The new description for the column stats with that scheme would be (changes highlighted in
green):

Name Description
(stats.tightBounds=true)

Description
(stats.tightBounds=false)

nullCount The number of null values for
this column

If the nullCount for a column
equals the physical number of
records (stats.numRecords)
then all valid rows for this column
must have null values (the
reverse is not necessarily true).

If the nullCount for a column
equals 0 then all valid rows are
non-null in this column (the
reverse is not necessarily true).

If the nullCount for a column is
any value other than these two
special cases, the value carries no
information and should be treated

©2021, Databricks Inc., All Rights Reserved. For internal use only.

https://docs.google.com/document/u/0/d/1uQM-f8Ttym2dVD334VStfgoaECTwMlT1bMOymVNDp6M/edit

as if absent.

minValues A value that is equal to the
smallest valid value* present in
the file for this column. If all
valid rows are null, this carries
no information.

A value that is less than or equal to
all valid values* present in this file
for this column. If all valid rows are
null, this carries no information.

maxValues A value that is equal to the
largest valid value* present in
the file for this column. If all
valid rows are null, this carries
no information.

A value that is greater than or
equal to all valid values* present in
this file for this column. If all valid
rows are null, this carries no
information.

*String columns are cut off at a fixed prefix length, timestamp columns are truncated down to
milliseconds.

Deletion Vector Format
Deletion Vectors are basically sets of row indices, that is 64-bit integers. As storing a literal set of
8 byte numbers becomes quite large more quickly than would be useful, wemust store these sets
in a compressed format. The fundamental building block for this is the open source
RoaringBitmap library. RoaringBitmap is a flexible format for storing 32-bit integers that
automatically switches between three different encodings at the granularity of a 16-bit block:

1. Simple integer array, when the number of values in the block is small.
2. Bitmap-compressed, when the number of values in the block is large and sparse.
3. Run-length encoded, when the number of values in the block is large, but clustered.

The serialisation format is standardised and both Java and C/C++ implementations are available
(among others).

Since RoaringBitmap only covers 32-bit integers, but Delta tables can have files with more
than 2.1 billion rows, we extend the format in a simple manner by keeping an array of 32-bit
RoaringBitmaps and using the upper 32-bits to index into the array. This is feasible because we
use them to store row indices, which by their very nature are not arbitrarily sparse but are
confined to a certain prefix of the 64-bit space starting at 0.

The serialization format for such a RoaringBitmapArray is as follows:

Bytes Name Description

0 — 3 magicNumber 1681511377; Indicates that the
following bytes are serialized in
this exact format. Future
alternative—but related—formats
must have a different magic
number, for example by

©2021, Databricks Inc., All Rights Reserved. For internal use only.

https://roaringbitmap.org/
https://github.com/lemire/RoaringBitmap/
https://github.com/RoaringBitmap/CRoaring

incrementing this one.

4 — end bitmap A serialized 64 bit bitmap in the
portable standard format as
defined in the RoaringBitmaps
Specification.

The proposed format for storing DVs in cloud storage is one (or more) of these
RoaringBitmapArrays per file, together with a checksum for each DV:

Bytes Name Description

0 — 1 version The format version of this file: 1 for the
format described here.

repeat for each DV i For each DV

<start of i> — <start of i>+3 dataSize Size of this DV’s data (without the
checksum)

<start of i>+4 — <start of
i>+4+ dataSize - 1

bitmapData One RoaringBitmapArray
serialized as described above.

<start of i>+4+ dataSize—
<start of i>+4+ dataSize +
3

checksum CRC-32 checksum of bitmapData

©2021, Databricks Inc., All Rights Reserved. For internal use only.

https://github.com/RoaringBitmap/RoaringFormatSpec#extention-for-64-bit-implementations
https://github.com/RoaringBitmap/RoaringFormatSpec#extention-for-64-bit-implementations

