Name:	Date:
Mr. Croom's Physics	Date: Chapter 4: Force and the Law of Motion
	Elevator Problem (ANSWER KEY)
"You are standing on a bathroom scal	nd it can be examined using the ideas of Newton's First and Second Laws. Here is the situation: <i>e in an elevator. You are holding an apple. You weigh 490 Newtons, so your mass is 50 kg."</i> Your w and fill in the appropriate answers.
Part A: The Elevator is at Rest.	
You have just boarded the elevator. T	he elevator, you, and the apple are at rest.
What are the two forces acting on you Your acceleration is equal to <u>0 m/s</u> . The net force acting on you is <u>0 N</u>	
Since the net force on you is <u>0 N</u> , the with a force of <u>490N</u> and the scale n	e upward forces and downward forces must be balanced. Therefore, the scale must push on you nust read 490N Newtons.
Now, if you let go of the apple, what w	will be its acceleration relative to you and the earth? 9.8m/s^2 .
Part B: The elevator is accelerating	upwards.
The elevator with you inside begins to	accelerate 2m/s² upwards.
What is the net force on you? (use F	=ma <u>100</u> N in the <u>upward</u> direction.
Therefore, since your weight is 490 N	, and the net force is 100N the scale must push up with a force of 590 N.
The scale must read 190 N as the	elevator accelerates upward.
What would be its acceleration relative	g (<u>faster</u> or slower or the same) (circle one) than it would in normal free fall. So to you, gravity
Part C: The Elevator Moves Up at a	a Constant Velocity
The elevator, you, and the apple accel	erate for 5 seconds, at which time it stops accelerating and stays at a constant velocity of 10
Your acceleration is <u>0m/s²</u>	
The net force on you is equal to ON	
The same two forces are still acting or	n you. The force of the scale pushing up on you therefore is now equal to 490 N.
The scale must read <u>490</u> N.	
If you let go of the apple, what does it To you no. To the outside observer i	t do? Is this different than part A? Why? It accelerates down at 9.8m/s². t goes up a little then comes down.
If instead the elevator were moving do They would be the opposite for the	own at a constant velocity, would any of your answers change? Why? opposite reasons.

Page 1 of 2

Name:	Date:
Mr. Croom's Physics	Chapter 4: Force and the Law of Motion

Part D: The Elevator Slows Down While Going Up.

The elevator, you, and the apple begin to slow down as it approaches its destination. Its acceleration (or deceleration if you want to call it that) is 2 m/s^2 downward.

What is the net force on you? (use F=ma!) <u>-100</u> Newtons in the <u>Downward</u> direction.

Therefore, since your weight is 490 N, the scale pushes up with a force of <u>390 N</u>.

The **scale must read _390** _____N as the elevator accelerates downward.

If you let the apple go, what is its acceleration relative to the earth? <u>9.8m/s</u>².

What would be its acceleration relative to you? 7.8m/s²

So to you, the apple seems to be falling (faster or **slower** or the same) (*circle one*) than it would in normal free fall. So to you, gravity appears to be (stronger or **weaker** or the same).

If instead the elevator was moving down with an acceleration of 2 m/s² (same acceleration direction, just different direction elevator is moving) would any of your answers here change? Why?

They would the opposite.

Part E: Dagnabbit!

The elevator cable snaps and the elevator, you, and the apple begin to fall in freefall.

Your acceleration is 9.8 m/s^{2} .

Therefore, the net force on you is 490 N in the downward direction. (use F=ma!)

Your weight, or the force of gravity on you, is equal to 490 N.

Therefore, since the net force is 490 N, and your weight is 490 N, the force of the scale pushing up on you has to be 0 N Newton's.

The scale must read <u>0</u> Newton's.

If you let go of the apple now, what does it do now? It will hover in front of you.