
Core / Modules Componentization

Objective

To make core smaller and simpler for code health and to make it faster to build chrome.
In this document, we will define core and modules from the viewpoint of blink implementation.
So “core” means “Source/core/” and “Source/bindings/core”, and “modules” means
“Source/modules” and “Source/bindings/modules/”.

Smaller and simpler:

Core should be simple and small for code health. If core has too many code and too complex
dependencies, it is very difficult to understand and update (including maintaining existing
features, fixing bugs, adding new features and so on) core. It is better to move component
which are self-dependent to another place, i.e. modules.

Build faster:

If we need to link too many objects at one time, linker will spend a very long time. To solve this
issue, we are now trying to make linker link blink_modules.dll separately from blink_core.dll”
(crbug.com/358074). This also means, it is not good to have many code in core. Currently the
ratio of core : modules is 6 : 1 (c.f. core object size vs modules object size). If possible, it would
be better to move more files from core/ to modules/.

Allowed Dependency

The following table shows current rules about component’s dependency.

Component A Component B A can depend on B

core modules NO

web NO

platform YES

modules core YES

web NO

platform YES

web core YES

modules YES

platform YES

platform core NO

http://crbug.com/358074
https://docs.google.com/spreadsheets/d/1bdlI-UiG2QwuJ8Dk1-IK619t9NAvjLGmUwpSSQrzaQg/edit?usp=sharing

modules NO

web NO

Dependency rules

The following figure shows the same rules:

For example, web (Source/web) can use core and modules code (Source/core and
Source/modules). However, core and modules cannot use web code. web should only define
public Blink interfaces.

Looking at modules, we also have the following rules:

●​ Each top level module cannot depend on any other top-level modules.
●​ If some module (e.g. Source/modules/B) depends on Source/modules/X, the X should

be placed in Source/modules/B/X.

The following figure shows this rule. We have three top-level modules, i.e. A, B, and C.
A, B, and C cannot depend on one another.

If we want to have some modules which are depend on one another, move the modules under
some top-level module, i.e. B/X, B/Y and B/Z.

However, currently some modules break the rule, i.e. webaudio, speech, geofencing, and
push_messaging. (c.f. Appendix.)

Problem

If many top-level modules depend on some module, i.e. X, where should we place X?

Since we cannot allow dependency among top-level modules, currently we need to do either of
the following ways:

1.​ X should be in core, or

2.​ X should not be top-level module. Make another top-level module (e.g. Y) and move all

dependency modules (e.g. X, A and B) under the top-level module.

If we do (1), when we want to support new specs or to update features according to specs’
updates, some of modules might be moved into core. Because specs have neither core nor no
modules. So finally most of modules might be moved into core. We will see too large core and
very small modules. Probably we don’t need modules.

If we do (2), ditto. Finally most of modules will be submodules of one very large module (e.g.
Source/modules/all). So we will see core and one “all” module. In this case, we don’t need
modules. We need only core and the “all”.

Solution

Basic idea

We will change the rule: “top-level modules cannot depend on one another.” So we will make it
possible for modules to depend on some modules.

Solution 1: add modules(core)

If modules which depend on one another are moved to modules(core), other modules can
depend on modules(core).

However, modules(core) can depend on only modules(core) and modules(core) cannot depend
on the other modules.

Adding modules(core)

[Proposed] Solution 2: just allow modules to depend on one another

Add DEPS to disallow complex dependencies among modules. After adding DEPS to each
modules, we should be careful to add new dependencies to the DEPS. (c.f. concept patch for
current modules)

https://codereview.chromium.org/653283006/

Adding DEPS files

Solution 2 is better than Solution 1, because:

●​ This mirrors Chromium’s //components implementation.
●​ It is possible to avoid complex dependencies in modules(core).
●​ It is easy to understand current dependencies by looking DEPS files.
●​ We don’t need to move files when some module breaks the rule.

Moving Targets from core/ to modules/

The above solution enables us to move more files from core to modules. The followings are
primary targets which we try to move:

●​ core/storage,
●​ core/streams,
●​ core/timing

The followings are secondary targets:

●​ core/accessibility,
●​ core/clipboard,
●​ core/plugins,

●​ core/workers,
●​ part of core/xml

We will show why the aboves are primary / secondary targets.

core/storage

Fig. core/storage #include dependency

The above figure shows dependency among core/storage and others. Small number of core
files in inspector, loader, frame and page, depend on core/storage. It would be possible to move
storage from core to modules.

https://drive.google.com/file/d/0B40QlILsmacecUQ1T1pJQTBqVjg/view?usp=sharing

core/streams

Fig: core/streams dependency

Small number of core files depend on core/streams. If possible, after moving streams from core
to modules, update mediasource’s DEPS.
Since we are planning to move XMLHttpRequest from core to modules (and we will allow
dependencies among modules), we need to fix only FileReaderLoader.cpp.

https://drive.google.com/file/d/0B40QlILsmaceLTJ5SDZjNmc2UFE/view?usp=sharing

core/timing

Fig: core/timing dependency

Small number of core files depend on core/timing. It would be possible to move core/timing from
core to modules. Since modules/webmidi, modules/mediasource, and modules/performance
depend on core/timing, we need update their DEPS files.

https://drive.google.com/file/d/0B40QlILsmaceRVM4TTUyNktpeEU/view?usp=sharing
https://drive.google.com/a/google.com/file/d/0B1fQs9unrxXrTGNMbEJaUXNCR00/view?usp=sharing

core/accessibility

Others depend on AXObjectCache.h. We need to investigate how others use AXObjectCache.h.

core/clipboard

Relatively small number of files depend on core/clipboard.

https://drive.google.com/file/d/0B40QlILsmaceMVVVSWpWUDhMUFE/view?usp=sharing
https://drive.google.com/file/d/0B40QlILsmaceU2ViN1hjcEFLQ2s/view?usp=sharing

core/plugins

Relatively small number of files depend on core/plugins.

core/workers

https://drive.google.com/file/d/0B40QlILsmaceLW83c2UxQ2dlSmM/view?usp=sharing
https://drive.google.com/file/d/0B40QlILsmaceNkMxYUtVeVhrTVU/view?usp=sharing

core/xml

It would be possible to move XMLHttpRequest, XSLT-related code from core to modules.

It is difficult to move XMLDocumentParser.

How to move files from core to modules

Use partial interface

If a new feature updates some interface defined in core, it would be possible to use partial
interface to update the interface and to place the partial interface’s IDL file in modules.

For example, WindowQuota.idl uses partial interface to update Window:

[
 ImplementedAs=DOMWindowQuota,
] partial interface Window {
 [DeprecateAs=PrefixedStorageInfo] readonly attribute
DeprecatedStorageInfo webkitStorageInfo;
};

It is possible to use overloads between interfaces in core and partial interfaces in modules. For
example,

https://drive.google.com/file/d/0B40QlILsmaceZV9pV1NScklQTE0/view?usp=sharing

partial interface URL {
 [CallWith=ExecutionContext] static DOMString?
createObjectURL(MediaStream stream);
};

Source/modules/mediastream/URLMediaStream.idl

interface URL {
 [RaisesException, CallWith=ExecutionContext] static DOMString?
createObjectURL(Blob? blob);
...
};

Source/core/dom/URL.idl

Use union type (and partial interface)

CodeGenerator will support union types between core and modules. So suppose that we have
the following:

typedef (CORE1 or CORE2 or MODULE1 or MODULE2) TypeX;

CORE1 and CORE2 are interfaces defined in core, and MODULE1 and MODULE2 are
interfaces defined in modules.

In this case, we will update interfaces, which use TypeX, in core:

typedef (CORE1 or CORE2 or MODULE1 or MODULE2) TypeX;

interface TypeXUser {
 attribute TypeX? valueX;
};

and CodeGenerator will check dependencies and will generate core code and modules code.

Use Supplementable and Supplement

TBD

Appendix.

Dependencies:

●​ core/css
●​ core/dom
●​ core/events
●​ core/fetch

https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/platform/Supplementable.h&q=supplement&sq=package:chromium&type=cs&l=164
https://drive.google.com/file/d/0B40QlILsmaceOFVpeXBsWnpta28/view?usp=sharing
https://drive.google.com/file/d/0B40QlILsmaceUzZQdGdIYlI3NGc/view?usp=sharing
https://drive.google.com/file/d/0B40QlILsmaceeHZUTE5NaXc4M1k/view?usp=sharing
https://drive.google.com/file/d/0B40QlILsmaceRUR6dFRQZnFwVG8/view?usp=sharing

●​ core/frame
●​ core/html
●​ core/inspector
●​ core/loader
●​ core/page
●​ core/paint
●​ core/rendering
●​ core/svg
●​ core/imagebitmap - very simple, but Window implements ImageBitmapFactories.

https://drive.google.com/file/d/0B40QlILsmaceaFFOSHhEOEdiaVk/view?usp=sharing
https://drive.google.com/file/d/0B40QlILsmaceM3k2d21QSF9OSFE/view?usp=sharing
https://drive.google.com/file/d/0B40QlILsmaceMHVBampERnRqOHM/view?usp=sharing
https://drive.google.com/file/d/0B40QlILsmaceV1FXSnRKWDlWS1E/view?usp=sharing
https://drive.google.com/file/d/0B40QlILsmaceVm94cFVuZ2RHOGc/view?usp=sharing
https://drive.google.com/file/d/0B40QlILsmaceMmJtOEZqTE9hTW8/view?usp=sharing
https://drive.google.com/file/d/0B40QlILsmaceVW05UXlMNUlEZ0U/view?usp=sharing
https://drive.google.com/file/d/0B40QlILsmaceWEo4bE5GTHVkRVU/view?usp=sharing
https://drive.google.com/file/d/0B40QlILsmaceaVRQcmM0V1V5aEk/view?usp=sharing

	Core / Modules Componentization
	Objective
	Smaller and simpler:
	Build faster:

	Allowed Dependency
	Problem
	Solution
	Basic idea
	Solution 1: add modules(core)
	[Proposed] Solution 2: just allow modules to depend on one another

	Moving Targets from core/ to modules/
	core/storage
	core/streams
	core/timing
	core/accessibility
	core/clipboard
	core/plugins
	core/workers
	
	core/xml

	How to move files from core to modules
	Use partial interface
	Use union type (and partial interface)
	Use Supplementable and Supplement

	Appendix.

