
Async Clipboard, pt III
Images and Delayed Data Generation (cont.)

Status: Draft (5 March 2019)
{garykac, huangdarwin}@chromium/google

This is a follow-up to the discussions in part II.
Simple mock implementation: jsfiddle

Background
For general background about the new Async Clipboard API, see the previous Async Clipboard
API explainer.

Goals & Non-goals
Goals:

● Determine how to represent data on clipboard
○ What is the correct API "shape"
○ Streamline the common case
○ Support the complex cases (e.g., delayed)

● Image support
○ How is image data specified
○ How can we do this safely/securely: sanitizing

● Still bitmap images only
○ Initially PNG, JPG. No animated or video format.

● Determine how to support delayed generation of clipboard content
○ Important because this will likely affect the API method signatures

Non-Goals:
● Custom data types and non-still-bitmap-images

○ (Longer term, we believe this can be done safely/securely via pickling)
● Raw image support:

○ Copy image to system clipboard without sanitization
○ (Longer term, we believe this can be done safely/securely via pickling)

● Anything unrelated to Clipboard

https://docs.google.com/document/d/1sMcajoYAQ_M_VOIn1RLokG1sVB7skjoeviqt9aZOcDk/edit#
https://jsfiddle.net/y9p3251x/
https://github.com/w3c/clipboard-apis/blob/main/explainer.adoc
https://github.com/w3c/clipboard-apis/blob/main/explainer.adoc

Common use cases
● Read/write images from clipboard

○ Scenario: A PNG image is copied onto the clipboard. The UA transcodes the
image before copying it to the system clipboard.

● Delayed Generation: Write a placeholder to the clipboard with a callback that is called
only if that clipboard item is read.

○ Scenario: CAD program wants to put data onto the clipboard in N common
formats, but they are expensive to calculate. Placeholders are placed on the
clipboard so that the format is computed only if the user requests it.

● Write data to clipboard that should be pasted as an attachment.
○ Scenario: A chunk of HTML is placed on the clipboard. If this is pasted into an

email message, it should be added as an attachment rather than pasted inline.

General Clipboard Architecture

Clipboard

[SecureContext, Exposed=Window]

partial interface Clipboard : EventTarget {

Promise<sequence<ClipboardItem>> read();

Promise<void> write(sequence<ClipboardItem> data);

};

ClipboardItem
A clipboard is represented as a sequence of ClipboardItems.

Each ClipboardItem has a dictionary of representations. In this dictionary, each item is keyed
off the mimetype and the value is a ClipboardItemData.

Individual representations are not exposed to the user as an object type.

typedef (DOMString or Blob) ClipboardItemDataType;

typedef Promise<ClipboardItemDataType> ClipboardItemData;

callback ClipboardItemDelayedCallback = ClipboardItemData ();

[Constructor(record<DOMstring, ClipboardItemData> items,

optional ClipboardItemOptions options),

Exposed=Window]

interface ClipboardItem {

static ClipboardItem createDelayed(

record<DOMString, ClipboardItemDelayedCallback> items,

optional ClipboardItemOptions options);

readonly attribute PresentationStyle presentationStyle;

readonly attribute long long lastModified;

readonly attribute boolean delayed;

readonly attribute FrozenArray<DOMString> types;

Promise<Blob> getType(DOMString type);

};

enum PresentationStyle { "unspecified", "inline", "attachment" };

dictionary ClipboardItemOptions {

PresentationStyle presentationStyle = "unspecified";

};

Reading
The read() method returns a sequence of ClipboardItem.

Code:
const items = await navigator.clipboard.read();

for (const item of items) {

var types = item.getTypes();

if (types.includes("text/plain")) {

const textBlob = await item.getType(text/plain");

var text = await (new Response(textBlob)).text();

...

}

}

Writing
Code (general case):

const item1 = new ClipboardItem({

"text/plain;charset=utf-8": "data",

"text/html": "data",

}

);

const imageData = new ArrayBuffer(4096);

// ... Fill |imageData| with image data.

const item2 = new ClipboardItem({

"image/png": new Blob([imageData], {type: "image/png"}),

"text/plain": "An image of a blob",

}

);

await navigator.clipboard.write([item1, item2]);

Different ways of writing data
Writing immediate data:

new ClipboardItem({"text/plain": "data"})

Writing with a Promise:

new ClipboardItem({

"text/plain":

fetch("https://somewhere.example/").then(res => res.blob())

})

Promise is triggered immediately, but the data will be returned async.

Writing delayed data
For items that are expensive to calculate, it can be useful to delay the actual generation of the
data until it is requested. This allows the cost of the data generation to be avoided if the item is
never read from the clipboard.

There is a static method for creating delayed data items.
ClipboardItem.createDelayed({

"text/plain":

() => { return(new Blob(["delayed data"], {type: "text/plain"})); }

})

The function will not be called until the data is requested by the user. It will be returned in a
Promise at that time.

Specifying the item presentation style
Some clipboards can distinguish between attachments and inline data.

For example, when HTML is pasted into an email message this can be done as either an
attachment ("File"), or the HTML can be pasted directly into the message.

To support this, there is a presentationStyle attribute on ClipboardItem.

Writing:
new ClipboardItem({

"text/html": new Blob(["data"], {type: "text/html"})

}, {

presentationStyle: "attachment"

})

Reading:
const items = await navigator.clipboard.read();

const presentation = items[0].presentationStyle;

Blobs
Blobs are a convenient way to specify data, and are necessary to support more general data
types being placed on the clipboard.

Issues:
● Must verify that the blob type matches the clipboard item's type.

Text Encoding
A ClipboardItem may have only one "text/plain" representation. More generally, there can be
only one representation for each type (mimetype params are ignored for this comparison).

For ClipboardItem.types, the type should only be the type/subtype -- no params (like
"charset") should be present. To get the full mimetype with params, you need to look at the
mimetype of the Blob.

● TODO: Return an error if "text/plain" is specified with a charset param? Or strip the
params as long as the type matches the Blob's type?

ClipboardItem.types will return only the type/subtype for each representation. No params will
be included. This is necessary so that scanning the types for "text/plain" works as expected.

The Blob that is created by writeText() should have a mimetype of "text/plain;charset=utf-8".

Issues:
● Should readText() and writeText() use USVString instead of DOMString?

Supported image types
Initially, only "image/png", "image/jpg", and "image/jpeg".

Image Sanitizing
When copying an image onto the system clipboard, a User Agent may choose to sanitize the
image. Note that, while UAs should make a best effort to preserve the image integrity, this
sanitization process may result in the pixel data and/or the metadata being changed.

The actual details of the sanitization are left up to the User Agent, but a common approach is to
transcode the image by decoding and then re-encoding the image data.

Motivation:
The primary motivation for sanitization is to prevent malicious images (ie, ones that can exploit
bugs in the native OS image decoder) from being placed on the system clipboard. See, for
example, this recent example from Feb 2019:
https://source.android.com/security/bulletin/2019-02-01.html

Issues:
● Is it even possible to sanitize other media types: svg, video, audio, …?

Privacy / Security
See original explainer for discussion.

Concerns WRT images are security-related and are mitigated by sanitizing the image before
copying to system clipboard.

Threading
The Async Clipboard should not block the main thread and potentially cause jank. Therefore, its
code should be run on the kUserInteraction task runner, and optional decoding should be run on
background task runners.

Alternate Designs Considered

DataTransfer
Initially, we considered using DataTransfer since (a) it is used by the existing Event-based
clipboard API, and (b) it already exists and we'd rather not add unnecessary types unless
necessary.

DataTransfer was created originally for Drag and Drop and then subsequently used for the
Event-based Clipboard API - primarily because it provided a basic dictionary of { mimetype ->
data }. DataTransfer also includes a set of DnD-specific attributes (e.g., dropEffect,
effectAllowed, dragImage) that are not used by Clipboard.

We determined that DataTransfer is not a good choice because:
● Doesn't support required features: e.g., delayed data and representationStyle
● Lacks modern accoutrements:

○ Lack of async Promise support
○ With DataTransferItemList, it curiously defines its own Array interface rather than

relying on standard data structures.

https://source.android.com/security/bulletin/2019-02-01.html
https://github.com/w3c/clipboard-apis/blob/master/explainer.adoc#potential-for-abuse-when-accessing-clipboard-data

● More complex construction
○ Using a standard dictionary is more concise to construct inline
○ Cf. DataTransferItemList.add()

Updating DataTransfer was considered but it has the following risks:
● Risks breaking Drag and Drop

○ And/or, pulls updating DnD into scope for fixing Clipboard

Other than the dictionary { mimetype -> data }, DnD and Clipboard are very different APIs. DnD
is primarily a set of UI events whereas Clipboard accesses a shared system resource (with all
the permission/privacy/security issues that come along with that).

Our primary goal is to have a clean, modern Clipboard API. While fixing DnD would be
convenient, it's worth noting that the current DnD API basically works (even though there could
be improvements) whereas a proper Clipboard API is currently non-existent (and is one of the
most requested features from users/developers).

Alternate API shape
To allow options on each item representation, we considered variants of the following:

const r1 = new ClipboardItemRepresentation("text/plain", "text data");

const r2 = new ClipboardItemRepresentation("text/html", "data");

const item1 = new ClipboardItem([r1, r2]);

await navigator.clipboard.write([item1]);

Because that would permit us to add an optional options argument where delayed or
presentationStyle attributes could be specified at the representation level. The downside of
this approach is that it greatly complicates the simple use case since you need to build up these
Representations.

After considering this further (and getting comments from interested parties), the "cost" of the
more cumbersome API is not worth the flexibility of being able to specify these attributes at the
Representation level (for comparison, the proposed API allows these values to be specified at
the ClipboardItem level). The only functionality lost is the ability to specify some representations
as delayed while others are immediate (or async), which is a good trade-off for a much simpler
API.

Functions
We also considered using data that is specified as a Function to implicitly indicate delayed
content generation:

const item = new ClipboardItem({

"text/plain": () => {

return("Delayed data");

}

});

But a preference was expressed to make this explicit:

const item = new ClipboardItem({

"text/plain": () => {

return("Delayed data");

}

}, {

"delayed": true,

});

Which raises the question of how we should handle Functions if delayed = false.

In addition, there is an additional concern with how supporting Functions (alongside
DOMString and Blob) complicates the WebIDL for the API .

In the end, it was suggested that, since this is an "advanced" feature, we could have a static
method to handle delayed items:

const item = ClipboardItem.createDelayed({ … })

where the data must be specified as a Function.

