January 10

Key points:

- In/dependent Probabilities
- Conditional Probabilities
- Bayes Rule
 - Elements in the equation: posterior, likelihood, prior

January 22

Key points:

- Bag-of-words representation of documents
- Maximum Likelihood Estimators
- Naive Bayes
 - Important property: assumes independence between different features (=words)

January 24

https://twitter.com/mintendency/status/957667716684570625

Key points:

- Smoothing for Naive Bayes
- Grid search for best parameters over development set
- Bias/Variance tradeoff: more smoothing = more bias, for example
- Perceptron
 - Perceptron guaranteed to succeed if data is linearly separable
 - Weight update based on gradient of hinge loss

January 29

Key points:

- Learning by minimizing a loss function
- Batch versus online
- Logistic regression
 - Conditional probability P(y | x)
- Regularizing by penalizing squared norm of weights

Questions:

Will NB and LR give the same answer if independence holds

January 31

Key points:

- Review of gradient based learning: examples for Perceptron, SVM, and Logistic Regression updates.
- Relationship between perceptron and logistic regression updates.
- Intro to deep learning

February 5

Key points:

- Ngram Language Models
- Neural Language Models (Recurrent Nets)

Questions:

- What problem is solved by the recurrent models?
 - Most exact answer: they learn a **probability**. In LMs, this is then used to predict the next word.

February 7

Key points:

- Evaluation of language models: perplexity
- Long Short-term Memory RNNs: memory "cell" in addition to hidden state
 - Less susceptible to vanishing gradients
- Part of speech tags

February 12

Key points:

- Decompose sequence scores into local scores that only look at adjacent tags
- Viterbi algorithm solves this form efficiently
- Tradeoff between efficiency and representational power
- Viterbi variables, trellis of scores, back-pointers

February 19

Key points:

- Structured Perceptron compute argmax with Viterbi
- Conditional Random Field (CRF) structured analog of logistic regression, maximize P(Y|X)
- Use Forward Algorithm to compute the denominator (marginal of X), forward variables
- Add margin regularizer to the objective Structured SVM

Questions:

- Can we use anything other than Viterbi to compute the predictions in structured perceptron?
 - Approximation may be useful if you can't represent your features with exact inference

February 21

Key points:

- BiLSTM + CRFs: reverse recurrent models working together to represent states in the text
- Convolutional Neural Nets (ConvNets): take windows from input, then pool convolutional outputs
 - Fast on GPUs
- Named Entity Recognition (NER)
 - o BIO annotation beginning/inside/outside

Questions:

 Objectives which are probabilities are only necessary if their interpretation within the model is a probability.

February 26

Key points:

- Context Free Grammar (CFG) <Non-terminals, terminals, rules, start state> defines a set of valid strings (language)
- Derivation/Parse Tree from start state to the string may have ambiguity
- Constituent
- Attachment Ambiguity

February 28

Key points:

- A derivation is a sequence of production rules
- Find derivations of a sentence with the CKY algorithm start on the diagonal, then fill in the rest
 - (space) Complexity of CKY: O(M^2*#N), where #N = number of non-terminals
 - \circ (time) complexity: O(M³*#R), where #R = number of production rules
 - #R is probably larger than #N
- Choose a derivation by taking the argmax, as usual, over scores of derivations
- Weighted context free grammar (W-CFG): attaches a score to each production rule
 - Can learn weights with log-probabilities, or discriminatively

March 12th

Key points:

- Headword for constituents (lexicalization in context-free grammar)
- Dependency tree graph spanning trees labeled edges
- Structure for dependency parsing (word, modifier, relation)

March 14th

Key points:

- Transition-based parsing: three possible actions (Shift, arc-left, arc-right)
- Arcs can have relation types
- An oracle converts a ground truth dependency tree into a sequence of actions that produces that tree
- More than one possible oracle due to "spurious ambiguity" more than one sequence of actions can produce the same tree (example: 1 <- 2 -> 3)

March 26th

Key points:

- Graph-based parsing
- Lexical features and the benefits of using word embeddings
- Projectivity (all nodes between endpoints of the edge are descendants of them)
- Dependency paths

March 28th

Key points:

- Propositional Logic
- First Order Logic
- Lambda expressions
- Syntactic Semantic Grammar

April 2nd

Key points:

- "More complicated" Lambda expressions
- Building a semantic lexicon
 - Determiners lambda-exps that operate on predicates
- Type raising
- Learning for logical form derivations
- Annotating data for semantic model learning

April 4th

Key points:

- Shallow semantics expressiveness
- Comparison with First Order Logic
- Semantic role labelling

April 9th

Key points:

- Coreference resolution
 - Referring expressions, entities/events
- Different types of noun phrases behave differently in the coreference problem
 - Pronouns / nominals / proper nouns
- SMASH
 - Matching using hard constraints on textual properties
 - Heuristics syntactic parallelism, prominence
 - Finding headwords parser / attention model

April 11th

Key points

- Word embeddings: real-valued vectors that represent words
- The Distributional Hypothesis "similar words have similar contexts"
- Word2Vec -> CBOW,
- LSA SVD of the word/context matrix
- Uses for word embeddings downstream (neural models)

Questions

How does w2v turn contextual information into vectors?

April 16th

Key points

- Entity Linking match text to an entity in the knowledge base
 - Popularity and context as features
 - Vector representation for features and entities
 - Ranking loss
- Relation Extraction
 - Macro vs Micro reading
 - Micro reading strategy: link entities, look at the dependency parse (path between the entities)
 - Build RNN along the dependency path, max pooling

April 18th

Key points

- Systran: Rule Based Machine Translation
- Word ordering for translation is really difficult.
- Seq2Seq models (Encoder-Decoder)
 - o Encoder encodes the source sentence representation
 - o Decoder is a neural language model conditioned on the source representation
- Attention: Attention scores are used as weights and a weighted representation of the encoders hidden states is used as context vector for the decoder.
- Vauquois Pyramid
- Evaluation metrics: BLEU

Questions