
ISTMEIC - Prog3D 2019/2020 Grupo 6 - 25/04/2020

3D Programming Report
Assignment 1

Francisco Sousa 86416

Francisco Nicolau 86419

João Martinho 86454

For this assignment, we were tasked with building a Turner Whitted
Ray Tracing Algorithm capable of rendering 3D scenes featuring spheres,
triangles, planes and multiple light sources by employing the Blinn Phong
shading model and other ray tracing practices such as global illumination (for
reflections and refraction) as well as hard shadows.

Besides that, adding some stochastic sampling techniques, like
anti-aliasing (with the jittered method); soft shadows using an area of light
with a set of N light source points (when without antialiasing) and the
random method (when with antialiasing); and the depth of field effect, where
the lens is simulated by a random distribution of N samples on unit squares
and unit disks.

Finally, we had to build a uniform grid to work as an acceleration
structure.

To achieve this, and some more extras, we tackled each of these
features sequentially following the course’s slides, as we will describe shortly.

Casting Primary Rays
Our first task was to implement the

primaryRay() and rayTracing() functions.
The first is responsible for creating a Ray
object for each individual pixel in the
viewport, the other is our ray tracer’s main
routine. This routine is called for all of the



ISTMEIC - Prog3D 2019/2020 Grupo 6 - 25/04/2020

primary rays created and will then determine the color of the pixel by iterating
through the scene's objects and finding the closest one in the ray’s path.

Since no intersections were calculated, the initial result was just the
background color.

Geometry
Intersections

Now that we
were able to cast rays
and our ray tracer had
its skeleton laid out, it
was time to determine
the intersections
between rays and
basic geometry, like
triangles, spheres and
pl

In these pictures we can clearly observe two triangles (on the left) and
the balls_low scene being rendered with solid colors, blue for triangles, green
for spheres and red for planes.

Shadow Feelers
To get hard shadows displayed in our

rendered images, for every pixel and every object
in our scene we cast a secondary ray from the
intersection point in the direction of all light
sources to determine if it collides (in shadow) or
it doesn’t (not in shadow).

Without the shading we simply output a
flat color (black) for the pixels in shadow, here we
have the balls_low scene with a single light.

Avoiding self Intersection



ISTMEIC - Prog3D 2019/2020 Grupo 6 - 25/04/2020

In the image above we can see that our renders had some
shadow-acne so we employed the method taught in class to fix this.

Blinn Phong Model
Finally it was time to implement the Blinn Phong
Shading Model. We got some nice results for
materials with diffuse and specular components.

Reflections
The next step was

taking care of global
illumination, beginning
with reflections. Just like
previously, we used the
offset-corrected
intersection point of the
primary ray and the
geometry to then cast a
secondary ray.

We also provide a depth variable to make sure that rays won’t bounce
forever, and eventually stop.

Refractions
After that, and to finish the global color, we

implemented the refractions where, with support of
Snell’s Law, the ray changes direction when changing
between materials. To do this, we added a flag that
marked if the ray was inside or outside an object, so
that we knew what was the index of refraction. A bug



ISTMEIC - Prog3D 2019/2020 Grupo 6 - 25/04/2020

we had here was that we calculated shadow feelers when inside an object.
This flag helped fix that.

Anti-aliasing
Starting the stochastic sampling techniques and distributed ray tracing,

we introduced anti-aliasing, which can be resumed as shooting multiple rays
per pixel, collecting each ray’s color contribution and averaging them. The
variation we used was jittering, where the pixel is divided in a grid and, in each
cell, the ray is shot at a random position in that cell. Below we have a side by
side comparison of the same scene with and without antialiasing.

Soft Shadows
Having hard shadows, soft shadows were the next step. The basic idea

behind this is to emulate that our light sources are now areas, instead of
single points. Now, and because can be used with or without anti-aliasing, we
have these two cases:

When without, we create multiple light
sources around the original ones, give them a
lower potency and then use shadow feelers as
usual.



ISTMEIC - Prog3D 2019/2020 Grupo 6 - 25/04/2020

With the anti-aliasing on, we shoot the
multiple rays per pixel at positions around the
light source in a seemingly random fashion,
which results in some noise for each pixel, giving
the impression of softness in the shadows. As
some extra work, since we already use jittering
for the antialiasing, we also used this technique
for the casting of the shadow feelers. We do this
by casting the feelers in the same relative pixel cells as the primary ray, but in
the context of a grid around the light source instead.

Depth of Field
At last, for the distributed ray tracing, we implemented the depth of

field notion. This simulates how a real camera, by having its lens more or less
opened, as well as focusing on different planes of the scenery, is able to focus
only specific objects, while others outside of the plane of focus appear blurry.

For this to happen, we cast rays starting from samples around the eye
of the camera (which emulates the lens) and then shoot them in the direction
of where a normal ray would hit the plane which we want to focus. Because
the rays start at different points in the camera, when we average their
contributions for each pixel’s color, noise is created and objects outside of the
focal plane appear to be blurry.

The images below show how different apertures affect the notion of
blurriness as objects are further away from the focal plane. On the left we
have an aperture of 15, and on the right it’s 30.



ISTMEIC - Prog3D 2019/2020 Grupo 6 - 25/04/2020

Uniform Grid Acceleration Structure
Since ray-tracing is a very computation heavy process, we need ways to

improve its performance.
As such, we implemented a structure called Uniform Grid, where the

environment is split into equally sized cells and objects are stored in the cells
where their bounding boxes are present. Then, when we cast a ray, we see
which cells it traverses through and only test intersections with objects in
these cells. This way, we’re able to reduce by a lot the number of test
intersections we do, because otherwise the ray’s intersections would be
tested with every object in the scene.

Because object bounding boxes on objects are not the object’s actual
boundary, the ray may intercept an object that belongs to a cell but isn’t
actually in the cell’s space. This causes a problem of multiple intersection
tests, because in the next cell the ray may test again it’s intersection point
with the object, which is redundant and unnecessarily expensive. As such,
and as extra work, we implemented the notion of mailboxes, which store the
id of the latest ray they were tested against and only calculate intersections
for rays they haven’t tested intersections with.

Extra work
We mentioned before that we did as extra work the jittering soft

shadows as well as the notion of mailboxes.
Other than this, two other extra steps we implemented in the project

were intersections with axis aligned boxes (picture on the left) and also
square lenses, instead of round ones, for the depth of field effect (picture on
the right).


