Задача 1. Улица.

По одну сторону улицы находятся дома с нечётными номерами (1, 3, 5, ...), по другую сторону — с чётными (2, 4, 6, ...). Дом № 1 находится напротив дома № 2, дом № 3 — напротив дома № 4 и т. д. До соседнего дома нужно идти вдоль по улице одну минуту, неважно, с какой стороны улицы он находится (то есть от дома № 1 нужно идти одну минуту как до дома № 3, так и до дома № 4). До дома, стоящего напротив, идти не нужно.

1	3	5	7
2	4	6	8

Человек вышел на улицу из дома номер A и должен дойти до дома номер B. Определите, сколько минут ему нужно идти вдоль по улице.

Программа получает на вход два различных целых положительных числа A и B, не превосходящие 2×10^9 , — номера домов. Программа должна вывести одно число — искомое количество минут.

Пример входных и выходных данных

Ввод	Вывод
1 8	3

Тесты

Ввод	Вывод	Балл
6 48	21	10
95 3	46	10
15 1	7	10
25 49	12	10
15 16	0	10
1069 8329	3630	10
568 1093	263	10
654179 24146	315017	10
2148922 98476413	48163746	10
69845 125	34860	10

Залача 2.

Антон и цифры (734В)

Соdeforces Round #379 (Div. 2) ограничение по времени на тест 1 секунда ограничение по памяти на тест 256 мегабайт ввод стандартный вывод вывод стандартный вывод

Недавно Антон нашёл у себя дома коробку с цифрами. В коробке было k_2 цифр 2, k_3 цифр 3, k_5 цифр 5 и k_6 цифр 6.

Любимые числа Антона — 32 и 256. Поэтому он, конечно же, решил составить из цифр, находившихся в коробке, свои любимые числа. При этом он хочет, чтобы сумма составленных чисел была как можно больше. Помогите Антону найти эту сумму!

Каждую цифру можно использовать не более одного раза, то есть в составленных Антоном числах должно быть не больше k_2 цифр 2, k_3 цифр 3 и так далее. Неиспользованные цифры в сумме не учитываются.

Входные данные

В единственной строке входных данных находятся четыре целых числа k_2 , k_3 , k_5 , k_6 — количество цифр 2, 3, 5 и 6 соответственно $(0 \le k_2, k_3, k_5, k_6 \le 5 \cdot 10^6)$.

Выходные данные

В единственной строке выходных данных выведите единственное число — максимальную сумму любимых чисел Антона, которые можно составить с помощью цифр из коробки.

Примеры

			Входные данные	Выходные данные
5	1	3	4	800
1	1	1	1	256

В первом примере есть пять цифр 2, одна цифра 3, три цифры 5 и четыре цифры 6. Антон может из этих цифр составить три числа 256 и одно число 32. Тогда ответ будет равен 256 + 256 + 256 + 32 = 800. Заметьте, что после составления чисел осталась одна цифра 2 и одна цифра 6. В ответе они никак не учитываются.

Во втором примере выгоднее всего составить одно число 256. Поэтому ответ равен 256.

Тесты для проверки: (задача 2), каждый тест – 10 баллов.

No	Входные данные	Выходные данные
1	10 2 1 5	320
2	4 2 7 2	576
3	5 5 1 0	160
4	3 3 4 4	768
5	1 2 0 5	32
6	5 3 2 2	608
7	0 0 0 0	0
8	9557 5242 1190 7734	472384
9	1480320 1969946 1158387 3940419	306848928
10	5000000 5000000 5000000 5000000	1280000000

Задача 3.

Число Армстронга

Натуральное число из N цифр является числом Армстронга, если сумма его цифр, возведенных в N-ую степень, равна самому числу (как,

например, $153=1^3+5^3+3^3$). Получить все числа Армстронга, состоящие из двух, трех, четырех и пяти цифр.

Тесты: (входные и выходные совпадают)

output.txt
153
370
371
407
1634
8208
9474
54748
92727
93084

Задача 4.

Задача: 1000 - 7

Ограничения по времени: 1 секунда

Ограничение по памяти: 256 МБ.

Однажды Иван Петрович возвращался с работы и повстречал таинственного незнакомца, который загадал пожилому человеку загадку. Суть загадки заключалась в том, что есть начальное число п (например 1000), нужно последовательно отнимать число 7 от загаданного числа, пока число не станет меньше нуля. Так же после каждого вычисления нужно озвучивать результат (1000, 993, 986 ...). Иван Петрович с лёгкостью бы справился с этой задачей, однако было еще одно условие, нужно посчитать сколько чисел из полученной последовательности заканчиваются на 0 или на 5. Напишите Ивану Петровичу программу, которая бы считала количество нужных чисел.

Обратите внимание, что не нужно выводить последовательность, а нужно только посчитать количество нужных чисел в последовательности.

Входные данные:

Целое число n, (0 <= n <= 10^8).

Выходные данные:

Вывести одно число - количество чисел из полученной последовательности (n, n - 7, (n - 7) - 7 ...), которые заканчиваются (имеют в единичном разряде) на 5 или 0.

Пример теста

Входные данные

15

Выходные данные

1

Примечание:

Например Ивану Петровичу загадали число 15. Иван Петрович начинает вычисления, вот последовательность чисел которую он назовёт. 15, 8, 1. Ему нужно посчитать количество чисел которые заканчиваются на 0 или 5. В данном примере число 15 подходит и оно единственное.

Каждый тест оценивается в 10 баллов. (к задаче 4)

Тесты:

No.	Input	Output
1	1000	29
2	10000	286
3	100000000	2857143

4	7	1
5	27	1
6	999	29
7	0	1
8	12345	353
9	77777	2223
10	1	1

Ответы.

Задача 1. **Решение**

Пример решения на языке Python	Пример решения на языке С++
a = int(input()) b = int(input()) print(abs((a + 1) // 2 — (b + 1) // 2))	#include <iostream> #include <cmath> using namespace std; int main() { int a,b; cin>>a>>b;</cmath></iostream>
	cout << abs((a+1)/2-(b+1)/2) << endl; return 0;

Задача 2.

734В - Антон и цифры

Давайте будем действовать жадно. Сначала мы составим максимальное возможное количество чисел 256. Их количество будет равно $n_{256} = \min(k_2, k_5, k_6)$. Из оставшихся цифр составим максимальное возможное количество чисел 32. Их количество будет равно $n_{32} = \min(k_3, k_2 - n_{256})$ (мы используем k_2 - n_{256} вместо k_2 , поскольку n_{256} двоек уже было потрачено на то, чтобы составить числа 256). Теперь нетрудно заметить, что ответ будет равен $32 \cdot n_{32} + 256 \cdot n_{256}$.

Сложность решения — O(1).

Код

```
#include <iostream>
#include <algorithm>
```

```
using namespace std;
int main()
        int k2, k3, k5, k6;
         cin >> k2 >> k3 >> k5 >> k6;
         int n256 = min(k2, min(k5, k6));
         int n32 = min(k3, k2 - n256);
         cout << 32 * n32 + 256 * n256 << endl;
         return 0;
}
Задача 3.
program z1;
var i:integer;
begin
 for var c1:=1 to 9 do
 for var c2:=0 to 9 do
 begin
 i = c1*10+c2;
 if c1*c1+c2*c2=i then write(i,'');
 end;
 for var c1:=1 to 9 do
 for var c2:=0 to 9 do
 for var c3:=0 to 9 do
 begin
 i = c1*100+c2*10+c3;
 if c1*c1*c1+c2*c2*c2+c3*c3*c3=i then write(i,'');
 end;
 for var c1:=1 to 9 do
 for var c2:=0 to 9 do
 for var c3:=0 to 9 do
 for var c4:=0 to 9 do
 begin
 i = c1*1000+c2*100+c3*10+c4;
 if c1*c1*c1*c1+c2*c2*c2*c2+c3*c3*c3*c3+c4*c4*c4=i then write(i,'');
 end:
 for var c1:=1 to 9 do
 for var c2:=0 to 9 do
 for var c3:=0 to 9 do
 for var c4:=0 to 9 do
 for var c5:=0 to 9 do
 i:=c1*10000+c2*1000+c3*100+c4*10+c5;
 if c1*c1*c1*c1*c1+c2*c2*c2*c2*c2+c3*c3*c3*c3*c3+c4*c4*c4*c4*c4+c5*c5*c5*c5*c5=i
then write(i,'');
 end;
 end.
```

Разбор:

Ограничения позволяют решать задачу в лоб. Т.е. мы переберем всю последовательность чисел которую назовёт Иван Петрович, и для каждого числа просто будет проверять заканчивается ли оно на 5 или на 10. Если заканчивается то прибавим к

ответу единицу. Чтобы проверить какой цифрой заканчивается число, нужно взять остаток от деления на 10.