| 1. | A mathematical model of a machine with the ability of a read-head to move left as well as right is a | |-----|---| | | DFA 2DFA both a and b none | | 2. | 2DFA tuples are | | | 4 5 6 7 | | 3. | Full form of ID | | | Input data Indistinguishable none Instantaneous description | | 4. | For a 2DFA, δ is defined as : | | | • $Q \times \Sigma \longrightarrow Q$
• $Q \times \Sigma \longrightarrow Q \times \{L,R\}$
• both a and b
• None | | 5. | Let P and Q be two regular expressions over Σ and if P does not contain $\pmb{\epsilon}$ then R = Q + RP has a unique solution given by | | | R=PQ* R=PQ+ R=QP* none | | 6. | Select a Regular expression which generates all strings that start with ab and end with bba | | | aba*b*bba ab(ab)*bba ab(a+b)*bba all | | 7. | A DFA is minimal, if and only if | | | All its states are reachable from the start state All its states are distinguishable both a and b none | | 8. | $R.\epsilon = \epsilon.R =$ | | | 0 Φ R ε | | 9. | (S+T)R = | | 40 | SR+TR RS+RT both a and b none | | 10. | 5 | | | (11)+1 (11)*1 both a and b | | 11. | 11. Construct a RE for even number of 1's. | | | | | | |-----|---|--|--|--|--|--| | | • (11)* | | | | | | | | • (11)+ | | | | | | | | • both a and b | | | | | | | 12 | • none | | | | | | | 12. | Standard representations of regular languages are: • Regular expressions | | | | | | | | DFA | | | | | | | | regular grammars | | | | | | | | • All | | | | | | | 13. | Regular set is L={0,1,10,100,1000,}, but Regular expression is represented as | | | | | | | | (0+10*)(0+1)* | | | | | | | | • (010*) | | | | | | | | • (010*) | | | | | | | 14. | The regular expression is (a+b)* then regular set is | | | | | | | | • L={(ε)a,b,aa,ab,ba,bb} | | | | | | | | L={a,b,aa,ab,ba,bb}both a and b | | | | | | | | none | | | | | | | 15. | Set of strings of a's and b's ending with abb. How it can be represented by regular expression. | | | | | | | | • (a+b)+abb | | | | | | | | • (a+b)*abb | | | | | | | | • both a and b | | | | | | | | • none | | | | | | | 16. | $R.\Phi = \Phi.R =$ | | | | | | | | R O | | | | | | | | • Φ | | | | | | | | • none | | | | | | | 17. | A CFG is said to be in CNF, if all productions are of the form: | | | | | | | | A→BC, A→a | | | | | | | | A→aC, A→ab | | | | | | | | • both a and b | | | | | | | 10 | • none A CEC is if there evicts unique LMD/DMD | | | | | | | 18. | A CFG is if there exists unique LMD/RMD • ambiguous | | | | | | | | • unambiguous | | | | | | | | both a and b | | | | | | | | • none | | | | | | | 19. | If there are different parse trees for LMD and RMD then the grammar is called | | | | | | | | ambiguousunambiguous | | | | | | | | unambiguousrecursive | | | | | | | | unrestricted | | | | | | | 20. | is useful to display the derivations as trees. | | | | | | | | Derivation Tree | | | | | | | | Parse Tree | | | | | | | | both a and b | | | | | | none | | • | none | | | |------------|--|--|--|--| | | | | | | | | | | | | | 21. | In der | ivation tree all leaf nodes of the tree are labelled by of the grammar | | | | | • | Terminals | | | | | • | non-terminals | | | | | • | both a and b | | | | | • | none | | | | 22. | In der | ivation tree the interior nodes are labelled using | | | | | • | Terminals | | | | | • | non-terminals | | | | | • | both a and b | | | | | • | none | | | | 23. | Deriva | ation tree is also called | | | | | • | Parse Tree | | | | | • | A-Tree | | | | | • | B-Tree | | | | | • | none | | | | 24. | A deri | vation, in which, in each step left most variable is replaced, is called | | | | | • | LMD | | | | | • | RMD | | | | | • | both a and b | | | | | • | none | | | | 25. | A deri | vation, in which, in each step right most variable is replaced, is called | | | | | • | LMD | | | | | • | RMD | | | | | • | both a and b | | | | | • | none | | | | 26. | CFLs a | are not closed under | | | | | • | Intersection | | | | | • | Difference | | | | | • | Complement | | | | ~ - | • • | | | | | 27. | The Cl | FG for defining palindrome over {a or b}. The productions P are $S \to \varepsilon a b$, $S \to aSa$, $S \to bSb$ | | | | | and the | e grammar is G=({S}, {a,b}, P. S). This grammar is | | | | | • | Ambiguous | | | | | • | Unambiguous both a and b | | | | | | done | | | | 28. | _ | ull form is | | | | 20. | CIVI | Canonical normal form | | | | | | Chomsky normal form | | | | | | both a and b | | | | | • | none | | | | 29. | Whic | n of the production rule can be accepted by Chomsky Normal Form? | | | | 23. | • VIIIC | $A \rightarrow BC$ | | | | | | $A \rightarrow \varepsilon$ | | | | | • | $S \rightarrow a$ | | | | | • | all | | | | 30. | | is always stationed at one of the tape cells and provides communication for the | | | | | interaction between the tape and the control unit. | | | | | | • | Таре | | | | | • | control unit | | | | | | | | | | 31. | 1. What are the components of a TM? | | | | | | |-----|--|--|--|--|--|--| | | tape head control unit all | | | | | | | 32. | A decision problem which can be solved by some algorithm is called | | | | | | | 32. | Undecidable Decidable both a and b none | | | | | | | 33. | | | | | | | | | 4 5 6 7 | | | | | | | 34. | Which of the following is an ϵ production | | | | | | | | S → A A → ε B → a none | | | | | | | 35. | Which of the following is an unit production | | | | | | | | • $S \rightarrow A$
• $A \rightarrow \varepsilon$
• $B \rightarrow a$
• none | | | | | | | 36. | 5. The format: A \rightarrow aB refers to which of the following? | | | | | | | | CNF BNF GNF none | | | | | | | 37. | 37. A variable which is not leading to terminal or terminal string is called | | | | | | | | Non-generating symbol null variable start variable none | | | | | | | | | | | | | | | | 38. The Grammar G= | | | | | | | | (V,T,P,S) (V,T,S) (T,P,S) none | | | | | | | | 39. Type2 grammar is called | | | | | | | | CFGCSGURGRG | | | | | | | | 40. CFG is recognized by | | | | | | | | 10. Ci 0 13 1000 gillized by | | | | | | **Head** none | Recursive Grammar non-linear either right-linear or left-linear none 42. A PDA chooses the next move based on Current state and stack top next input symbol both a and b none 43. Choose one which is not a regular expression? [(a+b)(aa+b))/(a+b) [(0+1)-(0b+a1)(a+b)] (01+11+10)* none 44. A production of the form A → B, where A and B are both non-terminals is called a Unit production ε production both a and b none 45. Which production is Useless production for the Grammar: S → A, A → aA, A → ε, B → bA S → A A → aA A → ε B → bA 46. Reduction of the grammar means Elimination of useless symbols Elimination of unit productions Elimination funit productions Elimination function for TM is defined as Q × Σ → Q × Σ × {L,R,N} Q × Σ → 2 Q Q × (Σ ∪ {ε}) → Q none 48. The language accepted by a Turning Machine is Recursively enumerable language regular language regular language regular language Context sensitive language | | | |----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------| | PDA LBA LBA A grammar G=(V.T.P.S) is said to be regular, if it is | | | | 41. A grammar G=(V.T.P.S) is said to be regular, if it is | | | | Recursive Grammar non-linear either right-linear or left-linear none 42. A PDA chooses the next move based on Current state and stack top next input symbol both a and b none 43. Choose one which is not a regular expression? [(a+b)(aa+b)/(a+b) [(0+1)-(0b+a1)(a+b)/// (01+11-10)* none 44. A production of the form A → B, where A and B are both non-terminals is called a Unit production ε production both a and b none 45. Which production is Useless production for the Grammar: S → A, A → aA, A → ε, B → bA S → A A → ε B → bA 46. Reduction of the grammar means Elimination of useless symbols Elimination of productions Elimination of productions Elimination of unit productions all 47. The transition function for TM is defined as Q × Σ → Q × Σ × {L,R,N} Q × Σ → 2 Q Q × (Σ ∪ {ε}) → Q none 48. The language accepted by a Turning Machine is Recursively enumerable language regular language regular language regular language Context sensitive language | | | | non-linear either right-linear or left-linear none 42. A PDA chooses the next move based on Current state and stack top next input symbol both a and b none 43. Choose one which is not a regular expression? [(a+b)(aa+bb)/(a+b) [(0+1)-(0b+a1)(a+b)// (01+11+10)* none 44. A production of the form A → B, where A and B are both non-terminals is called a Unit production ε production both a and b none 45. Which production is Useless production for the Grammar: S → A, A → aA, A → ε, B → bA S → A A → a A A → a A A → a A Elimination of the grammar means Elimination of the grammar means Elimination of unit productions Elimination of unit productions Elimination function for TM is defined as Q × Σ → Q × Σ × {L,R,N} Q × Σ → Q × Q Q × (Σ ∪ {ε}) → Q none The language accepted by a Turning Machine is Recursively enumerable language regular language regular language Context sensitive language Context sensitive language | 41. | | | either right-linear or left-linear none 12. A PDA chooses the next move based on Current state and stack top next input symbol both a and b none 13. Choose one which is not a regular expression? [(a+b)(aa+bb)/(a+b)] [(0+1)-(0b+a1)(a+b)] (01+11+10)* none 14. A production of the form A → B, where A and B are both non-terminals is called a ——— Unit production \$\varepsilon\$ production both a and b none 15. Which production is Useless production for the Grammar: S → A, A → aA, A → \$\varepsilon\$, B → bA S → A A → aA A → aA A → a B → bA 16. Reduction of the grammar means Elimination of useless symbols Elimination of productions Elimination function for TM is defined as Q × Σ → Q × Σ × {L,R,N} Q × Σ → 2°Q Q × (Σ U {\$\varepsilon\$} → Q none 18. The transition function for TM is defined as Recursively enumerable language regular language regular language regular language Context sensitive language | | | | none 42. A PDA chooses the next move based on Current state and stack top next input symbol both a and b none 43. Choose one which is not a regular expression? [(a+b)(aa+bb)/(a+b)] ((0+1)-(0b+a1)(a+b)] (01+11+10)* none 44. A production of the form A → B, where A and B are both non-terminals is called a Unit production ε production both a and b none 45. Which production is Useless production for the Grammar: S → A, A → aA, A → ε, B → bA S → A A → aA A → ε B → bA 46. Reduction of the grammar means Elimination of useless symbols Elimination of unit productions Elimination of unit productions Elimination of unit productions Elimination of unit productions all 47. The transition function for TM is defined as Q × Σ → Q × Σ × {L,R,N} Q × Σ → 2 · Q Q × (Σ ∪ (ε)) → Q none 48. The language accepted by a Turning Machine is Recursively enumerable language regular language regular language Context sensitive language | | | | Current state and stack top next input symbol both a and b none 43. Choose one which is not a regular expression? [(a+b)(aa+bb)/(a+b)] (01+11+10)* none 44. A production of the form A → B, where A and B are both non-terminals is called a Unit production ε production both a and b none 45. Which production is Useless production for the Grammar: S → A, A → aA, A → ε, B → bA S → A A → a A A → ε B → bA 46. Reduction of the grammar means Elimination of unit productions Elimination of unit productions Elimination function for TM is defined as Q × Σ → Q × Σ × {L,R,N} Q × Σ → 2°Q Q × (Σ ∪ {ε}) → Q none 48. The language accepted by a Turning Machine is Recursively enumerable language regular language regular language regular language regular language context sensitive language | | _ | | next input symbol both a and b none 43. Choose one which is not a regular expression? [{a+b}(aa+bb)/(a+b)] [{0+1}-(ob+a1)(a+b)] (01+11+10)* none 44. A production of the form A → B, where A and B are both non-terminals is called a Unit production ε production both a and b none 45. Which production is Useless production for the Grammar: S → A, A → aA, A → ε, B → bA S → A A → aA A → ε B → bA 46. Reduction of the grammar means Elimination of useless symbols Elimination of unit productions Elimination of unit productions Elimination function for TM is defined as Q × Σ → Q × Σ × {L,R,N} Q × Σ → 2 Q Q × (Σ ∪ {ε}) → Q none 48. The language accepted by a Turning Machine is Recursively enumerable language regular language regular language context sensitive language | 42. | A PDA chooses the next move based on | | both a and b none 43. Choose one which is not a regular expression? [(a+b)(aa+bb)](a+b) [(01+1)-(0b+a1)(a+b)] ((01+11+10)* none 44. A production of the form A → B, where A and B are both non-terminals is called a Unit production both a and b none 45. Which production is Useless production for the Grammar: S → A, A → aA, A → ε, B → bA S → A A → aA A → ε B → bA 46. Reduction of the grammar means Elimination of useless symbols Elimination of unit productions Elimination of unit productions all 47. The transition function for TM is defined as Q × Σ → Q × Σ × {L,R,N} Q × Σ → Q × Σ × {L,R,N} Q × Σ → 2°Q Q × (Σ ∪ {ε}) → Q none 48. The language accepted by a Turning Machine is Recursively enumerable language regular language regular language context sensitive language | | · | | none 43. Choose one which is not a regular expression? [(a+b)(aa+bb)](a+b) [(0+1)-(0b+a1)(a+b)] (01+11+10)* none 44. A production of the form A → B, where A and B are both non-terminals is called a Unit production \$\varepsilon\$ production both a and b none 45. Which production is Useless production for the Grammar: S → A, A → aA, A → \$\varepsilon\$, B → bA \$\varepsilon\$ A → \$\varepsilon\$ \$\varepsilon\$ A → aA \$\varepsilon\$ A → \$\varepsilon\$ \$\varepsilon\$ Elimination of useless symbols \$\varepsilon\$ Elimination of unit productions \$\varepsilon\$ Elimination function for TM is defined as \$\varepsilon\$ \varepsilon\$ \va | | | | 43. Choose one which is not a regular expression? • [(a+b)(aa+bb)](a+b) • [(0+1)-(0b+a1)(a+b)] • (01+11-10)* • none 44. A production of the form A → B, where A and B are both non-terminals is called a • Unit production • ε production • both a and b • none 45. Which production is Useless production for the Grammar: S → A, A → aA, A → ε, B → bA • S → A • A → aA • A → ε • B → bA 46. Reduction of the grammar means • Elimination of useless symbols • Elimination of unit productions • Elimination of unit productions • Elimination of unit productions • all 47. The transition function for TM is defined as • Q × Σ → Q × Σ × {L,R,N} • Q × Σ → 2 · Q • none 48. The language accepted by a Turning Machine is • Recursively enumerable language • regular language • regular language • Context sensitive language | | | | [(a+b)(aa+bb)](a+b) [(0+1)-(0b+a1)(a+b)] (01+11+10)* none A production of the form A → B, where A and B are both non-terminals is called a Unit production \$\varepsilon\$ production both a and b none Which production is Useless production for the Grammar: S → A, A → aA, A → \$\varepsilon\$, B → bA \$\varepsilon\$ A → aA A → aA A → \$\varepsilon\$ Elimination of useless symbols Elimination of unit productions Elimination of unit productions Elimination function for TM is defined as Q × \$\varepsilon\$ Q × \$\varepsilon\$ \(\varepsilon\$ \\\varepsilon\$ \(\varepsilon\$ \(\varepsilon\$ \varepsilon\$ \(\varepsilon\$ \(\varepsilon\$ \(\varepsilon\$ \\\\varepsilon\$ \(\varepsilon\$ \(\varepsilon\$ \\\\varepsilon\$ \(\varepsilon\$ \(\varepsilon\$ \(\varepsilon\$ \(\varepsilon\$ \(\varepsilo | 43. | | | [(0+1)-(0b+a1)(a+b)] (01+11+10)* none 44. A production of the form A → B, where A and B are both non-terminals is called a Unit production \$\varepsilon\$ production both a and b none 45. Which production is Useless production for the Grammar: S → A, A → aA, A → \$\varepsilon\$, B → bA \$\varepsilon\$ A → aA A → \$\varepsilon\$ B → bA 46. Reduction of the grammar means Elimination of useless symbols Elimination of the productions Elimination of unit productions Elimination function for TM is defined as Q × \$\varepsilon\$ Q × \$\varepsilon\$ x × {L,R,N} Q × \$\varepsilon\$ Q × \$\varepsilon\$ x × {L,R,N} Q × \$\varepsilon\$ Q × \$\varepsilon\$ y \(\varepsilon\$ \(\vareps | | | | none 44. A production of the form A → B, where A and B are both non-terminals is called a Unit production \$\varepsilon\text{ production}\$ both a and b none 45. Which production is Useless production for the Grammar: S → A, A → aA, A → \$\varepsilon\text{ B} → bA \$\varepsilon\text{ A} → \varepsilon\text{ B}\$ \$\varepsilon\text{ B} → bA 46. Reduction of the grammar means Elimination of useless symbols Elimination of unit productions Elimination of unit productions all 47. The transition function for TM is defined as \$\varepsilon\text{ X} \times \times \varepsilon\text{ X} \times \varepsilon\text{ L}, \varepsilon\text{ N}\right\) \$\varepsilon\text{ X} \times \varepsilon\text{ X} \times \varepsilon\text{ L}, \varepsilon\text{ N}\right\) \$\varepsilon\text{ X} \times \varepsilon\text{ Q} \times \varepsilon\text{ L}, \varepsilon\text{ N}\right\) \$\varepsilon\text{ Recursively enumerable language}\$ \$\varepsilon\text{ regular language}\$ \$\varepsilon\text{ Context sensitive language}\$ | | | | 44. A production of the form A → B, where A and B are both non-terminals is called a • Unit production • ε production • both a and b • none 45. Which production is Useless production for the Grammar: S → A, A → aA, A → ε, B → bA • S → A • A → aA • A → ε • B → bA 46. Reduction of the grammar means • Elimination of useless symbols • Elimination of ε productions • Elimination of unit productions • all 47. The transition function for TM is defined as • Q × Σ → Q × Σ × {L,R,N} • Q × Σ → Q × Σ × {L,R,N} • Q × Σ → Q × Σ × {themely the production of the grammar means of the grammar means • Recursively enumerable language • regular language • Context sensitive language | | • (O1+11+1O)* | | Unit production ε production both a and b none Which production is Useless production for the Grammar: S → A, A → aA, A → ε, B → bA S → A A → aA A → ε B → bA Reduction of the grammar means Elimination of useless symbols Elimination of ε productions Elimination of unit productions all The transition function for TM is defined as Q × Σ → Q × Σ × {L,R,N} Q × Σ → 2 ° Q Q × (Σ ∪ {ε}) → Q none The language accepted by a Turning Machine is Recursively enumerable language regular language Context sensitive language | 4.4 | 1.0.10 | | Unit production ε production both a and b none 45. Which production is Useless production for the Grammar: S → A, A → aA, A → ε, B → bA S → A A → aA A → ε B → bA 46. Reduction of the grammar means Elimination of useless symbols Elimination of unit productions Elimination of unit productions Elimination function for TM is defined as Q × Σ → Q × Σ × {L,R,N} Q × Σ → 2^Q Q × (Σ ∪ {ε}) → Q none 48. The language accepted by a Turning Machine is Recursively enumerable language regular language Context sensitive language | | | | € production both a and b none 45. Which production is Useless production for the Grammar: S → A, A → aA, A → ε, B → bA S → A A → aA A → ε B → bA 46. Reduction of the grammar means Elimination of useless symbols Elimination of ε productions Elimination of unit productions Elimination function for TM is defined as Q × Σ → Q × Σ × {L,R,N} Q × Σ → 2 ^Q Q × (Σ ∪ {ε}) → Q none 48. The language accepted by a Turning Machine is Recursively enumerable language regular language Context sensitive language | u | | | none 45. Which production is Useless production for the Grammar: S → A, A → aA, A → ε, B → bA S → A A → ε B → bA 46. Reduction of the grammar means Elimination of useless symbols Elimination of unit productions Elimination of unit productions all 47. The transition function for TM is defined as Q × Σ → Q × Σ × {L,R,N} Q × Σ → 2 ^ Q Q × (Σ ∪ {ε}) → Q none 48. The language accepted by a Turning Machine is Recursively enumerable language regular language Context sensitive language | | | | 45. Which production is Useless production for the Grammar: S → A, A → aA, A → ε, B → bA • S → A • A → ε • B → bA 46. Reduction of the grammar means • Elimination of useless symbols • Elimination of unit productions • Elimination of unit productions • all 47. The transition function for TM is defined as • Q × Σ → Q × Σ × {L,R,N} • Q × Σ → 2^Q • Q × (Σ ∪ {ε}) → Q • none 48. The language accepted by a Turning Machine is • Recursively enumerable language • regular language • regular language • Context sensitive language | | • both a and b | | ε, B → bA S → A A → aA A → ε B → bA Reduction of the grammar means Elimination of useless symbols Elimination of ε productions Elimination of unit productions all The transition function for TM is defined as Q × Σ → Q × Σ × {L,R,N} Q × Σ → 2 Q Q × (Σ ∪ {ε}) → Q none The language accepted by a Turning Machine is Recursively enumerable language regular language Context sensitive language | 45 | | | A → aA A → ε B → bA 46. Reduction of the grammar means Elimination of useless symbols Elimination of ε productions Elimination of unit productions all 47. The transition function for TM is defined as Q × Σ → Q × Σ × {L,R,N} Q × Σ → 2^Q Q × (Σ ∪ {ε}) → Q none 48. The language accepted by a Turning Machine is Recursively enumerable language regular language Context sensitive language | | | | A → ε B → bA Reduction of the grammar means Elimination of useless symbols Elimination of ε productions Elimination of unit productions all The transition function for TM is defined as Q × Σ → Q × Σ × {L,R,N} Q × Σ → 2 ^Q Q × (Σ ∪ {ε}) → Q none The language accepted by a Turning Machine is Recursively enumerable language regular language Context sensitive language | | \bullet S \rightarrow A | | B → bA 46. Reduction of the grammar means Elimination of useless symbols Elimination of ε productions Elimination of unit productions all 47. The transition function for TM is defined as Q × Σ → Q × Σ × {L,R,N} Q × Σ → 2^Q Q × (Σ ∪ {ε}) → Q none 48. The language accepted by a Turning Machine is Recursively enumerable language regular language Context sensitive language | | | | Reduction of the grammar means Elimination of useless symbols Elimination of productions Elimination of unit productions all The transition function for TM is defined as Q × Σ → Q × Σ × {L,R,N} Q × Σ → 2 ^Q Q × (Σ ∪ {ε}) → Q none The language accepted by a Turning Machine is Recursively enumerable language regular language Context sensitive language | | | | Elimination of useless symbols Elimination of ε productions Elimination of unit productions all 47. The transition function for TM is defined as Q × Σ → Q × Σ × {L,R,N} Q × Σ → 2 ^ Q Q × (Σ ∪ {ε}) → Q none 48. The language accepted by a Turning Machine is Recursively enumerable language regular language Context sensitive language | 16 | | | Elimination of ε productions Elimination of unit productions all 47. The transition function for TM is defined as Q × Σ → Q × Σ × {L,R,N} Q × Σ → 2 ^Q Q × (Σ ∪ {ε}) → Q none 48. The language accepted by a Turning Machine is Recursively enumerable language regular language Context sensitive language | 40. | | | Elimination of unit productions all 47. The transition function for TM is defined as Q × Σ → Q × Σ × {L,R,N} Q × Σ → 2^Q Q × (Σ ∪ {ε}) → Q none 48. The language accepted by a Turning Machine is Recursively enumerable language regular language Context sensitive language | | · | | all 47. The transition function for TM is defined as Q × Σ → Q × Σ × {L,R,N} Q × Σ → 2^Q Q × (Σ ∪ {ε}) → Q none 48. The language accepted by a Turning Machine is Recursively enumerable language regular language Context sensitive language | | | | Q × Σ → Q × Σ × {L,R,N} Q × Σ → 2^Q Q × (Σ ∪ {ε}) → Q none The language accepted by a Turning Machine is Recursively enumerable language regular language Context sensitive language | | · | | Q × Σ → 2 Q Q × (Σ ∪ {ε}) → Q none 48. The language accepted by a Turning Machine is Recursively enumerable language regular language Context sensitive language | 47. | | | Q × (Σ ∪ {ε}) → Q none 48. The language accepted by a Turning Machine is Recursively enumerable language regular language Context sensitive language | | | | none The language accepted by a Turning Machine is Recursively enumerable language regular language Context sensitive language | | | | The language accepted by a Turning Machine is Recursively enumerable language regular language Context sensitive language | | | | Recursively enumerable language regular language Context sensitive language | 48. | | | regular languageContext sensitive language | | | | | | | | Context tree language | | | | - Context in conditional and ge | | Context free language | - 49. A grammar with at most one variable (non-terminal) at the right side of a production is a - Linear grammar - nonlinear - both a and b - none - 50. A decision problem which cannot be solved by some algorithm is called - Undecidable - Decidable - both a and b - none