

EAST TROY COMMUNITY SCHOOL DISTRICT

Committed to the Growth & Success of Each Student, Each Year

Science (Grade 5)

Course Description:

The curriculum for this course is developed from the <u>Next Generation Science Standards</u>. In this course, fifth grade students will continue to develop an understanding of the four disciplinary core ideas: physical sciences; life sciences; earth and space sciences; and engineering, technology, and application of science. Students will be able to demonstrate grade-appropriate proficiency in gathering, describing, and using information about the natural and designed world(s).

Essential Understandings:

• Where does the energy in food come

- 1. Scientists ask questions, define problems, and specify qualitative relationships based on observations to find more information about the natural and/or designed world(s). (3-5-ETS1-1)
- 2. Using, developing, building, and revising models (i.e., diagram, drawing, physical replica, diorama, dramatization, or storyboard) represent concrete events or design solutions. (5-PS1-1, 5-PS3-1, 5-LS2-1, 5-ESS2-1, 3-5-ETS1-1)
- 3. Investigations that control variables and provide evidence to support explanations or design solutions are planned and carried out to answer questions or test solutions to problems. (5-PS1-4, 3-5-ETS1-2, 3-5-ETS1-2)
- 4. Information from observations is collected, recorded, and shared through multiple trials of quantitative and qualitative approaches in order to analyze and interpret data. (5-PS1-2, 5-PS1-3, 5-ESS2-2, 5-ESS1-2)
- 5. Evidence and ideas that specify variables are used to construct explanations and predictions of natural phenomena and design multiple solutions to problems. (3-5-ETS1-2, 3-5-ETS1-3)
- 6. Arguments from evidence are constructed by comparing ideas and representations, critiquing scientific explanations or solutions, and citing relevant evidence about the natural and designed world(s). (5-LS1-1, 5-PS2-1, 5-ESS1-1)
- 7. Observations and texts are used to obtain, evaluate, communicate, and evaluate the merit and accuracy of ideas and methods from new information. (5-PS1-4, 5-ESS3-1, 3-5-ETS1-2)

Unit **Description of Unit and Learning Targets Structure and Properties of Matter** Students will develop an understanding of the idea that regardless of the type of change that matter undergoes, the total weight of matter is How are new substances created by conserved. Students determine whether the mixing of two or more substances results in new substances. combining other substances? • When matter changes, how does its weight change? Learning Targets: • I can develop a model to describe that matter is made of particles too small to be seen. • I can measure and graph quantities to provide evidence that regardless of the type of change that occurs when heating, cooling, or mixing substances, the total weight of matter is conserved. • I can make observations and measurements to identify materials based on their properties. I can conduct an investigation to determine whether the mixing of two or more substances results in new substances. Matter and Energy in Organisms and Students will describe the movement of matter among plants, animals, **Ecosystems** decomposers, and the environment and that energy in animals' food was once energy from the sun. How does matter cycle through ecosystems? Learning Targets:

• I can use models to describe that energy in animals' food

from and what is it used for? (used for body repair, growth, motion, and to maintain body warmth) was once energy from the sun. I can support an argument that plants get the materials they need for growth chiefly from air and water. I can develop a model to describe the movement of matter among plants, animals, decomposers, and the environment. Students will be able to describe ways the geosphere, biosphere, Earth's Systems hydrosphere, and/or atmosphere interact. They will also describe and graph data to provide evidence about the distribution of water on Earth How much water can be found in and an understanding of the idea that plants get the materials they different places on Earth? need for growth chiefly from air and water. Learning Targets: I can develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact. I can describe and graph the amounts and percentages of water and fresh water in various reservoirs to provide evidence about the distribution of water on Earth. I can obtain and combine information about ways individual communities use science ideas to protect the Earth's resources and environment. Space Systems: Stars and the Solar Students will develop an understanding of patterns of daily changes in length and direction of shadows, day and night, and the seasonal System appearance of some stars in the night sky. • How does the appearance of some stars change in different seasons? Learning Targets: How do lengths and directions of I can support an argument that the gravitational force exerted shadows or relative lengths of day by Earth on objects is directed down. and night change from day to day? I can support an argument that differences in the apparent brightness of the sun compared to other stars is due to their relative distances from Earth. I can represent data in graphical displays to reveal patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night sky. **Engineering Design** Students will design and carry out investigations by generating and comparing multiple solutions to problems. • How do engineers design and carry out an investigation? Learning Targets: What are the benefits to generating • I can define a simple design problem reflecting a need or a and comparing multiple solutions to a want that includes specified criteria for success and constraints on materials, time, or cost. problem? I can generate and compare multiple possible solutions to a

problem based on how well each is likely to meet the criteria

I can plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects

of a model or prototype that can be improved.

and constraints of the problem.