15295 Fall 2017 #11 -- Problem Discussion
November 8, 2017

This is where we collectively describe algorithms for these problems. To see the problem
statements follow this link. To see the scoreboard, go to this page and select this contest.

A. Candy division
B. Triangle in a Triangle

You can show that the only points you need to consider for the corners of the biggest triangle
are the (up to) six points that are extreme on the three sides of the triangle. This is just a
consequence of the fact that only points on the convex hull need be considered to find the
largest area triangle among a set of points. So you find these six points and try all subsets
of three and take the largest triangle that can be made. --DS

One way to see why only the extreme points on each side matter: say you fix two points of
your triangle. What's the best point to pick for your third point in order to maximize area?
Consider the line segment connecting your two fixed points, and view this as the base of
your triangle. Recalling that area = base * height / 2, you want your third point to maximize
the height of your triangle, that is, to maximize the perpendicular distance away from the
base. Draw some pictures and convince yourself that such a point must be the extreme point
of a line. Now you know that at least one point of the triangle should be taken to be an
extreme point. Repeat this argument to see that all points of the triangle should be extreme
points. -- Tom

C. Chess
D. Effective network

E. Compass

Extend each horizontal segment which occurs in the input polygon in both directions from 0
to 1000. Do the same thing for all the vertical segments. Now you have N? intersections
among these. If there’s a solution there is one at one of these intersections. This leads to
an algorithm.

For each such vertical and horizontal segment we’re going to maintain a range along it which
might still be a valid solution. Initially these ranges are [0, 1000]. We walk around the
polygon processing each edge and each external corner, as shown in the figure below. For
each one we intersect the valid regions with new intervals, thus shrinking the valid regions to
a possibly smaller region.


https://contest.cs.cmu.edu/295/s17/171108-problems.pdf
https://contest.cs.cmu.edu/icpcgate/contest/index.php

The figure illustrates the two types of restrictions that are generated. We’re walking around
the polygon in counter clockwise order. When we process edge (1,2) there are two integral
(y coordinate) rows shown in green for which this edge implies a restriction on where the
magnet could be. Namely the magnet must be (if it is in either of these rows) in the green
part of the rows. For the corner 1 red lines illustrate regions on those 4 vertical columns
and 5 horizontal rows which are get additional restrictions.

When we process segment (5,6) the restriction is to the right instead of the left. And (6,7) is
up from that edge, etc. So there are four functions for edges and four for corners. And |
wrote them all out instead of doing it abstractly and elegantly.

There are a total of 2N columns and rows. Each edge can touch N of them and each
external corner can touch 2N of them. So the total work to apply these restrictions is O(N?).

Finally after we’ve computed the valid intervals in each column and each row, we need to
determine if there is anything valid left. To do this we check each column and each row and
see if their intersection is still valid in that column and row. If such a point is found we have a
solution, otherwise there is none. This process is also O(N?). Since N < 1000 this is fast
enough. --DS

F. Affine

An affine transformation is equivalent to doing a linear transformation (i.e. multiplying by a
matrix) followed by a translation.

The hypercube is convex, so an affine map of it must be convex too. It's also symmetric
about its center point, so the affine map of it is too. Thus if it's a non-degenerate polygon, it
must be convex, and have an even number of sides and opposite sides are parallel and the



same length. And in this case the dimension of the hypercube is n/2. So this is all easy to
test using standard primitives like line-side-test.

But it turns out they wanted to be evil. So the polygon could be a point (hypercube
dimension 0), a line segment (hypercube dimension 1). The latter, strictly speaking, violates
the requirement that the polygon boundary not intersect itself. At least this case is in the
sample data.

And it turns out that they made the problem harder by dividing the sides up into several
parallel pieces, just to be gratuitously annoying. Of course they also included the 1 point
case (test case number 117). --DS



