
Week 12, 13: BROADCASTING

●​ What is Broadcasting

●​ Local versus Global Broadcasting

●​ Implementing Broadcasting with C#

o​ Broadcasting Examples

o​ Bad Broadcasting Examples

●​ Overview of Multicasting

BROADCASTING​ 2

WHAT IS BROADCASTING?​ 2
IP Address in Broadcasting​ 2

LOCAL VERSUS GLOBAL BROADCASTS​ 2
IMPLEMENTING BROADCASTING WITH C#​ 3

Bad Broadcasting Example​ 3
Broadcasting Example​ 4

RECEIVING BROADCAST PACKETS****​ 5
Testing the program​ 6

OVERVIEW OF MULTICASTING​ 7

WHAT IS MULTICASTING?​ 7
MULTICAST TECHNIQUES​ 7

Peer-to-Peer Technique​ 8
Central Server​ 8

SENDING MULTICAST PACKETS THROUGH ROUTERS​ 9

Week 12 – 13 | 1

Broadcasting

What Is Broadcasting?

IP broadcasting is used by network devices to send a single packet of information that can be accessible by

every device on the network.

For broadcasting, UDP packets must be used. This protocol has the capability of sending messages without a

specific connection being defined. TCP communication requires that two devices have a dedicated

connection. Therefore, it is not possible to send broadcast messages in a strictly TCP environment.

IP Address in Broadcasting

An IP address is divided into two parts, a network address and a host address. The standard network address

part makes up the first part of the local broadcast address, and all 1s are used for the host part of the address

(which is the decimal value 255 in the address octet).

Thus, for the class B network 192.168.0.0, using a subnet mask of 255.255.0.0, the local broadcast address

would be 192.168.255.255.

​
The IP network and host address parts of a local broadcast address

Similarly, if the subnet is further divided using a subnet mask of 255.255.255.0, each subnet would have its

own local broadcast address. The subnet 192.168.1.0 would have a broadcast address of 192.168.1.255, and

so on up to the subnet 192.168.254.0, which would have the broadcast address 192.168.254.255.

Local versus Global Broadcasts

Broadcast messages contain a special destination IP address. The IP address format allows for two types of

broadcast message addresses:

♦​ Local Broadcasts: uses local broadcast address. In this type, a broadcast message is sent to all

devices on a particular subnet. That is the message is localized so that other networks are not

affected by the broadcast.

♦​ Global Broadcasts: the message is sent to all devices on all networks accessible from the device

sending the message. The global broadcast was originally intended to allow a device to send a packet

Week 12 – 13 | 2

to all devices on an internetwork. It uses all 1s in the IP address, creating an address of

255.255.255.255.

To eliminate bogus broadcast possibility, routers do not send global IP broadcasts to other networks unless

specifically configured to do so. Instead, they silently ignore global broadcasts and turn them into local

broadcasts that are seen only on the local network over which they were sent.

Implementing Broadcasting with C#

The .NET network library contains elements for sending and receiving broadcast packets.

Bad Broadcasting Example

By default, sockets are not allowed to send broadcast messages. You can test this by running this simple

program.

The BadBroadcast.cs program

using System;
using System.Net;
using System.Net.Sockets;
using System.Text;
class BadBroadcast
{
 public static void Main()
 {
 Socket sock = new Socket(AddressFamily.InterNetwork, ​ ​
​ SocketType.Dgram, ProtocolType.Udp);
 IPEndPoint iep = new IPEndPoint(IPAddress.Broadcast, 9050);
 byte[] data = Encoding.ASCII.GetBytes("This is a test
message");
 sock.SendTo(data, iep);
 sock.Close();
 }
}

When you try to run this program, you will get an Exception message:

C:\>BadBroadcast

Unhandled Exception: System.Net.Sockets.SocketException: An attempt was made to

access a socket in a way forbidden by its access permissions

 at System.Net.Sockets.Socket.SendTo(Byte[] buffer, Int32 offset, Int32 size,

SocketFlags socketFlags, EndPoint remoteEP)

 at System.Net.Sockets.Socket.SendTo(Byte[] buffer, EndPoint remoteEP)

 at BadBroadcast.Main()

C:\>

Week 12 – 13 | 3

The BadBroadcast.cs program seems simple enough, but when it runs, the .NET environment doesn’t allow

the SendTo() method to send the message. As seen, if you attempt to send a broadcast message from a

default UDP socket, you will get a SocketException error.

Broadcasting Example

For a C# application to send broadcast packets, the broadcast socket option must be set on the created

socket using the SetSocketOption() method of the Socket class:

Socket sock = new Socket(AddressFamily.InterNetwork,
 SocketType.Dgram, ProtocolType.Udp);
sock.SetSocketOption(SocketOptionLevel.Socket, ​
SocketOptionName.Broadcast, 1);

♦​ The SocketType must be set to Dgram for broadcast messages.

♦​ The SocketOptionName.Broadcast option is a Socket level option, so the SocketOptionLevel

parameter must be set to Socket.

♦​ Because the SetSocketOption() method does not allow Boolean values for the data parameter, you

must set the value parameter to any non-zero value to represent the true Boolean value. Zero

represents the false Boolean value.

After the socket option is set, you specify a broadcast address and port to use for the broadcast and use the

SendTo() method to send a message on that address:

IPEndPoint iep = new IPEndPoint(IPAddress.Broadcast, 9050);
byte[] data = Encoding.Ascii.GetBytes("this message is for
all");
sock.SendTo(data, iep);

♦​ Using the Broadcast property of the IPAddress class as a destination address, the program will send

the broadcast message out to all network interfaces configured on the device.

♦​ To limit the broadcast to a specific interface, you must manually supply a local broadcast address to

use for the destination address.

The Broadcst.cs program

using System;
using System.Net;
using System.Net.Sockets;
using System.Text;
class Broadcst
{
 public static void Main()
 {

Week 12 – 13 | 4

 Socket sock = new Socket(AddressFamily.InterNetwork, ​
SocketType.Dgram, ProtocolType.Udp);
 IPEndPoint iep1 = new IPEndPoint(IPAddress.Broadcast, 9050);
 IPEndPoint iep2 = new IPEndPoint(IPAddress.Parse("192.168.1.255"),
​ ​ 9050);
 string hostname = Dns.GetHostName();
 byte[] data = Encoding.ASCII.GetBytes(hostname);
 sock.SetSocketOption(SocketOptionLevel.Socket,
 SocketOptionName.Broadcast, 1);
 sock.SendTo(data, iep1);
 sock.SendTo(data, iep2);
 sock.Close();
 }
}

♦​ The Broadcst program creates two separate IPEndPoint objects, one using the IPAddress.Broadcast

address and one using a local broadcast address 192.168.1.255.

♦​ Next, the local hostname of the device is determined using the standard Dns GetHostName ()

method, and it is sent out in two separate broadcast messages.

​

Receiving Broadcast Packets****

Receiving broadcast packets is a little less complex than sending them. By default, no special options are

required for a socket to receive a broadcast message. If a socket is listening on a specified UDP port, it will

accept any message destined for either a broadcast address or the local IP address of the device. The

following program demonstrates this by creating a socket to listen for packets on UDP port 9050, the same

port from which the Broadcst program is sending broadcast messages.

The RecvBroadcst.cs program

using System;
using System.Net;
using System.Net.Sockets;
using System.Text;

class RecvBroadcst
{
 public static void Main()
 {
 Socket sock = new Socket(AddressFamily.InterNetwork, ​
SocketType.Dgram, ProtocolType.Udp);
 IPEndPoint iep = new IPEndPoint(IPAddress.Any, 9050);
 sock.Bind(iep);
 EndPoint ep = (EndPoint)iep;

Week 12 – 13 | 5

 Console.WriteLine("Ready to receive…");
 byte[] data = new byte[1024];
 int recv = sock.ReceiveFrom(data, ref ep);
 string stringData = Encoding.ASCII.GetString(data, 0, recv);
 Console.WriteLine("received: {0} from: {1}", stringData, ​
ep.ToString());
 data = new byte[1024];
 recv = sock.ReceiveFrom(data, ref ep);
 stringData = Encoding.ASCII.GetString(data, 0, recv);
 Console.WriteLine("received: {0} from: {1}", stringData, ​
ep.ToString());
 sock.Close();
 }
}

The RecvBroadcst program is a simple UDP program that creates a socket and binds it to all network

interfaces on the device, using port 9050, the same port that the Broadcst program uses to send its

broadcast messages. After binding the socket to the UDP port, the program attempts to receive two

messages sent to the port and displays the message and the sending host address information.

Testing the program

You can start the RecvBroadcst program in a command prompt window, and then run the Broadcst program

from either another command prompt window on the same device, or from another device on the same

subnet.

A sample output from the RecvBroadcst program is as follows:

C:\>RecvBroadcst

received: abednego from: 192.168.1.6:1042

received: abednego from: 192.168.1.6:1042

C:\>

As expected, the RecvBroadcst program received both forms of the broadcast message that were sent by the

Broadcst program.

Warning When testing broadcast programs, remember to use devices on the same subnet.

Week 12 – 13 | 6

Overview of Multicasting

What Is Multicasting?

Broadcasting is an excellent way to send information to all devices on a subnet, but the broadcast packets are

restricted to the local subnet.

IP multicasting was devised to allow an application to send a single packet to a selected subset of devices

both on the local subnet and across network boundaries. This feature allows an application to join a

multicast group to participate in a wide-area conference.

IP multicasting uses special IP addresses. The IP multicasting scheme uses a particular range of IP addresses

to designate different multicast groups. Each multicast group consists of a group of devices listening to the

same IP address. As packets are sent out destined for the multicast group address, each device listening to

the address receives them.

The IP address range 224.0.0.1 through 239.255.255.255 represents multicast groups. According to Internet

Request For Comments (RFC) 3171, the groups are divided as shown below:

IP Multicast Address Assignments

Range Assignment

224.0.0.0–224.0.0.255 Local network control block

224.0.1.0–224.0.1.255 Internetwork control block

224.0.2.0–224.0.255.0 AD-HOC block

224.1.0.0–224.1.255.255 ST multicast groups

224.2.0.0–224.2.255.255 SDP/SAP block

224.252.0.0–224.255.255.255 DIS transient block

225.0.0.0–231.255.255.255 Reserved

232.0.0.0–232.255.255.255 Source-specific multicast block

233.0.0.0–233.255.255.255 GLOP block

234.0.0.0–238.255.255.255 Reserved

239.0.0.0–239.255.255.255 Administratively scoped block

Within each of these address blocks, individual IP addresses are assigned to specific projects. For example,

addresses 224.0.0.1 and 224.0.0.2 are reserved for routers to communicate multicast group information

between themselves. You should avoid using multicast group addresses that occur within these blocks.

Multicast Techniques

There are two techniques used to control multicast sessions:

♦​ A peer-to-peer technique, in which all clients can send messages to all other clients in the group

Week 12 – 13 | 7

♦​ A central server that sends messages to group clients

Peer-to-Peer Technique

In a peer-to-peer multicast group, all of the clients in the multicast group have equal rights in the group. Any

client in the group has the capability to exchange messages with any other client in the group.

​
In a peer-to-peer multicast group, all clients can exchange messages with any client in the

group.

The IP system supports peer-to-peer multicast groups by allowing any device on the network to accept and

send packets destined for the multicast group IP address. By default, there are no restrictions on which

clients can join a multicast group. Some implementations use encryption to prevent unauthorized clients

from interpreting the data received in the multicast group, but there is still no way to block the clients’

receipt of the data.

Central Server

The other multicast system employs a central server, a single device on the network that controls all

multicast group activity. An individual client wanting to join the multicast group must ask permission from

the central server. If the central server denies the client access to that multicast group, no multicast packets

will be forwarded to the requesting client. This technique is shown below.

​
The central server setup for controlling multicast groups

Week 12 – 13 | 8

The central server multicast group system is not supported by IP. Currently, Asynchronous Transfer Mode

(ATM) networks are the only networks capable of supporting central server multicast groups.

Sending Multicast Packets through Routers

By default, most routers do not pass multicast packets through to other subnets. If a router passed every

received multicast packet to every interface, it would put the network at risk of being flooded with multicast

packets. Instead, a system has been developed to allow selective forwarding of multicast packets.

The Internet Group Management Protocol (IGMP) was developed to aid in notifying routers when multicast

packets should to be passed to various subnets. When a network device wants to join a multicast group, it

sends an IGMP packet to the local router on its subnet. The IGMP packet registers the network device and

the multicast group address from which that device must receive messages. This enables the router to know

that it must forward any received multicast messages for that group to the subnet of the specified network

device.

​
Network devices registering multicast group memberships on a router

When each network device registers its intention to receive packets for the multicast group, the router must

forward any received multicast packets to each interface that contains a registered host. Interfaces that do

not contain registered hosts do not need to receive the multicast packet.

Similarly, when a network host leaves the multicast group, another IGMP packet is sent to the router,

notifying it that the host no longer needs to have packets for that multicast group forwarded. When the last

network host on a specific router interface leaves the group, the router can stop forwarding multicast packets

to that interface.

Week 12 – 13 | 9

References:

✔​ C# Network Programming, Richard Blum, ISBN:0782141765, Sybex, 2003

o​ Chapter 10

Week 12 – 13 | 10

	Broadcasting
	What Is Broadcasting?
	IP Address in Broadcasting

	Local versus Global Broadcasts
	Implementing Broadcasting with C#
	Bad Broadcasting Example
	Broadcasting Example

	Receiving Broadcast Packets****
	Testing the program

	Overview of Multicasting
	What Is Multicasting?
	Multicast Techniques
	Peer-to-Peer Technique
	Central Server

	Sending Multicast Packets through Routers

