

Chapter - 1

1.​ Introduction
1.1.​ Introduction of the System.

1.1.1.​ Project Title

 “OnShop” (E-commerce web application)

1.1.2.​ Category
Web Application using RDBMS & REST APIs.

1.1.3.​ Overview
E-commerce is fast gaining ground as an accepted and used business

paradigm. More and more business houses are implementing websites providing

functionality for performing commercial transactions over the web. It is

reasonable to say that the process of shopping on the web is becoming

commonplace. This project aims to develop an e-commerce store for a

hypermarket store where products can be bought from the comfort of home

through the Internet. However, for implementation purposes, this paper will deal

with online shopping. An online store is an online store where customers can

browse the catalogue and select products of interest. The selected items may be

collected in a shopping cart. At checkout time, the items in the shopping cart will

be presented as an order. At that time, more information will be needed to

complete the transaction. Usually, the customer will be asked to fill or select a

billing address, a shipping address, a shipping option, and payment information

such as a credit card number.

1.2.​ Background
1.2.1.​ Introduction of the Company

 This Project is built for ……. For selling their products online.OnShop

is to help customers by providing all kinds of stationary and related products

related information on the website. It enables customers to purchase products

online.

1

Amal
Bab

u

1.3.​ Objectives of the System
●​ To develop an optimised and fast website using which customers can easily browse

products and place an order.

●​ To provide a solution to reduce and optimize the expenses of customer order

management.

●​ To create an avenue where people can shop for products online.

●​ To sell the products using online payment.

●​ To increase revenue through e-commerce.

●​ To develop a database to store information about products and customers.

1.4.​ Scope of the System

 Every project is done to achieve a set of goals with some conditions keeping

in mind that it should be easy to use, feasible and user friendly. As the goal of this project

is to develop an online system to sell products, this system will be designed keeping in

mind the conditions (easy to use, feasibility and user friendly) stated above. It may help in

effective and efficient order management. In every short time, the collection will be

obvious, simple and sensible. It is very possible to observe the customer potential and

purchase patterns because all the ordering history is stored in the database. It is efficiently

managing all the operations of an online store within a single platform. The project aims

to automate the business process of the Family Hypermarket store.

2

Amal
Bab

u

1.5.​ Structure of the System

Fig. 1.1: Structure Chart

3

Amal
Bab

u

1.6.​ System Architecture

Fig. 1.2: System Architecture

1.7.​ End Users

●​ Admin
●​ Customer

1.8.​ Software/Hardware used for the development
Software requirement (for Development)

●​Frameworks: Django 4.0 & Django REST framework

●​Front-end libraries/frameworks :ReactJS, ReduxJS,

MaterialDesignBootstrap.

●​Backend language : Python, javaScript

●​Front-end languages: JS, JSX, HTML, CSS.

●​Database: PostgreSQL

●​Code editor: VS code.

4

Amal
Bab

u

Hardware requirement (for Development)

•​ Processor – Intel Dual Core

•​ RAM – Minimum 4GB

•​ Hard Disk - Minimum 40GB (SSD)

•​ Keyboard, Monitor, Mouse

1.9.​ Software/Hardware used for the implementation
Software requirement (for implementation)

●​ Database– PostgreSQL

●​ Language – Python, JS, JSX

●​ Browser : Chrome, Opera, Firefox, Microsoft Edge

Hardware requirement (for implementation)

●​ Processor – Intel Dual Core

●​ RAM – Minimum 2GB

●​ Hard Disk - Minimum 40GB

5

Amal
Bab

u

Chapter - 2

2.​ System Requirement Specification
2.1.​ Introduction

 ​ System Requirements Specification is a structured collection of information that

embodies the requirements of a system. A business analyst, sometimes titled system

analyst, is responsible for analyzing the business needs of their clients and stakeholders

to help identify business problems and propose solutions.

 System specification describes the operational and performance requirements of a

system, such as a computer. It is considered a high-level document that dictates global

functions. System specifications help to define the operational and performance

guidelines for a system. An SRS minimizes the time and effort required by developers to

achieve desired goals and also minimizes the development cost. A good SRS defines

how an application will interact with system hardware, other programs and human users

in a wide variety of real-world situations.

2.2.​ Overall Description
2.2.1.​ Product perspective

 With the ever-increasing popularity and accessibility of the internet, it is only

natural that the educational community should want to make use of this tremendous

resource. The administrative user interface concentrates on the consistent information

that is practically part of the organizational activities and which needs proper

authentication for the data collection. The Interface helps the administration with all

the transactional states like data insertion, data deletion, and data updating along with

executive data search capabilities.

​ The project titled “on Shop” is a self-contained product developed as per

the client's definition and requirements. The system contains all the necessary

components required for selling and buying products in the form of online and offline

payments. The system is a platform-independent and secured one.

6

Amal
Bab

u

2.2.2.​ Product Functions:
Project OnShop has following product functions:

●​ Admin dashboard: It views all the entities in the system. Admin performs

overall observation of the system using the admin dashboard, admin can

add new products, and customer manage orders.

●​ Register: Admin, customers and staff need to register with the system by

providing appropriate information.

●​ Login: Once the User is registered then they can login using an email and

password.

●​ Get Products: This function allows the customer products page and shop

the products.

●​ Search Products: filter products by title and description.

●​ Sort Product: Sort products by price range

●​ Filter Products: This function allows the customer to filter products based

on product category and price.

●​ Customer account: Customer can view update name and password

●​ Add to cart : This function allows users to add items to cart.

●​ Payment: Customers can make payment online.

●​ Place order: Customers can place orders with cart id and payment

payload.

2.2.3.​ User characteristics

Table 2.1 : User characteristics

User Description

Admin (Super user) Admin will login to the system. He/She has a dashboard to

trace all the activities of the project. The main function of

the admin is to view and manage all the entities of the

project.

Customer Customers can register and need to login and purchase the

available products through an online or offline payment.

7

Amal
Bab

u

2.2.4.​ General constraints
●​ Database is password protected.

●​ Should use less RAM and processing power.

●​ Each user should have individual username and password.

●​ Only superuser can access the whole system.

2.2.5.​ Assumptions
●​ Each User must have a Username and password.

●​ There are multiple admin users.

●​ Proper browsers should be installed.

●​ Data should be properly connected to the browser.

2.3.​ Functional Requirements
2.3.1.​ Admin Dashboard

●​ Create Group

 Function: Admin can create group of users with permissions.

 Input: Group name and choose permissions from list.

 Output: Group added message and navigate to groups page.

●​ Add collection

 Function: Add collection (category) of products.

 Input: collection title.

 Output: Collections page with success message.

●​ Add Products
Function: Admin or staff can add new products with product details as

input.

8

Amal
Bab

u

●​ Add User.
Function: Admin can add new user directly from admin dashboard with

user details.

●​ View payment details.
Function: Admin can view payment details.

Stimulus & Response

Stimulus: Admin request for the login page.

Response: The login page is displayed.

Stimulus: Admin enters username, Password and clicks on

login button.

Response: Admin page is displayed if Username and

Password are correct else error message is displayed.

Stimulus: Admin clicks the addCategory button.

Response: Add category form displayed.

Stimulus: Admin enters required fields and clicks the submit

button.

Response: added categories are displayed.

Stimulus: Admin clicks Add new products Button.

Response: Add Product form is displayed.

Stimulus: Admin manages product details.

Response: requested product details are displayed.

Stimulus: The admin clicks the edit product button.

Response: Edit product form is displayed.

Stimulus: Admin enters required fields and clicks the submit button.

Response: Edited products displayed.

Stimulus: Admin manages customer orders.

9

Amal
Bab

u

Response: The requested orders are displayed.

Stimulus: Admin manages customer details.

Response: requested details are displayed.

2.3.2.​ Customer

●​ Register(signup)
Function: Customer can register with by providing valid details.

●​ Login

Function : Customer should login with username and password as input.

●​ Add to cart
Function: add products to the cart by passsing cart_id and product id as

input.

●​ Make Payment
Function: make payment, by giving amount and payment method as input.

●​ Place Order
Function: Place the order. Inputs are cart_id, payment_details.

Stimulus & Response
Stimulus: Customer clicks login Button.

Response: Login page id displayed.

Stimulus: Customer enters username and Password and clicks LoginButton

Response: Products home page is displayed if Username and Password are

correct else display the error message.

Stimulus: Customer chooses a product and clicks view

Response: Selected products displayed with name, price and rating.

Stimulus: Customer click cart button

Response: Cart is displayed

Stimulus: Customer chooses payment method and clicks buy button.

Response: The product will be selected and billed to the customer.

10

Amal
Bab

u

Stimulus: The customer clicks the view profile button.

Response: Customer profile displayed with edit option.

Stimulus: Customer clicks the edit profile button

Response: The profile edit form is displayed.

Stimulus: Customer enters required fields and clicks submit button

Response: profile details evaluated. if error, an error message is displayed.

otherwise, a profile updated notification is displayed

2.4.​ Design Constraints
●​ All the inputs should be checked for validation and messages should be given for the

improper data. The invalid data are to be ignored and error messages should be

given.

●​ While adding the product details to the system, mandatory fields must be checked

for validation whether the admin has filled appropriate data in these mandatory

fields. If not, proper error message should be displayed or else the data is to be

stored in database for later retrieval.

●​ All mandatory fields should be filled by admin, while adding the customer detail

into the database.

2.5.​ System Attributes

The Quality of the website is maintained in such a way so that it can be very user friendly

to all the users of the website.

●​ Reliability: Good validation of user inputs will be done to avoid entering

incorrect username and password.

●​ Availability: The system shall be available all the time.

●​ Security: Each time there is a security violation, System restricts the user from

accessing that function.

●​ Maintainability: The ability to maintain, modify information and update fix

problems of the system.

●​ Portability: This system can be run in any operating system and browser.

●​ Accessibility: Administrator and many other users can access the system but the

access level is controlled for each user according to their work scope.

11

Amal
Bab

u

2.6.​ Other Requirements
2.6.1.​ Performance Requirements
●​ Response time: The system will give responses within 1 second after the

checking of the customer information and other-information.

●​ Capacity: The system must support 100 people at a time.

●​ User Interface: Frontend application built with a single page application

framework(ReactJs).

2.6.2.​ Safety and Requirements
●​ The database may get crashed at any certain time due to virus or operating

system failure or mishandling the system, therefore, it is required to take the

database backup.

2.6.3.​ Security Requirements
●​ The backend build with most secure framework Django and Django REST,

Django have inbuilt mechanism to prevent security vulnerabilities like CSRF.

●​ This application using JWT authentication, the expired access tokens are

blacklisted.

12

Amal
Bab

u

Chapter – 3

3.​ System Design
3.1.​ Introduction

Systems design is the process of defining the architecture, modules,

interfaces, and data for a system to satisfy specified requirements. Systems design

could be seen as the application of systems theory to product development.

Systems design implies a systematic approach to the design of a system. It may

take a bottom-up or top-down approach, but either way the process is systematic

wherein it takes into account all related variables of the system that needs to be

created from the architecture, to the required hardware and software, right down to

the data and how it travels and transforms throughout its travel through the

system.

This phase will take the project to one step ahead as SRS includes only the

project explanation theoretically. Once the requirements of the system design are

analysed, the system will go from a pictorial representation stage to a theoretical

stage. Hence the features and modules of the system are pictured in the form of

diagrams for better understanding.

3.2.​ Assumption and Constraints.
3.2.1.​ Assumptions

●​ Each User must have a Username and password.

●​ Proper browsers should be installed.

●​ Data should be properly connected to the browser.

3.2.2.​ Constraints
●​ Database is password protected.

●​ Should use less RAM and processing power.

●​ Each user should have an individual username and password.

13

Amal
Bab

u

3.3.​ Functional decomposition.

Functional decomposition refers broadly to the process of resolving a functional

relationship into its constituent parts in such a way that the original can be reconstructed

from those parts by function components. In general, this process of decomposition is

undertaken either for the purpose of gaining insight into the identity of the constituent

components (which may reflect individual physical process of interest) or for the purpose

of obtaining a compressed representation of the global function, a task which is feasible

only when the constituent processes possess a certain level of modularity (i.e.,

independence or non-interaction).

3.3.1.​ System software architecture

Fig. 3.1: System Software Architecture

14

Amal
Bab

u

3.3.2.​ System technical architecture

​ Fig. 3.2. System Technical Architecture

3.3.3.​ System hardware architecture

In software engineering, hardware architecture refers to the identification

of a system's physical components and their interrelationships. This description,

often called a hardware design model, allows hardware designers to understand

how their components fit into a system architecture and provides to software

component designers important information needed for software development

and integration.

Fig. 3.3: System Hardware Architecture

15

Amal
Bab

u

3.3.4.​ External interface

Braintree payment gateway interface

Figure 3.4 : braintree payment gateway interface

3.4.​ Description of Programs
3.4.1.​ Context Flow Diagram (CFD)

 Context flow diagrams must be drawn, that is because this gives a

brief description of the working of the system. The DFD illustrates the

working of each module, whereas the context flow diagram below illustrates

the communication between the different actors of the system with each other

as well as with the database. The main function of each actor of the system

is highlighted here and followed by which the DFDs are designed. Context

flow diagram is also a DFF, but since it gives the overall description it is

known as CFD.

 Fig. 3.5: Content Flow Diagram

16

Amal
Bab

u

3.4.2.​ Data Flow Diagrams (DFDs – Level 0, Level 1, Level 2)
 Data Flow Diagram is a graphical representation of a system or a

portion of the system. It consists of data flow, process, sources and sink and

stores all the description through the use of easily understandable symbols.

DFD is one of the most important modelling tools. It is used to model the

system, components that interact with the system, and uses the data and

information flows in the system. DFD shows the information moves through

, and how it is modified by a series of transformations. It is a graphical

representation that depicts information moves from input to output. DFD is

also known as bubble charts or Data Flows Graphs. DFD may be used to

represent the system at any level of abstraction.

Table 3.1: Symbols and Characteristics

Symbol Description

 An oval or a circle symbol is used which will represent the

process. The process includes the main factors or the working

of the system.

A rectangular box which is used to represent the source or

sink. The source or sink describes the users of the system and

this is connected to the process to represent the working of the

system with the users.

A straight line represents the flow of control. This is very

important as it shows the connection between the process and

the source or sink.

Open box or the parallel line symbol is used to represent the

tables of the database. It is used to show the connection

between each of the modules and the tables of the database in

the system.

17

Amal
Bab

u

DFD Level – 1 Admin

Fig.3.6: level-1 DFD admin

18

Amal
Bab

u

DFD Level – 2 Admin(3.0)

Fig.3.7: level-2 DFD admin(3.0) manage product

19

Amal
Bab

u

DFD Level – 2 Admin(4.0)

Fig. 3.8: Level 2 DFD admin(4.0) manage order

20

Amal
Bab

u

DFD Level – 1 Customer

Figure 3.9 : Level 1 customer

21

Amal
Bab

u

DFD Level – 2 Customer(5.0)

Figure 3.10: Level 2 customer(5.0)

DFD Level – 2 Customer(6.0)

Figure 3.11 Level 2 customer

22

Amal
Bab

u

3.5.​ Description of components.

3.5.1.​ View Customer
●​ Input: Customer uploads his id and name

●​ Process: Fetching customer details from the Customer database

●​ Output: Details are displayed.

3.5.2.​ Add Products
●​ Input: Enter product name,category, quantity and price

●​ Process: Products are stored in a database.

●​ Output: Products are visible for customers to

purchase.

3.5.3.​ Get Products
●​ Input : Send a get request for products with product title or

category.

●​ Process: fetching the data from the

database.

●​ Output:Fetched data displayed.

3.5.4.​ Add to cart
●​ Input :Customer selects products and requests for

add to cart.

●​ Process: The cart details are stored in the database.

●​ Output: cart details are displayed.

3.5.5.​ Make order
●​ Input: Products are booked by customers with cart id.

●​ Process: Orders stored in database .

●​ Output:Order details are displayed with payment status.

23

Amal
Bab

u

Chapter - 4

4.​ Database Design
4.1.​ Introduction

Database: A Database is collection of related data, which can be of any

size and complexity. By using the concept of Database, we can easily store and

retrieve the data. The major purpose of a database is to provide the information,

which utilises it with the information that the system needs according to its own

requirements.

Database Design: Database design is done before building it to meet

needs of end-users within a given information-system that the database is intended

to support. The database design defines the needed data and data structures that

such a database comprises. The database is physically implemented using

SQL(PostgreSQL).

4.2.​ Purpose and scope

​ The main purpose of developing an OnShop application is helping the

customers to purchase the products online. After the login, customers can place

the order in the cart and make the online payment. The main agenda of the Online

SuperMarket is to set up a portal where the customer can choose their vegetables,

fruits, bakery products,stationary, branded products etc online without having to

visit the shop physically. The current system is an offline system. More physical

interaction takes place in this current system between Customer and administrator.

Before ordering a product , customer preview cannot be done in the existing

system. New online system will solve all the issues because online designers are

implemented in the project and companies can expand their business all over the

world.

24

Amal
Bab

u

4.3.​ Database Identification
●​ Database table name and column names are defined without leaving space.

●​ Lowercase used to create database tables and columns.

​

4.4.​ Schema information
 A schema is the structure behind data organisation. It is a visual

representation of how different table relationships enable the schema’s underlying

mission business rules for which the database is created. In a schema diagram, all

database tables are designated with unique columns and special features, e.g.,

primary/foreign keys or not null, etc. Formats and symbols for expression are

universally understood, eliminating the possibility of confusion. The table

relationships also are expressed via a parent table’s primary key lines when joined

with the child table’s corresponding foreign keys. Schema diagrams have an

important function because they force database developers to transpose ideas to

paper. This provides an overview of the entire database, while facilitating future

database administrator work.

These are:

●​ Physical Schema

●​ Logical Schema

●​ View Schema

A physical schema can be defined as the design of a database at its

physical level. In this level, it is expressed how data is stored in blocks of storage.

A logical schema can be defined as the design of the database at its logical level.

In this level, the programmers as well as the database administrator work. At this

Level, data can be described as certain types of data records which can be stored

in the form of data structures. However, the internal details will be remaining

hidden at this level. View schema can be defined as the design of the database at

view level which Generally describes end-user interaction with database systems.

25

Amal
Bab

u

4.5.​ Table Definition

Table Name : core_user

Description : This table stores all user information including admin,staff customers

Table 4.1 core_user table

Column Data Type Length/Precision Constraints Description

id bigint Primary Key,

Not NULL

User id

password character varying 128 Not NULL User password

last_login timestamp User last login

date and time

is_superuser boolean Not NULL is the user

superuser or not.

username character varying 20 Not NULL User unique

name

first_name character varying 20 Not NULL First name of

user

last_name character varying 25 Not NULL Last name of

user

is_staff boolean Not NULL True if user is a

staff otherwise

false

is_active boolean Not NULL True then the

user is active

date_joined timestamp User joined date

26

Amal
Bab

u

email character varying 50 User email

address

Table Name : store_customer

Description : This table stores customer information.

Table 4.2 store_customer table

Column Data Type Length/Precision Constraints Description

id uuid Primary Key Customer id

phone character varying 14 Customer contact

number

birth_date date Date of birth of

customer

membership character varying 1 Not NULL User

membership

value

user_id bigint Foreign Key

Table Name : store_collection

Description : This table stores all product category details.

Table 4.3 store_collection table

Column Data Type Length/Precision Constraints Description

id bigint Primary Key Collection id

title character varying 50 Not NULL Collection title

name

27

Amal
Bab

u

Table Name : store_product

Description : This table stores all product details.

Table 4.4 store_product table

Column Data Type Length/Precision Constraints Description

id bigint Primary Key Product id

title character varying 50 Not NULL Product name

description text Product

description

unit_price numeric 6 Not NULL Price of the

product

inventory integer 5 Not NULL Product

inventory

last_update timestamp Not NULL Last updated date

collection_id bigint Foreign Key Parent table

relation

Table Name : store_cart

Description : This table stores cart details.

Table 4.5 store_cart

Column Data Type Length/Precision Constraints Description

id uuid Primary Key Cart id

created_at timestamp Not NULL Created date

28

Amal
Bab

u

Table Name : store_cartitem

Description : This table stores cart items.

Table 4.6 store_cartitem

Column Data Type Length/Precision Constraints Description

id uuid Primary Key Cart item id

quantity smallint Not NULL Product quantity

cat_id Foreign Key

product_id bigint Foreign Key

Table Name : store_order

Description : This table stores orders.

Table 4.7 store_order

Column Data Type Length/Precision Constraints Description

id uuid Primary Key order id

placed_at smallint Not NULL Order placed

date

is_shipped Not NULL

is_delivered bigint Not NULL

is_cancelled Not NULL

customer_id Foreign Key

total_price numeric 10 Not NULL

29

Amal
Bab

u

Table Name : store_orderitem

Description : This table stores order items.

Table 4.8 store_orderitem

Column Data Type Length/Precision Constraints Description

id uuid Primary Key Order item id

quantity smallint Not NULL Item quantity

unit_price numeric 6 Not NULL

order_id bigint Foreign Key

product_id bigint Foreign Key

Table Name : payment_payment

Description : This table stores payment details.

Table 4.9 payment_payment

Column Data Type Length/Precision Constraints Description

id uuid Primary Key

total_amount numeric 6 Not NULL Total paid

amount

payment_method character varying 3 Not NULL

payment_status character varying 1 Not NULL

transaction_id character varying 50 Not NULL

username character varying 30 Not NULL

created_at timestamp Not NULL Created date and

time

30

Amal
Bab

u

order_id bigint Foreign Key

Table Name : store_productimage

Description : This table stores product image details.

Table 4.10 store_productimage

Column Data Type Length/Precision Constraints Description

id uuid Primary Key

image character varying 100 Not NULL Link of product

image

product_id bigint Foreign Key

Table Name : store_review

Description : This table stores product review details.

Table 4.11 store_review

Column Data Type Length/Precision Constraints Description

id bigint Primary Key

name character varying 30 Not NULL Reviewer name

description text Not NULL Link of product

image

date date Not NULL Created date

product_id bigint Foreign Key

31

Amal
Bab

u

Table Name : store_address

Description : This table customers address details.

Table 4.12 store_address

Column Data Type Length/Precision Constraints Description

id bigint Primary Key

street character varying 50 Not NULL Reviewer name

house_no smallint Not NULL house/building

number of

customer

city character varying 50 Not NULL Link of product

image

phone_no character varying 12 Not NULL

postal smallint Not NULL Created date

customer_id uuid Foreign Key

o​

32

Amal
Bab

u

4.6.​ Physical Design

Figure 4.1 : physical design diagram

33

Amal
Bab

u

4.7.​ Data Dictionary
 A data dictionary can be seen as a repository for information about a

database. There are no industry standards that go into a data dictionary. It may be

as simple as a list of tables with basic descriptions. Alternatively, it can be an

extensive list of properties outlining precisely how data is structured, maintained,

and used.

​ Table 4.13 :core_user table

schema_na

me

table_nam

e

is_

key

column_

name

data_type nullable column_descript

ion

public core_user PK id bigint NOT

NULL

user id

public core_user password character

varying(128)

NOT

NULL

user password

public core_user last_login timestamp with

time zone(6)

NULL last login date

public core_user is_superu

ser

boolean NOT

NULL

true if the user is

superuser

public core_user username character

varying(50)

NOT

NULL

user unique name

public core_user first_nam

e

character

varying(50)

NOT

NULL

first name of user

public core_user last_name character

varying(50)

NOT

NULL

last name of user

public core_user is_staff boolean NOT

NULL

true if the user is a

staff

public core_user is_active boolean NOT

NULL

user is active or not

34

Amal
Bab

u

public core_user date_join

ed

timestamp with

time zone(6)

NOT

NULL

joined data

public core_user email character

varying(50)

NOT

NULL

email of user

Table 4.14: payment_payment table

schema_nam

e

table_name is_k

ey

column_nam

e

data_type nullabl

e

column_description

public payment_pay

ment

PK id bigint(64) NOT

NULL

payment id

public payment_pay

ment

 total_amount numeric(6,2) NOT

NULL

total amount paid

public payment_pay

ment

 payment_me

thod

character

varying(3)

NOT

NULL

payment method

public payment_pay

ment

 payment_sta

tus

character

varying(1)

NOT

NULL

payment status,

payment pending or

complete

public payment_pay

ment

 transaction_i

d

character

varying(50)

NULL payment transaction

id

public payment_pay

ment

 customer_id uuid NOT

NULL

customer id

public payment_pay

ment

FK order_id bigint(64) NOT

NULL

order id

public payment_pay

ment

 username character

varying(255)

NULL user name

35

Amal
Bab

u

Table 4:15 : store_address

schema

_name

table_name is_key column_name data_type nullable column_description

public store_address PK id bigint(64) NOT

NULL

id

public store_address street character

varying(50)

NOT

NULL

street of customer

public store_address city character

varying(50)

NOT

NULL

customer city name

public store_address postal smallint(16) NOT

NULL

post code

public store_address house_no smallint(16) NOT

NULL

house number

public store_address land_mark character

varying(50)

NOT

NULL

landmark of

customer

public store_address phone_no character

varying(12)

NULL contact number of

customer

public store_address FK customer_id uuid NOT

NULL

customer id

Tabel 4.16 store_cart

schema

_name

table_nam

e

is_key column_na

me

data_type nullable column_description

public store_cart PK id uuid NOT NULL cart id

public store_cart created_at timestamp with

time zone(6)

NOT NULL cart created date

36

Amal
Bab

u

Table 4.17 store_cartitem

schema

_name

table_name is_ke

y

column_n

ame

data_type nulla

ble

column_description

public store_cartite

m

PK id bigint(64) NOT

NUL

L

cartitem id

public store_cartite

m

 quantity smallint(16) NOT

NUL

L

items quantity

public store_cartite

m

FK cart_id uuid NOT

NUL

L

parant table id

public store_cartite

m

FK product_i

d

bigint(64) NOT

NUL

L

product id

Table 4.18 store_collection

schema_

name

table_name is_key column

_name

data_type nullable column_description

public store_collection PK id bigint(64) NOT

NULL

collection id

public store_collection title character

varying(50)

NOT

NULL

collection name

37

Amal
Bab

u

Table 4.19 store_customer table

schema_

name

table_name is_key column_nam

e

data_type nullable column_descri

ption

public store_custome

r

PK id uuid NOT

NULL

customer id

public store_custome

r

 phone character

varying(12)

NULL customer

contact number

public store_custome

r

 birth_date date(3) NULL date of birth of

customer

public store_custome

r

 membership character

varying(1)

NOT

NULL

membership of

customer

public store_custome

r

FK user_id bigint(64) NOT

NULL

user id

Table 4.20 : store_order

schema_

name

table_name is_key column_nam

e

data_type nullable column_descri

ption

public store_order PK id bigint(64) NOT

NULL

order id

public store_order placed_at timestamp

with time

zone(6)

NOT

NULL

order placed

date and time

public store_order is_delivered boolean NOT

NULL

order is

delivered or not

public store_order is_shipped boolean NOT

NULL

true if the order

is shipped

38

Amal
Bab

u

public store_order FK customer_id uuid NOT

NULL

customer id

public store_order total_price numeric(6,2) NOT

NULL

total amount to

pay

public store_order is_cancelled boolean NOT

NULL

is the order

cancelled

Table 4.21 store_orderitem

schema

_name

table_name is_ke

y

column_n

ame

data_type nullable column_descriptio

n

public store_orderitem PK id bigint(64) NOT NULL order item id

public store_orderitem quantity smallint(16) NOT NULL order item quantity

public store_orderitem unit_price numeric(6,2

)

NOT NULL unit price of

product

public store_orderitem FK order_id bigint(64) NOT NULL order id

public store_orderitem FK product_i

d

bigint(64) NOT NULL product id

39

Amal
Bab

u

Table 4.22 store_product

schema_na

me

table_name is_key c

o

l

u

m

n

_

n

a

m

e

data_type nullable column_descriptio

n

public store_product PK i

d

bigint(64) NOT

NULL

product id

public store_product t

i

t

l

e

character

varying(50)

NOT

NULL

product name

public store_product s

l

u

g

character

varying(50)

NOT

NULL

auto generated

name

public store_product d

e

s

c

r

i

p

t

i

text NULL description

40

Amal
Bab

u

o

n

public store_product u

n

i

t

_

p

r

i

c

e

numeric(6,2) NOT

NULL

unit price of

product

public store_product i

n

v

e

n

t

o

r

y

integer(32) NOT

NULL

inventory

public store_product l

a

s

t

_

u

p

d

a

t

e

timestamp

with time

zone(6)

NOT

NULL

last updated date

and time

public store_product FK c bigint(64) NOT collection id

41

Amal
Bab

u

o

l

l

e

c

t

i

o

n

_

i

d

NULL

Table 4.23 store_productimage

schema_nam

e

table_name is_ke

y

column_nam

e

data_type nullabl

e

column_descriptio

n

public store_productimag

e

PK id bigint(64) NOT

NULL

Product image id

public store_productimag

e

 image character

varying(100

)

NOT

NULL

Product image link

public store_productimag

e

FK product_id bigint(64) NOT

NULL

product id

42

Amal
Bab

u

Table 4.24 store_review table

schema

_name

table_name is_key column_name data_type nullable column_descriptio

n

public store_review PK id bigint(64) NOT

NULL

review id

public store_review name character

varying(20)

NOT

NULL

reviewer name

public store_review description text NOT

NULL

review text

public store_review date date(3) NOT

NULL

date review created

public store_review FK product_id bigint(64) NOT

NULL

date review created

4.8.​ ER diagram
 An entity relationship diagram (ERD) shows the relationships of entity sets

stored in a database. An entity in this context is an object, a component of data.

An entity set is a collection of similar entities. These entities can have attributes

that define its properties.

43

Amal
Bab

u

Fig. 4.2: ER Diagram

 ​ An entity-relationship (ER) diagram is a specialized graphic that illustrates

the relationships between entities in a database. ER diagrams often use symbols to

represent three different types of information. Boxes are commonly used to

represent entities. Diamonds are normally used to represent relationships and ovals

are used to represent attributes.

44

Amal
Bab

u

​ 4.8.1. Entity:
​ Entity is represented by a box within the ER Diagram. Entities are abstract

concepts, each representing one or more instances of the concept in question. An

entity might be considered a container that holds all of the instances of a particular

thing in a system. Entities are equivalent to database tables in a relational database,

with each row of the table representing an instance of that entity

​ 4.8.2. Relationship:
 Relationships are represented by Diamonds. A relationship is a named

collection or association between entities or used to relate to two or more entities

with some common attributes or meaningful interaction between the objects.

​ 4.8.3. Attributes:
 Attributes are represented by Oval. An attribute is a single data item

related to a database object. The database schema associates one or more

attributes with each database entity

4.9.​ Database Administration
4.9.1.​ System information

●​ Server: localhost via TCP/IP

●​ Server type: Postgresql

●​ Server version: PostgreSQL 14.4

●​ User: localhost/admin

●​ Server charset: UTF-8 Unicode (utf8)

4.9.2.​ DBMS configuration
●​ Version: Postgresql 14.4

●​ pgAdmin version : 14

●​ Postgresql connector: psycopg2 2.9.3

●​ Supported Operating System: Windows 10,11

4.9.3.​ Support software required
●​ Postgresql: Postgresql is an open source relational database

management system.emphasizing extensibility and SQL compliance.

45

Amal
Bab

u

●​ pgAdmin: pgAdmin4 is a popular application to manage Postgres

databases. All types of PostgreSQL features are supported by this

application.

●​ Postgresql connector: psycopg2 is required to connect postgresql

and python.

4.9.4.​ Storage requirement
●​ The storage engine represents the heart of a Postgresql Server.

●​ Recovering the database from system failure

●​ Management of files and database pages used to store data

●​ Manage data buffers and system IO to the physical data pages

●​ Manage locking and concurrency issues

4.9.5.​ Backup and recovery
 Database recovery is the process of restoring the databases to a

correct state following a failure. The failure may be the result of a system

crash due to hardware of software errors, a media failure, such as a head

crash, or a software error in the application, such as a logical error in the

program that is accessing the database. It may also be the result of

unintentional or intentional corruption or destruction of data. Whatever

the underlying cause of the failure, the DBMS must be able to recover

from the failure and restore the database to a consistent state.

It is the responsibility of DBMS to ensure that the database is

reliable and remains in a consistent state in the presence of failure. In

general, backup and recovery refers to the various strategies and

procedures involved in protecting the database against data loss and

reconstructing the data such as that no data is lost after failure.

46

Amal
Bab

u

Chapter - 5

5.​ Detailed Design
5.1.​ Introduction

 Detailed design is sometimes referred to as ‘developer design’. Detailed

design is the second level of the design process. During detailed design, we specify

how the module in the system interacts with each other and the internal logic of each

of the modules specified during system design is decided; hence it is also called as

logic design.

 Detailed design essentially expands the system design and database design to

contain a more detailed description of the processing logic and data structures so that

the design is sufficiently complete of coding. The purpose of preparing this document

is to explain complete design details of our Electronic Shop Management System.

This design document is developer blueprint. During this phase design team uses both

the requirement specification and the architecture specification provided by the

previous phase to develop detailed design of the system.

47

Amal
Bab

u

5.2.​ Structure of the software package

Admin

Figure 5.1 : structure chart admin

48

Amal
Bab

u

 Customer

Figure 5.2 : structure chart customer

49

Amal
Bab

u

5.3.​ Modular decomposition of the System
5.3.1.​ Admin

5.3.1.1.​ Admin login

a)​ Inputs: Username,password

b)​ Procedural Details (Flow Chart):

Figure 5.3 flowchart admin login

c)​ File Input/output : admin dashboard

d)​ Output: Entered Username and password will be checked for validity if it is

valid Admin will be redirected to admin dashboard.

50

Amal
Bab

u

5.3.1.2.​ Admin add customer and user

a)​ Input : first_name, last_name, email, username,password

b)​ Procedural Details (Flow Chart):

Figure 5.4 add a user by admin

c)​ File input/output interface: user table

d)​ Output: Entered user details (first_name,lastname, username and

password) will be checked for validity if it is a valid user get added to user

and customer table.

51

Amal
Bab

u

5.3.1.3.​ Admin view user/customer

a)​ Input : user_id, username

b)​ Procedural Details (Flow Chart):

Figure 5.5 admin view user

c)​ File input/output interface: user table

d)​ Output: Select the user from users to list if it is valid user display user

details.

52

Amal
Bab

u

5.3.1.4.​ Admin delete user

a)​ Input: user_id, username

b)​ Procedural Details (Flow Chart):

Figure 5.6 admin delete user

c)​ File input/output interface: user table

d)​ Output: user data get deleted.

53

Amal
Bab

u

5.3.1.5.​ Admin add collection

a)​ Input: collection_title

b)​ Procedural Details (Flow Chart):

Figure 5.7 admin add collection

c)​ File input/output interface: Collection table

d)​ Output: collection added.

54

Amal
Bab

u

5.3.1.6.​ Admin view collection

a)​ Input: collection_id

b)​ Procedural Details (Flow Chart):

Figure 5.8 admin view collection

c)​ File input/output interface: Collection table

d)​ Output: collection details displayed.

55

Amal
Bab

u

5.3.1.7.​ Admin delete collection

a)​ Input: collection_id

b)​ Procedural Details (Flow Chart):

Figure 5.9 admin delete collection

c)​ File input/output interface: Collection table

d)​ Output: collection deleted.

56

Amal
Bab

u

5.3.1.8.​ Admin add product

a)​ Input: product_title,description, unit_price,collection_id

b)​ Procedural Details (Flow Chart):

Figure 5.10 admin add product

c)​ File input/output interface: Product table

d)​ Output: product added.

57

Amal
Bab

u

5.3.1.9.​ Admin view product

a)​ Input: product_id

b)​ Procedural Details (Flow Chart):

Figure 5.11 admin view product

c)​ File input/output interface: Product table

d)​ Output: product details displayed.

58

Amal
Bab

u

5.3.1.10.​ Admin delete product

a)​ Input: product_id

b)​ Procedural Details (Flow Chart):

Figure 5.12 admin delete product

c)​ File input/output interface: Product table

d)​ Output: selected product deleted.

59

Amal
Bab

u

5.3.1.11.​ Admin view payment

a)​ Input: payment_id

b)​ Procedural Details (Flow Chart):

Figure 5.13 admin view payment

c)​ File input/output interface: payment table

d)​ Output: payment details displayed.

60

Amal
Bab

u

5.3.2.​ Customer
5.3.2.1.​ Customer login

a)​ Input: username,password

b)​ Procedural Details (Flow Chart):

Figure 5.14 customer login

c)​ File input/output interface: Customer table

d)​ Output: customer profile displayed.

61

Amal
Bab

u

5.3.2.2.​ Customer view product

a)​ Input: product_id

b)​ Procedural Details (Flow Chart):

Figure 5.15 customer view product

c)​ File input/output interface: Customer table

d)​ Output: customer profile displayed.

62

Amal
Bab

u

5.3.2.3.​ Customer add product to cart

a)​ Input: product_id

b)​ Procedural Details (Flow Chart):

Figure 5.16 product add to cart

c)​ File input/output interface: Cart table

d)​ Output: cart items displayed

63

Amal
Bab

u

5.3.2.4.​ Customer make order

a)​ Input: order_id, payment_nonce, cart_id

b)​ Procedural Details (Flow Chart):

Figure 5.17 product make order

c)​ File input/output interface: Order table

d)​ Output: placed orders displayed

64

Amal
Bab

u

Chapter - 6

6.​ Program Code Listing
6.1.​ Database Connection

In settings.py

DATABASES = {

 'default': {

 'ENGINE': 'django.db.backends.postgresql',

 'NAME': 'onshop-db-02',

 'USER': env('DATABASE_USER'),

 'PASSWORD': env('DATABASE_PASSWORD'),

 'HOST': 'localhost'

 },

}

6.2.​ Authorization/ Authentication
JWT(JSON Web Token) Authentication

This application using JWT authentication, This is an open standard (RFC

7519) that defines a compact and self-contained way for securely transmitting

information between parties as a JSON object. This information can be verified

and trusted because it is digitally signed. JWTs can be signed using a secret (with

the HMAC algorithm) or a public/private key pair using RSA or ECDSA.

Front end code snippet
export const signIn = createAsyncThunk('auth/signin', async ({ username,

password }) => {

 const response = await axios.post(`${API}core/auth/token/`,

 { username: username, password: password },

 { headers: { 'Content-Type': 'application/json' } })

 console.log(response.data)

 return response.data

})

65

Amal
Bab

u

https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519

​

Backend code

​ Django-rest-framework-simple jwt python library is used to implement JWT

auth backend configuration.

​ settings.py
SIMPLE_JWT = {

 'AUTH_HEADER_TYPES': ('JWT',),

 'ACCESS_TOKEN_LIFETIME': timedelta(minutes=5),

 'REFRESH_TOKEN_LIFETIME': timedelta(days=30),

 'ROTATE_REFRESH_TOKENS': True,

 'BLACKLIST_AFTER_ROTATION': True,

}

urls.py

urlpatterns = [

 path('', TemplateView.as_view(template_name='core/index.html')),

 path('auth/token/', MyTokenObtainPairView.as_view(),

name='token_obtain_pair'),

 path('auth/token/refresh/',TokenRefreshView.as_view(),

name='token_refresh'),

]

​ serializers.py

class UserCreateSerializer(BaseUserCreateSerializer):

 class Meta(BaseUserCreateSerializer.Meta):

 fields = ['id', 'username', 'email', 'password',

 'email', 'first_name', 'last_name']

class UserSerializer(BaseUserSerializer):

66

Amal
Bab

u

 class Meta(BaseUserSerializer.Meta):

 model = User

 fields = ['id', 'username', 'email', 'first_name', 'last_name',]

​ views.py

class MyTokenObtainPairSerializer(TokenObtainPairSerializer):

 @classmethod

 def get_token(cls, user):

 token = super().get_token(user)

 # Add custom claims

 token['username'] = user.username

 return token

class MyTokenObtainPairView(TokenObtainPairView):

 serializer_class = MyTokenObtainPairSerializer

​ User registration
​ Fontend code

​ REGISTER_NEW_USER_API=`${API}auth/users/`

const registerUserHandler = async (formValues) => {

 const response = await axios.post(REGISTER_NEW_USER_API, {

 username: formValues.username,

 email: formValues.email,

 password: formValues.password,

 first_name: formValues.firstname,

 last_name: formValues.lastname,

 }, {

67

Amal
Bab

u

 headers: {

 'content-Type': 'application/json'

 }

 })

 .then((response) => {

 toast.success('Signup success')

 console.log(response.data)

 navigate('/signin')

 })

 .catch((err) => {

 console.log(err)

 let serverErros = ''

 if (err?.response?.data?.password) {

 err.response.data.password.map((res) => (serverErros += '\n' +

res))

 } else if (err?.response?.data?.username) {

 err.response.data.username.map((res) => (serverErros += '\n' +

res))

 } else if (err?.response?.data?.email) {

 err.response.data.email.map((res) => (serverErros += '\n' + res))

 } else {

 serverErros += 'Something went wrong please try again!'

 }

 toast.error(serverErros, { autoClose: 10000 })

68

Amal
Bab

u

 console.log(err)

 })

 }

6.3.​ Data store/ retrieval/ update
6.3.1.​ Product

class ProductViewSet(ModelViewSet):

 """

 A viewset that provides default `create()`, `retrieve()`,

`update()`,

 `partial_update()`, `destroy()` and `list()` actions.

 queryset = Product.objects.prefetch_related('images').all()

 serializer_class = ProductSerializer

 permission_classes = [IsAdminOrReadOnly]

 # Using django filter library for filtering product based on the

collection

 # define filterbackend and filteing logic in a class

 # e.g: url-->

http://127.0.0.1:8000/store/products/?collection_id=4 , filtering

query is-->products/?collection_id=4

 filter_backends = [DjangoFilterBackend, SearchFilter,

OrderingFilter]

 filterset_class = ProductFilter

 search_fields = ['title', 'description']

 # sorting based on unit_price and last_update

 ordering_fields = ['unit_price', 'last_update']

 pagination_class = DefaultPagination

 # overrid

 def get_serializer_context(self):

 return {'request': self.request}

 # overrid destroy to delete

 def destroy(self, request, *args, **kwargs):

 if Product.objects.filter(product_id=kwargs['pk']).count() >

0:

 return Response({'error': "Can't delete , product

associated with an order"},

69

Amal
Bab

u

status=status.HTTP_405_METHOD_NOT_ALLOWED)

 return super().destroy(request, *args, **kwargs)

6.3.2.​ Collection
class CollectionViewSet(ModelViewSet):

 serializer_class = CollectionSerializer

 queryset = Collection.objects.annotate(

 product_count=Count('products')).all().order_by('title')

 permission_classes = [IsAdminOrReadOnly]

 # Override

 def destroy(self, request, *args, **kwargs):

 collection = get_object_or_404(Collection.objects.annotate(

 product_count=Count('products')), pk=kwargs['pk'])

 if collection.products.count() > 0:

 return Response({'error': "Can't delete , it includes

one or more products"},

status=status.HTTP_405_METHOD_NOT_ALLOWED)

 return super().destroy(request, *args, **kwargs)

6.3.3.​ Review
class ReviewViewSet(ModelViewSet):

 # permission_classes=[IsAuthenticated]

 http_method_names = ['get', 'post',

 'options', 'headers'] # +['put', 'delete',

]

 def get_permissions(self):

 if self.request.method in ['POST', 'PUT', 'PATCH']:

 return [IsAuthenticated()]

 return super().get_permissions()

 serializer_class = ReviewSerializer

 def get_queryset(self):

 # product_pk is from url

70

Amal
Bab

u

 return

Review.objects.filter(product_id=self.kwargs['product_pk']).order_by

('-id')

 # form this view class we can access url parameters;

 # and send it to serializer by using get_serializer_context()

 # Overriding ; send to serializer ; for getting product_id

 def get_serializer_context(self):

 return {'product_id': self.kwargs['product_pk']}

6.3.4.​ Cart

class CartViewSet(CreateModelMixin, # create cart with id, pass

post request with empty ,

 RetrieveModelMixin, # ../carts/id/ retriving a

spesific cart

 DestroyModelMixin, # delete a 'cart/id/'

 GenericViewSet

):

 # prefetch_related used for fetch child table items, in

foreignkey realation we use select_related

 queryset = Cart.objects.prefetch_related('items__product').all()

 serializer_class = CartSerializer

6.3.5.​ Cart Item

class CartItemViewSet(ModelViewSet):

 # must be lowercase in the list

 http_method_names = ['get', 'post', 'patch', 'delete']

 def get_serializer_class(self):

 if self.request.method == 'POST':

 return AddCartItemSerilizer

 elif self.request.method == 'PATCH':

 return UpdateCartItemSerilizer

 return CartItemSerializer

71

Amal
Bab

u

 def get_queryset(self):

 return CartItem.objects \

 .filter(cart_id=self.kwargs['cart_pk']) \

 .select_related('product')

 # cart_pk value from url; add to context dict ; so we can access

this value in serializer for creating custom save methode(override

save methode)

 def get_serializer_context(self):

 return {'cart_id': self.kwargs['cart_pk']}

6.3.6.​ Address

class AddressViewSet(ModelViewSet):

 http_method_names = ['get', 'put', 'post', 'delete']

 permission_classes = [IsAuthenticated]

 def get_queryset(self):

 return

Address.objects.filter(customer_id=self.kwargs['customer_pk'])

 def get_serializer_context(self):

 return {'customer_id': self.kwargs['customer_pk']}

 def get_serializer_class(self):

 if self.request.method == 'POST':

 return AddAddressSerializer

 elif self.request.method == 'PUT':

 return UpdateAddressSerializer

 return AddressSerializer

6.3.7.​ Customer

queryset = Customer.objects.prefetch_related('address').all()

 serializer_class = CustomerSerializer

 # Allow all operation to admin user. TODO:

FullDjangoModelPermission (our customized permission class) can

also use here

 permission_classes = [IsAdminUser]

72

Amal
Bab

u

 # Define a custom action get customer profile

 # here detail=Flase , so it is avalilable in the list view

 # list-view means store/customers/me , detail-view means

store/customers/id/me

 # this method only available for autheticated user, overrided

the permission class to Is Autheticated

 @action(detail=False, methods=['GET', 'PUT'],

permission_classes=[IsAuthenticated])

 def me(self, request):

 customer = Customer.objects.get(

 user_id=request.user.id)

 if request.method == 'GET':

 serilalizer = CustomerSerializer(customer)

 return Response(serilalizer.data)

 elif request.method == 'PUT':

 serializer = CustomerSerializer(customer,

data=request.data)

 serializer.is_valid(raise_exception=True)

 serializer.save()

 return Response(serializer.data)

 # implimetaion of custom permission for view history . TODO:

 @action(detail=True,

permission_classes=[ViewCustomerHistoryPermission])

 def history(self, request, pk):

 return Response('Ok')

6.3.8.​ Order

class OrderViewSet(ModelViewSet):

 http_method_names = ['get', 'post', 'patch',

 'delete', 'head', 'options']

 # def get_permissions(self):

 # if self.request.method in ['PATCH', 'DELETE']:

 # return [IsAdminUser()]

 # return [IsAuthenticated()]

 permission_classes=[IsAuthenticated]

 def get_serializer_class(self):

 if self.request.method == 'POST':

 return CreateOrderSerializer

73

Amal
Bab

u

 elif self.request.method == 'PATCH':

 return UpdateOrderSerializer

 return OrderSerializer

 def get_queryset(self):

 user = self.request.user

 # admin or staff are able to see all orders

 if user.is_staff:

 return

Order.objects.prefetch_related('items').all().order_by('-id')

 customer_id = Customer.objects \

 .only('id').get(user_id=user.id)

 return

Order.objects.filter(customer_id=customer_id).order_by('-id')

 def create(self, request, *args, **kwargs):

 serializer = CreateOrderSerializer(

 data=request.data,

 context={'user_id': self.request.user.id}

)

 serializer.is_valid(raise_exception=True)

 order = serializer.save()

 # deserialize the saved order using order serializer ;

CreateOrderSerializer only for creating and returning with cart_id

 serializer = OrderSerializer(order)

 return Response(serializer.data)

6.3.9.​ Product Image

class ProductImageViewSet(ModelViewSet):

 serializer_class = ProductImageSerializer

 def get_queryset(self):

 return

ProductImage.objects.filter(product_id=self.kwargs['product_pk'])

 def get_serializer_context(self):

 return {'product_id': self.kwargs['product_pk']}

74

Amal
Bab

u

6.4.​ Data validation.
6.4.1.​ Backend data validators

settings.py
AUTH_PASSWORD_VALIDATORS = [

 {

 'NAME': ​

'django.contrib.auth.password_validation.UserAttributeSimilarityVali

dator',

 },

 {

 'NAME':

'django.contrib.auth.password_validation.MinimumLengthValidator',

 },

 {

 'NAME':

'django.contrib.auth.password_validation.CommonPasswordValidator',

 },

 {

 'NAME':

'django.contrib.auth.password_validation.NumericPasswordValidator',

 },

]

6.4.2.​ Frontend

6.4.2.1.​ signup

​ const initialValues = {

 firstname: '',

 lastname: '',

 email: '',

 username: '',

 password: '',

 confPassword: ''

 }

 const [formValues, setFormValues] = useState(initialValues)

 const [formErrors, setFormErrors] = useState({})

 const [isSubmit, setIsSubmit] = useState(false)

75

Amal
Bab

u

 const [passwordType, setPasswordType] = useState('password')

 const onChangeInputFieldsHandler = (e) => {

 const { name, value } = e.target

 setFormValues({ ...formValues, [name]: value })

 }

 const onSubmitHandler = (e) => {

 e.preventDefault();

 setFormErrors(validate(formValues))

 setIsSubmit(true)

 }

 const validate = (values) => {

 const errors = {};

 if (!EMAIL_REGEXP.test(values.email)) {

 errors.email = "This is not valid email"

 }

 if (values.password.length < 9) {

 errors.password = "Password must be more than 8 character"

 }

 if (!(values.password === values.confPassword)) {

 errors.confPassword = "Password doesn's match"

 }

 return errors

 }

76

Amal
Bab

u

 useEffect(() => {

 console.log(formErrors)

 if (Object.keys(formErrors).length === 0 && isSubmit) {

 // console.log('fv', formValues)

 registerUserHandler(formValues)

 }

 }, [formErrors])

6.4.2.2.​ signIn

​ ​ const onClickSignIn = (e) => {

 e.preventDefault();

 if (username === "") {

 setErr("Enter username");

 return false;

 }

 if (parseInt(password.length) < 4) {

 setErr("Enter correct password");

 return false;

 }

 setErr("");

 console.log("username");

 dispatch(signIn({ username, password }));

 return true;

 };

6.4.2.3.​ Update address
const dispatch = useDispatch();

 const customerInfo = useSelector(selectCustomerInfo);

 const initialValues = {

 street: customerInfo?.address[0]?.street ?? "",

77

Amal
Bab

u

 city: customerInfo?.address[0]?.city ?? "",

 landmark: customerInfo?.address[0]?.land_mark ?? "",

 house: customerInfo?.address[0]?.house_no ?? "",

 postal: customerInfo?.address[0]?.postal ?? "",

 phone: customerInfo?.address[0]?.phone_no ?? "",

 };

 const [formValues, setFormValues] = useState(initialValues);

 const [formErrors, setFormErrors] = useState({});

 const [isSubmit, setIsSubmit] = useState(false);

 const onChangeInputFieldHandler = (e) => {

 const { name, value } = e.target;

 setFormValues({ ...formValues, [name]: value });

 };

 const onSubmitHandler = (e) => {

 e.preventDefault();

 setFormErrors(validate(formValues));

 setIsSubmit(true);

 };

 const validate = (values) => {

 const errors = {};

 if (

 customerInfo?.address[0]?.street === values.street &&

 customerInfo?.address[0]?.city === values.city &&

 customerInfo?.address[0]?.land_mark === values.landmark &&

 customerInfo?.address[0]?.phone_no === values.phone &&

 customerInfo?.address[0]?.postal === parseInt(values.postal) &&

 customerInfo?.address[0]?.house_no === parseInt(values.house)

) {

 toast.warn("No changes found", {

 autoClose: 1000,

 hideProgressBar: true,

 });

 errors.street = "No change found";

 errors.city = "No change found";

 errors.phone = "No change found";

 errors.house = "No change found";

 errors.landmark = "No change found";

 errors.postal = "No change found";

 }

78

Amal
Bab

u

 if (!values.phone.match(INDIAN_PHONE_REGEXP)) {

 errors.phone = "Please enter valid phone number";

 }

 // TODO: can add more validation condition here

 return errors;

 };

 const updateAddressHandler = async (

 customerID,

 formValues,

 addressId = 1

) => {

 await axiosInstance

 .put(`${STORE_API}customers/${customerID}/address/${addressId}/`, {

 street: formValues.street,

 city: formValues.city,

 postal: formValues.postal,

 house_no: formValues.house,

 land_mark: formValues.landmark,

 phone_no: formValues.phone,

 })

 .then((response) => {

 console.log(response.data);

 toast.success("Updated", { autoClose: 1000, hideProgressBar: true

});

 dispatch(fetchCustomerInfo());

 })

 .catch((err) => {

 toast.error("Something went wrong!", { hideProgressBar: true });

 console.log(err);

 });

 };

 const addAddressHandler = async (customerID, formValues, addressId = 1)

=> {

 await axiosInstance

 .post(`${STORE_API}customers/${customerID}/address/`, {

 street: formValues.street,

 city: formValues.city,

 postal: formValues.postal,

 house_no: formValues.house,

 land_mark: formValues.landmark,

 phone_no: formValues.phone,

79

Amal
Bab

u

 })

 .then((response) => {

 console.log(response.data);

 toast.success("Updated", { autoClose: 1000, hideProgressBar: true

});

 dispatch(fetchCustomerInfo());

 })

 .catch((err) => {

 toast.error("Something went wrong!", { hideProgressBar: true });

 console.log(err);

 });

 };

 useEffect(() => {

 if (Object.keys(formErrors).length === 0 && isSubmit) {

 console.log(formValues);

 if (customerInfo.address[0]) {

 updateAddressHandler(

 customerInfo.id,

 formValues,

 customerInfo.address[0]?.id

);

 } else {

 addAddressHandler(customerInfo.id, formValues);

 }

 }

 }, [formErrors]);

6.4.2.4.​ Add/update user information
const onSubmitUserInfo = (e) => {

 e.preventDefault();

 if (

 firstname === customerInfo?.first_name &&

 lastname === customerInfo?.last_name &&

 email === customerInfo?.email

) {

 toast.warn("No change found...", { hideProgressBar: true });

 return false;

 } else if (!(firstname && lastname && email)) {

 toast.warn("All fields are required", { hideProgressBar: true });

 return false;

 }

80

Amal
Bab

u

 dispatch(updateUserInfo({ firstname, lastname, email }));

 return true;

 };

6.4.2.5.​ update customer info
const onSubmitCustomerInfo = (e) => {

 e.preventDefault();

 if (!phone.match(INDIAN_PHONE_REGEXP)) {

 toast.error("Enter valid phone number", { autoClose: 2000 });

 return false;

 } else if (new Date().getFullYear() - new Date(dob).getFullYear() < 15)

{

 toast.error("Date of birth is not valid, you should be above 15");

 return false;

 } else if (

 phone === customerInfo.phone &&

 dob === customerInfo.birth_date &&

 membership === customerInfo.membership

) {

 toast.warn("No change found", { autoClose: 2000, hideProgressBar:

true });

 return false;

 }

 dispatch(updateCustomerInfo({ phone, dob, membership }));

 return true;

 };

6.5.​ Search
6.5.1.​ Search for products

Frontend
Product search API (localhost) =
`http://127.0.0.1:8000/store/products/?page=1&search=${searchQuery}`

 With collection id=
`http://127.0.0.1:8000/store/products/?collection_id=${currentCollec

tionId}&ordering=unit_price&page=1&unit_price__gt=&unit_price__lt=`

const searchButtonClickHandler = (e) => {

81

Amal
Bab

u

http://127.0.0.1:8000/store/products/?page=1&search=$%7BsearchQuery
http://127.0.0.1:8000/store/products/?collection_id=$%7BcurrentCollectionId%7D&ordering=unit_price&page=1&unit_price__gt=&unit_price__lt=
http://127.0.0.1:8000/store/products/?collection_id=$%7BcurrentCollectionId%7D&ordering=unit_price&page=1&unit_price__gt=&unit_price__lt=

 e.preventDefault()

 navigate('/products')

 if (!searchQuery == '') {

 dispatch(fetchProducts({ page:

`http://127.0.0.1:8000/store/products/?page=1&search=${searchQuery}`

}))

 dispatch(setPaginationNumber(1))

 } else {

 toast.error("Enter search query",{ autoClose: 1000 })

 }

 }

Backend :
class ProductViewSet(ModelViewSet):

 """

 A viewset that provides default `create()`,

`retrieve()`, `update()`,

 `partial_update()`, `destroy()` and `list()` actions.

 """

 queryset =

Product.objects.prefetch_related('images').all()

 serializer_class = ProductSerializer

 permission_classes = [IsAdminOrReadOnly]

 filter_backends = [DjangoFilterBackend, SearchFilter,

OrderingFilter]

 filterset_class = ProductFilter

 search_fields = ['title', 'description']

 # sorting based on unit_price and last_update

 ordering_fields = ['unit_price', 'last_update']

 pagination_class = DefaultPagination

 # overrid

 def get_serializer_context(self):

82

Amal
Bab

u

 return {'request': self.request}

 # overrid destroy to delete

 def destroy(self, request, *args, **kwargs):

 if

Product.objects.filter(product_id=kwargs['pk']).count() > 0:

 return Response({'error': "Can't delete ,

product associated with an order"},

status=status.HTTP_405_METHOD_NOT_ALLOWED)

 return super().destroy(request, *args, **kwargs)

6.6.​ Named procedures/functions
Braintree payment

Frontend
export const getPaymentToken = async () => {

 return (

 await axiosInstance.get('payment/braintree/gettoken/')

 .then((response) => {

 console.log(response.data)

 return response.data

 })

 .catch((error) => {

 console.log(error)

 toast.error('token generation failed', {

hideProgressBar: true })

 })

)

}

export const processPayment = async ({ paymentData }) => {

 return (

 await

axiosInstance.post('payment/braintree/process_payment/', {

paymentData })

83

Amal
Bab

u

 .then((response) => {

 console.log(response.data)

 return response.data

 })

 .catch((error) => {

 console.log('paymentData',paymentData)

 console.log(error)

 toast.error('Payment failed', { hideProgressBar:

true })

 })

)

}

const onPayment = () => {

 setInfo({ ...info, loading: true })

 let nonce;

 console.log(info.instance)

 let getNonce = info.instance.requestPaymentMethod()

 .then((data) => {

 nonce = data.nonce

 console.log('nonce', nonce)

 const paymentData = {

 paymentMethodNonce: nonce,

 amount: totalAmount

 };

 processPayment({ paymentData })

 .then(((response) => {

 if (response.error) {

 if (response.code == '1') {

 toast.error('Payment failed', {

hideProgressBar: true })

 setInfo({ ...info, loading: false })

 //payment failed

 }

 } else {

 //no error all good!

 setInfo({

 ...info,

 success: response.success,

 loading: false

 })

84

Amal
Bab

u

 toast.success('Payment success', {

hideProgressBar: true })

 toast.info('You can place your order', {

hideProgressBar: true })

 console.log('paymentSucess')

 const paymentResponseData = {

 transactionId:

response.transaction.id,

 amount: response.transaction.amount,

 paymentMethod:'ON',

 paymentStatus:'C',

 }

dispatch(setPaymentDetails(paymentResponseData))

 console.log(paymentResponseData)

navigate('/user/place-order/',{replace:true})

 }

 }))

 })

 .catch((err) => {

 console.log('err')

 console.log('nonceErr', err)

 toast.error('Payment failed', { hideProgressBar:

true })

 setInfo({ ...info, loading: false })

 })

 }

Backend
class PaymentBApiViewSet(ViewSet):

 permission_classes = [IsAuthenticated]

 # Braintree

 @csrf_exempt

 @action(detail=False, methods=['GET'])

 def gettoken(self, request):

 # pass client_token to your front-end

 user_id = request.user.id

 queryset = Customer.objects.get(user_id=user_id)

85

Amal
Bab

u

 customer = CustomerSerializer(queryset)

 client_token = gateway.client_token.generate()

 return Response({'client_token': client_token, 'success':

True, 'customer': customer.data})

 @csrf_exempt

 @action(detail=False, methods=['POST'])

 def process_payment(self, request):

 print('dattta', request.data)

 data = request.data['paymentData']

 nonce_from_the_client = data['paymentMethodNonce']

 amount = data['amount']

 # print('dattta',nonce_from_the_client)

 # return Response(request.data)

 result = gateway.transaction.sale({

 "amount": amount,

 "payment_method_nonce": nonce_from_the_client,

 "options": {

 "submit_for_settlement": True

 }

 })

 if (result.is_success):

 return Response({'success': result.is_success,

 'transaction': {

 'id': result.transaction.id,

 'amount': result.transaction.amount

 }

 })

 else:

 return Response({'error': True, 'success': False})

Razorpay payment

Frontend
const loadScript = async () => {

 const script = document.createElement("script");

 script.src = "https://checkout.razorpay.com/v1/checkout.js";

 document.body.appendChild(script);

86

Amal
Bab

u

 };

 const showRazorpay = async () => {

 const res = await loadScript();

 let bodyData = new FormData();

 // we will pass the totalAmount and product name to the backend

using form data

 bodyData.append("amount", totalAmount.toString());

 const data = await axiosInstance({

 url: `${API}payment/razorpay/start_payment/`,

 method: "POST",

 headers: {

 Accept: "application/json",

 "Content-Type": "application/json",

 },

 data: bodyData,

 }).then((res) => {

 console.log('response', res)

 return res;

 }).catch((err) => {

 console.log(err)

 toast.warn('Something went wrong!')

 });

 var options = {

 key_id: process.env.REACT_APP_PUBLIC_KEY, // in react your

environment variable must start with REACT_APP_

 key_secret: process.env.REACT_APP_SECRET_KEY,

 totalAmount: data.data.payment.totalAmount,

 currency: "INR",

 name: "OnShop",

 description: "Online payment",

 image: "", // add image url

 order_id: data.data.payment.id,

 handler: (response) => {

 // we will handle success by calling handlePaymentSuccess

method and

 // will pass the response that we've got from razorpay

 // handlePaymentSuccess(response);

 console.log(response)

87

Amal
Bab

u

 if (response.status_code === 200 ||

response.razorpay_order_id !== null) {

 toast.success("Payment success", { hideProgressBar: true

});

 toast.info("You can place your order", { hideProgressBar:

true });

 console.log("paymentSucess");

 const paymentResponseData = {

 transactionId:

 "pay_id=" +

 response.razorpay_payment_id +

 ",orderid=" +

 response.razorpay_order_id,

 amount: totalAmount,

 paymentMethod: "ON",

 paymentStatus: "C",

 };

 dispatch(setPaymentDetails(paymentResponseData));

 console.log(paymentResponseData);

 navigate("/user/place-order/", { replace: true });

 } else {

 toast.error("Payment failed", { hideProgressBar: true });

 }

 },

 prefill: {

 name: username,

 email: customerEmail,

 contact: customerphone,

 },

 notes: {

 address: "Razorpay Corporate Office",

 },

 theme: {

 color: "#1266F1",

 },

 };

 var rzp1 = new window.Razorpay(options);

 rzp1.open();

 };

88

Amal
Bab

u

Backend
class PaymentRApiViewSet(ViewSet):

 permission_classes = [IsAuthenticated]

 @csrf_exempt

 @action(detail=False, methods=['POST'])

 def start_payment(self, request):

 # pass client_token to your front-end

 user_id = request.user.id

 username = request.user.username

 queryset = Customer.objects.get(user_id=user_id)

 customer = CustomerSerializer(queryset)

 amount = request.data['amount']

 print(amount)

 DATA = {"amount": int(amount) * 100,

 "currency": "INR",

 "payment_capture": "1"}

 client = razorpay.Client(

 auth=('rzp_test_jj05mMUix1fD9r',

'aOo31hAP4J62uMGBisX8IKkg'))

 payment = client.order.create(DATA)

 return Response({'success': True, 'customer': customer.data,

'username': username, 'payment': payment})

89

Amal
Bab

u

Chapter - 7

7.​ User Interfaces
7.1.​ Login page

7.1.1.​ Admin login

Figure 7.1 admin login

Purpose

This is an admin login page. Admin can login to the dashboard by providing

username and password.

Navigation

Admin can click ‘go to admin dashboard button’ from the admin profile to

navigate to this page.

Elements

●​ Username

○​ Type : text

○​ Label: Username

○​ Content : To enter username

90

Amal
Bab

u

●​ Password

○​ Type : password

○​ Label: Password

○​ Content : To enter password

●​ Login

○​ Type : button (submit)

○​ Label: Log in

○​ Content : It is used to navigate to the admin dashboard if the login details

are correct.

​

​

7.1.2.​ Customer login

Figure 7.2 customer login

Purpose

This is a customer login page. Customers can login by providing username

and password.

Navigation

Customers can click the login button in the top left of the navbar to

navigate to this window.

Elements

●​ Username

○​ Type : text

○​ Label: username

○​ Content : To enter username

91

Amal
Bab

u

●​ Password

○​ Type : password

○​ Label: Password

○​ Content : To enter password

○​ SignIn

■​ Type : button (submit)

■​ Label: SignIn

■​ Content : It is used to navigate to the customer profile if the login

details are correct.

Figure 7.3 customer signin mobile screen view

92

Amal
Bab

u

Customer signup(registration)

Figure 7.4 customer signup

Purpose

This is a customer signup component/page . A new customer can register by

entering valid information.

Navigation

From signin page customer can navigate to this page ,by clicking register link

Elements

●​ FirstName

○​ Type : Text

○​ Label: FirstName

○​ Content : To enter first name of customer

●​ LastName

○​ Type : Text

○​ Label: LastName

○​ Content : To enter last name of customer

●​ Email

○​ Type : Text

○​ Label: Email

○​ Content : To enter email

93

Amal
Bab

u

●​ Username

○​ Type : Text

○​ Label: Username

○​ Content : To enter username

●​ Password

○​ Type : password

○​ Label: Password

○​ Content : To enter email

●​ ConfirmPassword

○​ Type : password

○​ Label: ConfirmPassword

○​ Content : To enter confirm password

●​ SignUp

○​ Type : button (submit)

○​ Label: SignUp

○​ Content : It is used to navigate to the login page if the customer

successfully registered.

7.2.​ Home

Figure 7.5: Home page

Purpose

This is the home screen of the application. From this page user can navigate to

different pages of the application.

94

Amal
Bab

u

Navigation

Customers can click the ‘OnShop’ logo in the main navbar to navigate to this

page.

7.3.​ Menu

Figure 7.6: main menu

​

Figure 7.7: main menu smartphone view

Purpose

This is the main menu/navbar of the application.it includes all main navigation in

the application.

95

Amal
Bab

u

7.4.​ Purpose: Data store/ retrieval/ update
7.4.1.​ Product

Figure 7.8 product retrieve update

Purpose

This is product management page. From here admin/staff can

add/update/retrieve/delete products.

7.4.2.​ User

Figure 7.9 user retrieve update

96

Amal
Bab

u

Purpose

This is the User manage interface in the admin panel. From here admin can add or view

updates and retrieve users.

7.4.3.​ Customer

Figure 7.10 Customer retrieve update

Purpose :

 This is the Customer manage interface in the admin panel. From here admin can add or

view updates and retrieve customer details.

97

Amal
Bab

u

7.4.4.​ Orders

Figure 7.11 Order retrieve update

Purpose : This is the Order manage interface in the admin panel. From here admin can add or

view updates and retrieve all orders.

98

Amal
Bab

u

7.4.5.​ Update address

Figure 7.12 address retrieve update

Purpose

 This is an address update card. From this UI customer can edit addresses by providing

valid information.

99

Amal
Bab

u

7.4.6.​ Update profile

Figure 7.13 profile update

Purpose: This is customer profile update card. from here customer can view and update personal

information by providing valid information.

100

Amal
Bab

u

7.5.​ Validation
7.5.1.​ SignIn

Figure 7.14 signin

Purpose: Customer can login by entering username and password from

this window.

7.5.2.​ SignUp

​
Figure 7.15 signup

101

Amal
Bab

u

Purpose

This is a customer signup component/page . A new customer can register by

entering valid information.

Navigation

From signin page customer can navigate to this page ,by clicking register link

Elements

●​ FirstName

○​ Type : Text

○​ Label: FirstName

○​ Content : To enter first name of customer

●​ LastName

○​ Type : Text

○​ Label: LastName

○​ Content : To enter last name of customer

●​ Email

○​ Type : Text

○​ Label: Email

○​ Content : To enter email

●​ Username

○​ Type : Text

○​ Label: Username

○​ Content : To enter username

●​ Password

○​ Type : password

○​ Label: Password

○​ Content : To enter email

●​ ConfirmPassword

○​ Type : password

○​ Label: ConfirmPassword

○​ Content : To enter confirm password

102

Amal
Bab

u

●​ SignUp

○​ Type : button (submit)

○​ Label: SignUp

○​ Content : It is used to navigate to the login page if the customer

successfully registered.

7.5.3.​ address

Figure 7.16 address

Purpose

This is customer address card/page. From this customer can view update/add

address.

Navigation

From the profile page by clicking the update address tab, customers can navigate

to this page.

103

Amal
Bab

u

Elements

●​ Street

○​ Type : Text

○​ Label: Enter street

○​ Content : To enter street of customer

●​ City

○​ Type : Text

○​ Label: Enter city

○​ Content : To enter city of customer

●​ Landmark

○​ Type : Text

○​ Label: Enter landmark

○​ Content : To enter landmark

●​ HouseNumber

○​ Type : Number

○​ Label: Enter house number

○​ Content : To enter house number

●​ PostalCode

○​ Type : Number

○​ Label: Postal code

○​ Content : To enter postal code

●​ ContactNumber

○​ Type : Number

○​ Label: Enter contact number.

○​ Content : To enter contact number(phone)

●​ Update/Add

○​ Type : button (submit)

○​ Label: Update/Add

○​ Content : It is used to send PUT request to update address.

104

Amal
Bab

u

7.6.​ View/ data report.
7.6.1.​ View products

Figure 7.17 product view

Purpose

This is the product view page. All available products are displayed here.

customers can navigate to view product details page or add product to cart from this page.

Navigation

By click the products option in the navbar, customers can navigate to this page.

105

Amal
Bab

u

7.6.2.​ View product detail

Figure 7.18 product detail

Purpose

This is the product details page. Customers can view product details and reviews

from this page. From here, customers can add products to cart.

Navigation

By click the view product button in the product card, customer can navigate to this

page.

106

Amal
Bab

u

7.6.3.​ View reviews

Figure 7.19 reviews

Purpose

This is review part of product details page. User can add/read review from here.

Navigation

By click the view product button in the product card, customer can navigate to this

page.

Elements

●​ Review description

○​ Type : Text

○​ Label: Enter review

○​ Content : To enter review

●​ Post

○​ Type : Text

○​ Label: post

○​ Content : To post the review

107

Amal
Bab

u

7.6.4.​ View cart

Figure 7.20 cart items

Purpose

This is cart. Customer can view all added cart items.

Navigation

By click the cart option in the navbar, customer can navigate to cart.

7.6.5.​ View orders

Figure 7.21 orders

Purpose

This is orders page . Customer can view all orders this page.

Navigation

By clicking the orders option in the navbar, customers can navigate .

108

Amal
Bab

u

7.6.6.​ View order details

Figure 7.22 order details

Purpose

This is orders-detail page . Customer can view all orders-details this page.

Navigation

By clicking the view option in the order card, customers can navigate .

7.7.​ Alerts
7.7.1.​ Delete Cart

Figure 7.23 cart delete alert

109

Amal
Bab

u

Purpose: When you click the delete cart button in the cart this alert will popup. If the user clicks

the delete cart button then system sends delete request to server with cart_id.

7.7.2.​ Login failed

Figure 7.24 login failed alert

Purpose: If user enter wrong password or username this toast alert will display.

7.7.3.​ Delete success

Figure 7.25 login success alert

Purpose: If the user entered the correct username and password a success toast will display.

110

Amal
Bab

u

Chapter - 8

8.​ Testing
8.1.​ Introduction

 Software testing is an investigation conducted to provide stack holders with

information about the quality of the product or service under test. Testing has been

defined as the process of analysing a software item to detect the differences between

existing and required conditions and to evaluate the features of the software item.

Software testing is the process used to assess the quality of computer software.

 It involves operation of a system or application under controlled conditions and

evaluating the results. The controlled conditions should include both normal and

abnormal conditions. Testing should intentionally attempt to make things go wrong to

determine if things happen when they should. It is oriented to ‘detection’.

8.2.​ Test reports
8.2.1.​ Unit testing

 ​ In this testing, each unit is tested separately or individually to know its

performance when checked solely. Any faults in each unit are corrected in this

phase.

8.2.1.1.​ Admin login

Table 8.1: Admin login test

Serial

No.

Condition

to be tested

Test Data Expected

output

Test Result

1. If username is not

entered

abc124 Please enter

valid username

SUCCESSFUL

2. If password is not

entered

apassword Please enter a

valid password.

SUCCESSFUL

111

Amal
Bab

u

3. If username and

password are not valid

name,

apassword

Invalid

username or

password

SUCCESSFUL

8.2.1.2.​ Admin add product

Table 8.2:Add product test

Serial

No.

Condition

to be tested

Test Data Expected

output

Test Result

1 If title,description,

unit_price,inventory,

collection fields are

empty

not data entered This field is

required.

SUCCESSFUL

2 If unit_price is

negative

-1 Ensure the

value is

greater than or

equal to 1.

SUCCESSFUL

3 If all details are

entered properly

bag, black bag,

100,

200,

student_collectio

n

product added

successfully.

SUCCESSFUL

112

Amal
Bab

u

8.2.1.3.​ Add collection

Table 8.3 : add collection test

Serial

No.

Condition

to be tested

Test Data Expected

output

Remarks

1. If collection title is not

entered

- This field is

required.

SUCCESSFUL

2. If Title is entered. test Collection

added

successfully

SUCCESSFUL

8.2.1.4.​ Add user

Table 8.4 : Add user test

Serial No. Condition

to be tested

Test Data Expected

output

Remarks

1. If fields are

empty.

test This field is

empty.

SUCCESSFUL

2 If password less

than 8

abc Password

should be

greater than 8,

SUCCESSFUL

3 If password and

username are

similar

amal1234567 password is

similar to

username

SUCCESSFUL

4 If password is

entirely numeric

123456789 Passwords are

too common

SUCCESSFUL

113

Amal
Bab

u

and entirely

numeric.

5 If email is in

invalid format

abc@.cm Email is not

valid

SUCCESSFUL

6 If all fields are

entered properly

 User added SUCCESSFUL

8.2.1.5.​ customer login

Table 8.5 customer login test

Serial

No.

Condition

to be tested

Test Data Expected

output

Test Result

1. If username is not

entered

abc124 Please enter

valid username

SUCCESSFUL

2. If password is not

entered

apassword Please enter a

valid password.

SUCCESSFUL

3. If username and

password are not valid

name,

apassword

Invalid

username or

password

SUCCESSFUL

114

Amal
Bab

u

8.2.1.6.​ Customer signup

Table 8.6: customer signup test

Serial

No.

Condition

to be tested

Test Data Expected

output

Test Result

1. If form fields are

empty

- This Field is

required

SUCCESSFUL

2. If password less than 9 p123 password

should be more

than 8

SUCCESSFUL

3. If password and

confirm password

doesn't match

password123,

password456

password

doesn’t match

SUCCESSFUL

4. If all details are

properly entered.

fname,lname,

uname,

email@gmail.c

om

passwo12346,

passwo12346

Signup success SUCCESSFUL

8.2.2.​ Integration Testing

 In this type of testing, two or more modules are combined together and tested

for their performance. When two or more modules are integrated, the working of

those modules along with each other is identified. If the modules don’t perform

well in this phase they are tested again individually and then modified and

integrated again.

115

Amal
Bab

u

8.2.2.1.​ Customer update address

Table 8.7: update address test

Serial No. Condition

to be tested

Test Data Expected

output

Test Result

1. If all fields are empty - This Field

is required

SUCCESSFUL

2. If postal code invalid

format

1234 Not valid

format

SUCCESSFUL

3. If Phone number is

only 9 digit

987654321 Enter valid

contact

number

SUCCESSFUL

4. If all details are

properly entered.

House/Building

number : 499,

Near ST

Philomena college

Darbe , Puttur

Phone :

9876543219

updated SUCCESSFUL

8.2.3.​ System Testing

The system testing is the last level of testing, here all modules in system are put

together and tested for any errors and ambiguities. If the system performs well

then it is further processed and the system is approved otherwise the testing phase

is performed again until the system performs correctly.

116

Amal
Bab

u

Table 8.7: system test

Test

ID
Case

Date

Tested

Test Conditions Pass/Fail Severity of

Defect

1

12/08/2022 System loading Pass No

2

12/08/2022 System Run Procedure Pass No

3

12/08/2022 File I/O Operation Pass No

4

12/08/2022 Database Communication Pass No

5

12/08/2022 Server/Client Interaction Pass No

6

12/08/2022 Memory Usage Pass No

7

12/08/2022 System Processor usage Pass No

8

12/08/2022 Authentication / Authorization Pass No

117

Amal
Bab

u

Conclusion

Working on this project is a good experience. We understand the importance of

planning and designing as part of software development. When the website is

implemented, it will ensure the perfect e-commerce online shopping system. The system

is developed in such a way that the user with common knowledge of computers can

handle it easily. The module has a user-friendly interface. The reports requested by the

client have been generated and all documentation required for operation and maintenance

of the module has been provided. The future enhancement to the system can be made as

technology improves or changes.

This system developed by using Django and Django rest framework in the

backend and reactjs as frontend. So all services of this system can be accessed through

RESTful apis. In the future it is easy to connect a mobile app to the same backend.

 ​ LIMITATION

The limitations of this application are as follows:

• Forgot password handling option is not available, for this customer should
contact the customer service.

• Customers can add only one address to the profile.

• Customers can’t add profile pictures.

• Reviewers can’t delete or edit their review.

• Only one image of the product is possible to view.

• Email verification of customers (email-authentication) not included in this
version.

118

Amal
Bab

u

SCOPE FOR ENHANCEMENT (FUTURE SCOPE)

​ ​ In future Enhancements that are possible in the project are as follows.

• In the area of data security and system security.
• Forgot password option can be added.
• Mobile applications(android/ios) can be added.
• ​ In the area of authentication signin with more options can be added

(google,facebook,email-verification)
• Real Time inventory management.
• Email notification after successful order.
• New module for handling sellers and shipping agencies.
• Sub category for main product categories.

 ABBREVIATIONS AND ACRONYMS

• SRS: Software Requirement Specification CFD: Context Flow Diagram.
• DFD: Data Flow Diagram.
• HTTP: Hypertext Transfer Protocol.
• I/O: Input/Output.
• OS: Operating System.
• DFD: Data Flow Diagram.
• CSS: Cascading Style Sheet.
• ADMIN: The Administrator.
• CFD: Control Flow Diagram.
• CPU: Central Processing Unit.
• GUI: Graphical User Interface.
• RAM: Random Access Memory.
• SRS: Software Requirement Specifications.
• DB: Database

119

Amal
Bab

u

 BIBLIOGRAPHY / REFERENCES

●​ Python/Django framework documentation https://www.djangoproject.com/
●​ Django REST framework documentation https://www.django-rest-framework.org/
●​ ReactJs documentation https://reactjs.org/
●​ ReduxJs documentation https://redux.js.org/
●​ Material Design Bootstrap https://mdbootstrap.com/
●​ Braintree developer documentation https://developer.paypal.com/braintree/docs
●​ Other references

→ Django developers google group https://groups.google.com/g/django-users
→ Django forum https://forum.djangoproject.com/
→ Stackoverflow https://stackoverflow.com/
→ Medium django articles.
→ JS coder community https://web.codercommunity.io/g/javascript-community
→ DJOSER docs https://djoser.readthedocs.io/en/latest/
→ JWT docs https://jwt.io/introduction

120

Amal
Bab

u

https://www.djangoproject.com/
https://www.django-rest-framework.org/
https://reactjs.org/
https://redux.js.org/
https://mdbootstrap.com/
https://developer.paypal.com/braintree/docs
https://groups.google.com/g/django-users
https://forum.djangoproject.com/
https://stackoverflow.com/
https://web.codercommunity.io/g/javascript-community
https://djoser.readthedocs.io/en/latest/
https://jwt.io/introduction

	o​

