Introduction

This pathfinding will be an implementation of Dijkstra Maps used in the roguelike Brogue.
The gist of it is that we will build an array with the cost of each tile. We do this by setting a
goal tile to the cost of zero and all the other tiles to some high number. Then each tile check
their neighbours cost, if the tile has a cost that is at least 2 higher than the cheapest
neighbour we change the cost to 1 above the neighbouring tile.

We keep doing this until no more changes have been made. In the end we will have
something like this:

Limitations

The system requires two variable for each tile; one to store the actual cost and one to store a
temporary cost while we do the calculation. This can quickly get out of hand for larger maps.
In this case we will use a 10x10 map and 200 variables to store the Dijkstra map.

If you want more than one entity pathing at the same time you would need a dijkstra map for
each of them, quickly resulting in an unreasonable amount of variables being used.

This system wouldn’t work for a real time action game with ten zombies that stalks the player
on each map. But is instead a better fit for something like a Fire Emblem or Final Fantasy
Tactics combat where only one unit will navigate the map at time.

Terrain ID will also be used to track which tiles are passable or not. So if you place an
impassable rock from the upper layer on a passable grass tile the system will still consider


http://www.roguebasin.com/index.php?title=The_Incredible_Power_of_Dijkstra_Maps

that tile walkable. Most likely ending up with everything freezing while the entity is trying to
walk into a rock.

Implementing Common Events

First let’s set up our Terrain ID and Tileset. So go into the database and go to the “Terrain”
tab. Create a new terrain id and name it “impassable”, you can ignore all the settings.

Next go to the “Tileset” tab and then select the tileset you want use. Go through the lower
layer and set all the impassable tiles to the newly created impassable terrain id.

Here is all the switches we will be using:

0001: initializedGame
0002: startRandomlyWalking

And here is all the variables:

0002: temp O
0003: temp 1
0004: temp 2
0005: temp 3
0006: temp 4
0007: temp 5
0008: temp 6
0009: temp 7
0010: temp 8
0011: temp 9
0012: tempX
0012: tempY

0021: return

0025: map offset X
0026: map offset X
0027: impassable cost
0028: impassable ID
0032: goal X

0033: goal Y

0034: entity X

0035: entity X

0501: tile 00
0502: tile 01
0503: tile 0 2
0504: tile 0 3
0505: tile 0 4
0506: tile 05
0507: tile 0 6
0508: tile 07
0509: tile 08
0510: tile 09
0511: tile10
0512: tile 11
0513: tile 12
0514: tile 13
0515: tile 14
0516: tile 15




0517:
0518:
0519:
0520:

0521:
0522:
0523:
0524:
0525:
0526:
0527:
0528:
0529:
0530:
0531:
0532:
0533:
0534:
0535:
0536:
0537:
0538:
0539:
0540:

0541:
0542:
0543:
0544:
0545:
0546:
0547:
0548:
0549:
0550:
0551:
0552:
0553:
0554:
0555:
0556:
0557:
0558:
0559:
0560:

0561:
0562:
0563:
0564:
0565:
0566:
0567:
0568:
0569:
0570:
0571:
0572:
0573:
0574:
0575:
0576:
0577:
0578:

tile 16
tile17
tile 18
tile 19

tile20
tile 2 1
tile 22
tile 2 3
tile 2 4
tile25
tile 26
tile27
tile2 8
tile29
tile 30
tile 3 1
tile 32
tile 33
tile 34
tile35
tile 36
tile 37
tile 38
tile 39

tile 4 0
tile 4 1
tile 4 2
tile 4 3
tile 4 4
tile4 5
tile 4 6
tile 4 7
tile 4 8
tile4 9
tile50
tile 5 1
tile 52
tile 53
tile 54
tile55
tile 56
tile57
tile 58
tile 59

tile6 0
tile 6 1
tile 6 2
tile 6 3
tile 6 4
tile6 5
tile 6 6
tile 6 7
tile 6 8
tile6 9
tile70
tile 7 1
tile 7 2
tile 7 3
tile 7 4
tile75
tile 76
tile77




0579: tile7 8
0580: tile 7 9

0581: tile 80
0582: tile 8 1
0583: tile 8 2
0584: tile 83
0585: tile 8 4
0586: tile 8 5
0587: tile 86
0588: tile 87
0589: tile 88
0590: tile 89
0591: tile 90
0592: tile 9 1
0593: tile 92
0594: tile 9 3
0595: tile 9 4
0596: tile 95
0597: tile 96
0598: tile97
0599: tile 98
0600: tile 99

0601:temp 00
0602: temp 0 1
0603: temp 0 2
0604: temp 0 3
0605: temp 0 4
0606: temp 0 5
0607: temp 0 6
0608: temp 0 7
0609: temp 0 8
0610: temp 0 9
0611:temp 10
0612: temp 11
0613:temp 1 2
0614: temp 13
0615: temp 14
0616:temp 15
0617:temp 16
0618: temp 17
0619:temp 1 8
0620: temp 19

0621:temp 20
0622: temp 2 1
0623: temp 2 2
0624:temp 2 3
0625: temp 2 4
0626: temp 2 5
0627: temp 2 6
0628: temp 2 7
0629: temp 2 8
0630: temp 2 9
0631:temp 30
0632: temp 3 1
0633: temp 3 2
0634: temp 3 3
0635: temp 3 4
0636: temp 3 5
0637: temp 3 6
0638:temp 37
0639: temp 3 8
0640: temp 3 9




0641:
0642:
0643:
0644
0645:
0646:
0647:
0648:
0649:
0650:
0651:
0652:
0653:
0654:
0655:
0656:
0657:
0658:
0659:
0660:

0661:
0662:
0663:
0664:
0665:
0666:
0667:
0668:
0669:
0670:
0671:
0672:
0673:
0674
0675:
0676:
0677:
0678:
0679:
0680:

0681:
0682:
0683:
0684:
0685:
0686:
0687:
0688:
0689:
0690:
0691:
0692:
0693:
0694:
0695:
0696:
0697:
0698:
0699:
0700:

temp 40
temp 4 1
temp 4 2
temp 4 3
temp 44
temp 45
temp 4 6
temp 47
temp 4 8
temp 49
temp 50
temp 5 1
temp 52
temp 53
temp 5 4
temp 55
temp 56
temp57
temp 58
temp 59

temp 6 0
temp 6 1
temp 6 2
temp 6 3
temp 6 4
temp 6 5
temp 6 6
temp67
temp 6 8
temp 6 9
temp 70
temp 7 1
temp 7 2
temp 7 3
temp 7 4
temp75
temp 7 6
temp 77
temp 7 8
temp79

temp 8 0
temp 8 1
temp 8 2
temp 8 3
temp 8 4
temp 8 5
temp 8 6
temp 87
temp 8 8
temp 8 9
temp90
temp 9 1
temp 9 2
temp 93
temp 94
temp95
temp 9 6
temp 97
temp 98
temp 99




Some notes about the variables. All the temp variables is just to temporarily store the results
of calculations and are never used outside the event. Goal X and Goal Y is used to store the
position our entity wants to go to and entity X and entity Y stores it’s current position.

There are 100 tile variables and 100 temp tile variables because of our map size. If you want
a larger or smaller map you will need to add or remove the tile and temp variables.

The other variables are explained as they come up in the code.

Now it's time to get started with implementing the code. We'll be using three common
events; one to just set up some variables that will be use, another to build the Dijkstra Map
and one last to find the cheapest neighbouring tile while we’re pathing.

We'll start with the Set Up event, so go to the “Common Event” tab. Create an event called
“Initialize Game” and add the following code:

@> Comment:

. Initializes the variables used for building the Dijkstra Map

@> Control Variables: [0027:impassable cost] = 9999999

@> Comment: Should be the same as the terrain id for impassable tiles

@> Control Variables: [0028:impassable ID] = 2

@> Comment:

: : The Map Offset variables is used to calculate where our map
: starts. Should be the top left corner of the pathfinding

: : area.

@> Control Variables: [0025:map offset X] =5

@> Control Variables: [0026:map offset Y] = 2

@> Control Switches: [0001:initializedGame] = ON

This piece of code should be pretty straightforward but I'll do a quick run down of it. The
‘impassable cost’ variable will be the cost of our impassable tiles and should just be some
high number. ‘Impassable ID’ is the index of our impassable terrain, in this case we use
index 2. The map offset is the beginning of our pathfinding area. Since we’ll only be using a
10x10 map in this demonstration we’ll have to offset it to where it begins.

Finally we set a switch to ON so we can let the Build Dijkstra Map event know that we
already initialized and that there is no need to do it again.

Next up it’s time to build the map. So create a new event and call it “Build Dijkstra Map”. Ill
split this code up in several parts as it is a bit longer.

@> Comment:

: Builds the Dijkstra map used for pathfinding

@> Comment:

@> Comment: Initialize the variables used for the dijkstra map if
: : haven't already

@> Conditional Branch: Switch [0001:initializedGame] is OFF




@> Call Event: [Initialize Game]
@>
: Branch End

First we’'ll initialize the game if we haven't already.

@> Comment: Find all the impassable tiles and set them to a ridiculous
: : high number
@> Comment: temp 0 is used to track the current variable index of the
: : tiles we're on in the loop
@> Control Variables: [0002:temp 0] = 501
@> Comment: Set the temp Y to the map offset Y and temp X to 0
@> Control Variables: [0012:tempX] =
@> Control Variables: [0013:tempY] = Variable [0026]
@> Loop
@> Loop
@> Comment: Offset the X position with map offset
@> Control Variables: [0004:temp 2] = Variable [0012]
@> Control Variables: [0004:temp 2] += Variable [0025]
@> Comment: Check if tile is impassable
@> Get Terrain ID: [0003:temp 1], Variable [0004][0013]
@> Conditional Branch: Variable [0003:temp 1] == Variable [0028:impassable 1D]
@> Comment: impassable tile found, set the variable of the index stored
:in temp 0 to impassable cost
@> Control Variables: Variable [0002] = Variable [0027]
@>
: Branch End
@> Comment: Continue loop through x
@> Control Variables: [0012:tempX] += 1
@> Control Variables: [0002:temp 0] += 1
@> Conditional Branch: Variable [0012:tempX] > 9
@> Control Variables: [0012:tempX] =
@> Break Loop
@>
: Branch End
@>
: Repeat Above
@> Control Variables: [0013:tempY] += 1
@> Comment: Check if we reached the end of our tiles. In this case
: variable index 600.
@> Conditional Branch: Variable [0002:temp 0] > 600
@> Break Loop
@>
: Branch End
@>
: Repeat Above

Here we look for all the impassable tiles and set them to the cost stored away in the

impassable cost variable. Keep in mind that you will need to offset the temp X variable with

the map offset variable before checking terrain id.



@> Comment: Find and set the goal tile to a cost of 0 and set the
: rest to a cost of 1000
@> Control Variables: [0002:temp 0] = 501
@> Comment: calculate the index of the goal tile and store it in temp 1
@> Control Variables: [0003:temp 1] = Variable [0033]
@> Control Variables: [0003:temp 1] *= 10
@> Control Variables: [0003:temp 1] += Variable [0032]
@> Control Variables: [0003:temp 1] += Variable [0002]
@> Loop
@> Conditional Branch: Variable [0002:temp 0] == Variable [0003:temp 1]
@> Control Variables: Variable [0002] =
@>
: Else
@> Control Variables: [0004:temp 2] = Variable ID [V[0002]]
@> Conditional Branch: Variable [0004:temp 2] != Variable [0027:impassable cost]
@> Control Variables: Variable [0002] = 1000
@>
: Branch End
@>
: Branch End
@> Control Variables: [0002:temp 0] += 1
@> Conditional Branch: Variable [0002:temp 0] > 600
@> Break Loop
@>
: Branch End
@>
: Repeat Above

We loop through all our tiles once again and set the goal tile to a cost of 0 and the rest that
aren’t impassable to a cost of 1000.

To calculate the index of the goal tile we use the formula: (goal Y * map height + goal X) + an
offset to the beginning of the tile variables

@> Comment: Set up temp tiles cost
: temp 0 is used to store the current index of the tile we're
2 on in the loop.
: :temp 1 is used to store the current index of the temp tile
@> Control Variables: [0002:temp 0] = 501
@> Control Variables: [0003:temp 1] = 601
@> Loop
@> Control Variables: Variable [0003] = Variable ID [V[0002]]
@> Control Variables: [0002:temp 0] += 1
@> Control Variables: [0003:temp 1] += 1
@> Conditional Branch: Variable [0002:temp 0] > 600
@> Break Loop
@>
: Branch End
@>
: Repeat Above

Here we copy the current cost of all our tile variables into the temp tile variables.



@> Comment: Build the Dijkstra Map
@> Label: 1
@> Comment:
- temp 0 is used to track the current tile index
: :temp 1 is used to track if any changes was made in the map
@> Control Variables: [0002:temp 0] = 501
@> Control Variables: [0003:temp 1] =
@> Loop
@> Comment: Check if the tile isn't impassable
@> Control Variables: [0004:temp 2] = Variable ID [V[0002]]
@> Conditional Branch: Variable [0004:temp 2] != Variable [0027:impassable cost]
@> Comment:
: Get the cost from all the neighbours. If we don't have a
: neighbour set the cost to impassable
@> Comment: Get top
@> Control Variables: [0011:temp 9] = Variable [0002]
@> Control Variables: [0011:temp 9] -= 10
@> Conditional Branch: Variable [0011:temp 9] >= 501
@> Control Variables: [0004:temp 2] = Variable ID [V[0011]]
@>
: Else
@> Control Variables: [0004:temp 2] = Variable [0027]
@>
: Branch End
@> Comment: Get bottom
@> Control Variables: [0011:temp 9] = Variable [0002]
@> Control Variables: [0011:temp 9] += 10
@> Conditional Branch: Variable [0011:temp 9] <= 600
@> Control Variables: [0005:temp 3] = Variable ID [V[0011]]
@>
: Else
@> Control Variables: [0005:temp 3] = Variable [0027]
@>
: Branch End
@> Comment: Get right
@> Control Variables: [0011:temp 9] = Variable [0002]
@> Control Variables: [0011:temp 9] %= 10
@> Conditional Branch: Variable [0011:temp 9] ==
@> Control Variables: [0006:temp 4] = Variable [0027]
@>
: Else
@> Control Variables: [0011:temp 9] = Variable [0002]
@> Control Variables: [0011:temp 9] += 1
@> Control Variables: [0006:temp 4] = Variable ID [V[0011]]
@>
: Branch End
@> Comment: Get left
@> Control Variables: [0011:temp 9] = Variable [0002]
@> Control Variables: [0011:temp 9] -= 1
@> Control Variables: [0010:temp 8] = Variable [0011]
@> Control Variables: [0010:temp 8] %= 10
@> Conditional Branch: Variable [0010:temp 8] ==
@> Control Variables: [0007:temp 5] = Variable [0027]
@>
: Else
@> Control Variables: [0007:temp 5] = Variable ID [V[0011]]
@>
: Branch End

Here we start building the Dijkstra map. It's a lot going on so let’s break it down. First off we
set the label 1 before starting this loop so that we later can jump back and start the loop



over. After that we reset the temp 0 variable that is used to store the current tile index we're
on. Temp 1 is used to store whatever we changed the cost of a tile.

After that we begin the loop. If the current tile isn’t an impassable tile we begin to check and
store away the cost of each neighbouring tile. If we don’t find a neighbouring tile we store
away the cost for an impassabile tile. The cost of the top tile is stored away in temp 2, down
in temp 3, right in temp 4 and left in temp 5.

Note that all the code to get neighbours are currently hard coded for a 10x10 map and would
need to be changed if you want to change the map size.

@> Comment:
: Check which neighbour is cheapest. If it's cheaper by two
: : store away the new cost in the temp tiles
@> Comment: Check if up is lowest
@> Conditional Branch: Variable [0004:temp 2] <= Variable [0005:temp 3]
> Conditional Branch: Variable :temp 2] <= Variable :temp
@> Conditional B h: Variable [0004:t 2] <= Variable [0006:t 4]
@> Conditional Branch: Variable [0004:temp 2] <= Variable [0007:temp 5]
@> Control Variables: [0008:temp 6] = Variable ID [V[0002]]
@> Control Variables: [0008:temp 6] -= Variable [0004]
@> Conditional Branch: Variable [0008:temp 6] >= 2
@> Comment: Set temp 1 to 1 to mark that we did a change
@> Control Variables: [0003:temp 1] = 1
@> Control Variables: [0008:temp 6] = Variable [0002]
@> Control Variables: [0008:temp 6] += 100
@> Control Variables: Variable [0008] = Variable [0004]
@> Control Variables: Variable [0008] += 1
@>
: Branch End
@>
: Branch En
B h End
@>
: Branch End
@>
: Branch End
> Comment: Check if down is lowes
C t: Check if d is | t
@> Conditional Branch: Variable [0005:temp 3] <= Variable [0004:temp 2]
> Conditional Branch: Variable :temp 3] <= Variable :temp
@> Conditional B h: Variable [0005:t 3] <= Variable [0006:t 4]
> Conditional Branch: Variable :temp 3] <= Variable :temp
@> Conditional B h: Variable [0005:t 3] <= Variable [0007:t 5]
> Control Variables: :temp 6] = Variable
Control Variabl 0008:t 6] = Variable ID [V[0002
> Control Variables: :temp 6] -= Variable
Control Variables: [0008:t 6] -= Variable [0005]
@> Conditional Branch: Variable [0008:temp 6] >= 2
@> Comment: Set temp 1 to 1 to mark that we did a change
@> Control Variables: [0003:temp 1] = 1
@> Control Variables: [0008:temp 6] = Variable [0002]
@> Control Variables: [0008:temp 6] += 100
@> Control Variables: Variable [0008] = Variable [0005]
@> Control Variables: Variable [0008] += 1
@>
: Branch End
@>
: Branch End
@>
: Branch End
@>
: Branch End
@> Comment: Check if right is lowest
@> Conditional Branch: Variable [0006:temp 4] <= Variable [0004:temp 2]
@> Conditional Branch: Variable [0006:temp 4] <= Variable [0005:temp 3]
@> Conditional Branch: Variable [0006:temp 4] <= Variable [0007:temp 5]
@> Control Variables: [0008:temp 6] = Variable ID [V[0002]]
@> Control Variables: [0008:temp 6] -= Variable [0006]




@> Conditional Branch: Variable [0008:temp 6] >= 2
@> Comment: Set temp 1 to 1 to mark that we did a change
@> Control Variables: [0003:temp 1] = 1
@> Control Variables: [0008:temp 6] = Variable [0002]
@> Control Variables: [0008:temp 6] += 100
@> Control Variables: Variable [0008] = Variable [0006]
@> Control Variables: Variable [0008] += 1
@>
: Branch End
@>
: Branch End
@>
: Branch End
@>
: Branch End
@> Comment: Check if left is lowest
@> Conditional Branch: Variable [0007:temp 5] <= Variable [0004:temp 2]
@> Conditional Branch: Variable [0007:temp 5] <= Variable [0005:temp 3]
@> Conditional Branch: Variable [0007:temp 5] <= Variable [0006:temp 4]
@> Control Variables: [0008:temp 6] = Variable ID [V[0002]]
@> Control Variables: [0008:temp 6] -= Variable [0007]
@> Conditional Branch: Variable [0008:temp 6] >= 2
@> Comment: Set temp 1 to 1 to mark that we did a change
@> Control Variables: [0003:temp 1] = 1
@> Control Variables: [0008:temp 6] = Variable [0002]
@> Control Variables: [0008:temp 6] += 100
@> Control Variables: Variable [0008] = Variable [0007]
@> Control Variables: Variable [0008] += 1
@>
: Branch End
@>
: Branch End
@>
: Branch End
@>
: Branch End
@>
: Branch End

Next up we need to compare the cost of all the neighbours to find the cheapest one. When
we found one we check if it's cheaper by at least 2. If it is we set temp 1 to one to mark that
we made a change to the map costs. After that we calculate the new cost (that should be
one above the neighbour cost) and store it in the temp tile.

To get the correct temp tile index we have to offset temp 0 variable by 100 because our map
is 100 tiles big. If you had a larger or smaller map you would need to change the offset to
your map widths * map height.

@> Control Variables: [0002:temp 0] += 1
@> Conditional Branch: Variable [0002:temp 0] > 600
@> Comment:
: : If we have made changes to the map then repeat the
: : loop
@> Conditional Branch: Variable [0003:temp 1] !=0
@> Comment: Apply all the changes from temp tiles




@> Control Variables: [0002:temp 0] = 501
@> Control Variables: [0003:temp 1] = 601
@> Loop
@> Control Variables: Variable [0002] = Variable ID [V[0003]]
@> Control Variables: [0002:temp 0] += 1
@> Control Variables: [0003:temp 1] += 1
@> Conditional Branch: Variable [0002:temp 0] > 600
@> Comment: Start over again
@> Jump to Label: 1
@>
: Branch End
@>
: Repeat Above
@>
: Else
@> Comment: No changes was made, stop building map
@> Break Loop
@>
: Branch End
@>
: Branch End
@>
: Repeat Above

If we finished looping through all the tiles we check if we made a change to the map by
checking if temp 1 is not equal to zero.

In case changes have been made we loop through all the temp tiles and apply the cost to
the tiles variable and jump back to label 1 and start the whole thing over again.

If no changes was made we simply break out of the loop and our Dijkstra map is finished.

Next up we need one last common event to retrieve the cheapest neighbour while navigating
the map. So create a new common event and call it “Cheapest Neighbour”.

@> Comment:

: Returns the direction of the cheapest neighbour tile
: : Return - the direction of cheapest neighbour
@> Comment:
: ;1 =down
12 = left
: : 3 =right
@> Comment:

@> Comment: Calculate current tile index from entity X and entity Y
@> Control Variables: [0002:temp 0] = Variable [0035]

@> Control Variables: [0002:temp 0] *= 10

@> Control Variables: [0002:temp 0] += Variable [0034]

@> Control Variables: [0002:temp 0] += 501

We'll start by calculating our current tile index using the same formula we used to calculate
the goal index before but this time we use entity X and entity Y instead.




@> Comment: Get the cost of each neighbour

@> Comment: Get top

@> Control Variables: [0003:temp 1] = Variable [0002]

@> Control Variables: [0003:temp 1] -= 10

@> Conditional Branch: Variable [0003:temp 1] >= 501
@> Control Variables: [0004:temp 2] = Variable ID [V[0003]]
@>

: Else

@> Control Variables: [0004:temp 2] = Variable [0027]
@>

: Branch End

@> Comment: Get bottom

@> Control Variables: [0003:temp 1] = Variable [0002]

@> Control Variables: [0003:temp 1] += 10

@> Conditional Branch: Variable [0003:temp 1] <= 600
@> Control Variables: [0005:temp 3] = Variable ID [V[0003]]
@>

: Else

@> Control Variables: [0005:temp 3] = Variable [0027]
@>

: Branch End

@> Comment: Get right

@> Control Variables: [0003:temp 1] = Variable [0002]

@> Control Variables: [0003:temp 1] %= 10

@> Conditional Branch: Variable [0003:temp 1] ==

@> Control Variables: [0006:temp 4] = Variable [0027]
@>

: Else

@> Control Variables: [0003:temp 1] = Variable [0002]
@> Control Variables: [0003:temp 1] +=1

@> Control Variables: [0006:temp 4] = Variable ID [V[0003]]
@>

: Branch End

@> Comment: Get left

@> Control Variables: [0003:temp 1] = Variable [0002]

@> Control Variables: [0003:temp 1] -= 1

@> Control Variables: [0011:temp 9] = Variable [0003]

@> Control Variables: [0011:temp 9] %= 10

@> Conditional Branch: Variable [0011:temp 9] ==

@> Control Variables: [0007:temp 5] = Variable [0027]
@>

: Else

@> Control Variables: [0007:temp 5] = Variable ID [V[0003]]
@>

: Branch End

Here we get the cost of our neighbours and store away in temp variables. We check the
neighbours in the same way we did in when we built the Dijkstra map. If we have no
neighbour we get the cost for impassabile tiles instead.

@> Comment:

: : Compare cost and return the cheapest direction

: :temp 9 is used to track if we found a direction

@> Control Variables: [0011:temp 9] = 0

@> Comment: If we are surrounded by impassable tiles return direction
: 2 none (5)




@> Conditional Branch: Variable [0004:temp 2] == Variable [0027:impassable cost]
@> Conditional Branch: Variable [0005:temp 3] == Variable [0027:impassable cost]
@> Conditional Branch: Variable [0006:temp 4] == Variable [0027:impassable cost]
@> Conditional Branch: Variable [0007:temp 5] == Variable [0027:impassable cost]
@> Control Variables: [0011:temp 9] = 1
@> Control Variables: [0021:return] = 5
@>
: Branch End
@>
: Branch End
@>
: Branch End
@>
: Branch End

Then we must compare all the neighbours to each other to find the cheapest one. We start
off by checking if all the neighbours are equal to impassable tiles. In that case we set the
return variable to 5.

Temp 9 is just use to track if we found the cheapest neighbour and used to skip all the other
checks.

@> Comment: Check if top is cheapest
@> Conditional Branch: Variable [0011:temp 9] ==
@> Conditional Branch: Variable [0004:temp 2] <= Variable [0005:temp 3]
@> Conditional Branch: Variable [0004:temp 2] <= Variable [0006:temp 4]
> Conditional Branch: Variable [0004:temp 2] <= Variable [0007:temp 5]
@
@> Control Variables: [0011:temp 9] = 1
@> Control Variables: [0021:return] = 4
@>
: Branch End
@>
: Branch End
@>
: Branch End
@>
: Branch End
@> Comment: Check if bottom is cheapest
@> Conditional Branch: Variable [0011:temp 9] ==
@> Conditional Branch: Variable [0005:temp 3] <= Variable [0004:temp 2]
@> Conditional Branch: Variable [0005:temp 3] <= Variable [0006:temp 4]
> Conditional Branch: Variable [0005:temp 3] <= Variable [0007:temp 5]
@
@> Control Variables: [0011:temp 9] = 1
@> Control Variables: [0021:return] = 1
@>
: Branch End
@>
: Branch En
B h End
@>
: Branch End
@>
: Branch End
@> Comment: Check if right is cheapest
> Conditional Branch: Variable :temp 9] ==
Conditional B h: Variable [0011:t 9]
@> Conditional Branch: Variable [0006:temp 4] <= Variable [0004:temp 2]
@> Conditional Branch: Variable [0006:temp 4] <= Variable [0005:temp 3]
@> Conditional Branch: Variable [0006:temp 4] <= Variable [0007:temp 5]
@> Control Variables: [0011:temp 9] = 1
@> Control Variables: [0021:return] = 3




@>
: Branch End
@>
: Branch End
@>
: Branch End
@>
: Branch End
@> Comment: Check if left is cheapest
@> Conditional Branch: Variable [0011:temp 9] ==
@> Conditional Branch: Variable [0007:temp 5] <= Variable [0004:temp 2]
@> Conditional Branch: Variable [0007:temp 5] <= Variable [0005:temp 3]
@> Conditional Branch: Variable [0007:temp 5] <= Variable [0006:temp 4]
@> Control Variables: [0011:temp 9] = 1
@> Control Variables: [0021:return] = 2
@>
: Branch End
@>
: Branch End
@>
: Branch End
@>
: Branch End

We compare all the directions and set the return variable to the cheapest one. With that we
got all the common events we need. Next up we move on the the specific code needed on
the maps to get an entity to move around.

Implementing Map Specific Code
Create a new map and name it something cool. Keep the rest of the default setting. Start

from x005 y002 and draw a 10x10 rectangle from there. Make some paths for the entity to
walk around on.



Next up create a new event and name it “Entity”, select some cool looking character (I went
for a skeleton). Place it on some passable tile in the map.

Create another event and name it “Goal Marker”, it will be showing the position the entity is
pathing to. Set some fitting graphic to it and make sure it’s priority is set to be below
characters. It doesn’t matter where you place the event.

It's time to move on to coding again. Create a new event and name it “Game Loop” and
make sure it’s trigger is Autorun. Add this piece of code to it:

@> Call Event: [Initialize Game]

@> Control Variables: [0034:entity X] = 0

@> Control Variables: [0035:entity Y] = 0

@> Control Switches: [0002:startRandomlyWalking] = ON

First we call the Initialize Game event because we want to use some of the variables it
initializes. Then we need to initialize the entities position, | put mine in the top left corner so
it's position is 0, 0 if you put yours somewhere else make sure you got the right position for
it. Last we set the switch to ON to indicate that we should start pathing.

Now create a second page in the event and set it’s trigger to Parallel Processing. Add the
following code:

@> Comment: Pick a random position

@> Loop
@> Control Variables: [0032:goal X] = Random No. (0...9)
@> Control Variables: [0033:goal Y] = Random No. (0...9)
@> Comment: Check if it's a valid position




@> Conditional Branch: Variable [0032:goal X] != Variable [0034:entity X]
@> Conditional Branch: Variable [0033:goal Y] != Variable [0035:entity Y]
@> Control Variables: [0012:tempX] = Variable [0032]
@> Control Variables: [0013:tempY] = Variable [0033]
@> Control Variables: [0012:tempX] += Variable [0025]
@> Control Variables: [0013:tempY] += Variable [0026]
@> Get Terrain ID: [0002:temp 0], Variable [0012][0013]
@> Conditional Branch: Variable [0002:temp 0] != Variable [0028:impassable |D]
@> Break Loop
@>
: Branch End
@>
: Branch End
@>
: Branch End
@>
: Repeat Above
@> Comment: Build map to position
@> Set Event Location: [Goal Marker], Variable [0012][0013]
@> Call Event: [Build Dijkstra Map]

We start with picking a random position on the map by randomizing goal X and goal Y
between 0 and 9 (if you have a different map size you should change it to reflect that). Then
we check if it's a valid position by checking so it's not equal to the entity's current position
and that the position isn’t impassable. Before getting terrain id we need to offset the
randomized position by the map offset variables, we do this by storing the new offset position
in temp X and temp Y.

If the position checks out we move the “Goal Marker” to the temp X and temp Y position and
proceed to build a map to it.

After this we need to add some more code to handle entity movement.

@> Comment: Follow path
@> Loop
@> Call Event: [Cheapest Neighbour]
@> Conditional Branch: Variable [0021:return] == 1
@> Set Move Route: [Entity], Move Down
@> Wait for All Movement
@> Control Variables: [0035:entity Y] += 1
@>
: Else
@> Conditional Branch: Variable [0021:return] ==
@> Set Move Route: [Entity], Move Left
@> Wait for All Movement
@> Control Variables: [0034:entity X] -= 1
@>
: Else
@> Conditional Branch: Variable [0021:return] ==
@> Set Move Route: [Entity], Move Right
@> Wait for All Movement
@> Control Variables: [0034:entity X] += 1
@>
: Else
@> Conditional Branch: Variable [0021:return] ==
@> Set Move Route: [Entity], Move Up
@> Wait for All Movement
@> Control Variables: [0035:entity Y] -= 1
@>

: Else




@> Text: Stuck
@> Break Loop
@>
: Branch End
@>
: Branch End
@>
: Branch End
@>
: Branch End
@> Comment: Check if we reached goal
@> Conditional Branch: Variable [0034:entity X] == Variable [0032:goal X]
@> Conditional Branch: Variable [0035:entity Y] == Variable [0033:goal Y]
@> Break Loop
@>
: Branch End
@>
: Branch End
@>
: Repeat Above
@> Wait: 0.0 seconds

We set up a loop that we will spend all our time in until we reaches the goal tile. The first
thing we do in the loop is to call the Cheapest Neighbour event. As you might remember that
event checks the cost of all the neighbours and store the direction in the return variable.

We check the return variable for the direction, set our entity to move in it, wait for it finish
moving and update it’'s position.

Last thing we do in the loop is to check if the entity reached the goal position. If so break out
from the loop.

If you hit play now you should see something like this:

Epilogue

I've made a demo project containing more examples on how to move characters, controlling
the player and as well the example from this tutorial.




Fiz -RETURN TO SELECTION SCREEN
ARROUKEYS - HOUE CURSOR
ENTER -CALCULATE PATH

-FOLLOU PATH

You can download the project [here]


https://rpgmaker.net/games/8981/

