Book E Summary (Univariate) investigation (Levels 2 - 6) # **Current Level (circle one):** Goal Level (circle one): | Exe | ercise A: | |-----|--| | 1) | Do you remember what a summary question is? | | | | | Pro | oblem | | | onder if what the height of students at Aorere College ds to be? | | Pla | n | | We | will ask 30 boys and 30 girls the following question: | | • | How many texts do you send each day? | | 2) | Do you think all students will respond with an accurate answer to this question? | | | | | 3) | Why might students give an incorrect answer to the question? | | | | | | | | | | | • | • | wording
to send | | ng ques | ition bia | ased? | |---|---|--------------------|--|---------|-----------|-------| # Plan # **Data collection methods** Data can be collection in a number of different ways. Here are some: - Survey - Questionnaire - Poll - Census # **Exercise B:** | | scuss what each of these methods are, and write down explanation. | |----|---| | 1) | A survey is | | | | | | | | 2) | A questionnaire is | | | | | | | | 3) | A poll is | | | | | | | | 4) | A census is | | | | | | | # **Data** When you collect your data, you need to record it in a table. You also have to decide on your sample size. # For **count** data: use a sample size of 50. # For **measurement** data: use a sample size of 30. # **Exercise C:** 1) Circle the words that complete the sentences below. Smaller sample sizes take a <u>shorter / longer</u> time to collect data, but are <u>more / less</u> accurate. Larger sample sizes take a <u>shorter / longer</u> time to collect data, and are <u>more / less</u> accurate. | 2) | What is count data? | |----|---| | | | | 3) | Why is measuring 50 students when you have count data a good compromise? Explain | | | | | 4) | What is measurement data? | | | | | 5) | Why is measuring 30 students for measurement a good compromise? Explain | | | | | 6) | Why do we have different rules for sample sizes depending on whether it is count or measurement data? Explain | | | | | | | | | | # **Analysis** # **Graphs and Calculations** # **Sample statistics** Numbers calculated from a *sample* of numerical values that are used to summarise the sample. The statistics will usually include at least one *measure of* center and at least one *measure of* spread. ### **Measures of Center** An average is a number which represents the group as a whole. There are 3 measures: - Mean - Median - Mode # **Measures of Spread** A measure of spread looks at how precise or accurate the data is. There are two measures you will use: - Range - IQR (Inter Quartile Range) # **Calculations** With different types of data, different measures of center and spread are used. We need to know how to calculate each type. # **Measures of center** ### Mean The mean is calculated by adding the values and then dividing this total by the number of values. # **Example** The maximum temperatures, in degrees Celsius (°C), in Auckland for the first 5 days in November 2013 were: 18.6, 19.9, 20.6, 19.9, 17.8, The **mean** maximum temperature over these 5 days is: $$\frac{18.6+19.9+20.6+19.9+17.8}{5}$$ = 19.36°C ### Median The median is the middle value, when the values have been ordered from smallest to largest. If there is an even number of values, then add the two middle numbers together and divide the total by 2 # **Example** The maximum temperatures, in degrees Celsius (°C), in Auckland for the first 5 days in November 2013 were: 18.6, 19.9, 20.6, 19.9, 17.8, Put the values in order from smallest to biggest: 17.8, 18.6, 19.9, 19.9, 20.6 Then find the middle: 17.8, 18.6, 19.9, 19.9, 20.6 The **median** is 19.9°C. ### Mode The mode is the most common value. # **Example** The maximum temperatures, in degrees Celsius (°C), in Auckland for the first 5 days in November 2013 were: 18.6, 19.9, 20.6, 19.9, 17.8, Put the values in order from smallest to biggest: 17.8, 18.6, 19.9, 19.9, 20.6 The **mode** is 19.9°C (because the number occurs twice). ### **NOTE:** - There can be no mode e.g. in the data set 5, 9, 8, 6, 7 there are no common values, therefore there is no mode - There can be more than one mode e.g. in the data set 7, 6, 8, 7, 6, 5, 4, 6, 5, 7 there are two common values 7 and 6, therefore they are both modes - A mode can be 0 e.g. in the data set 0, 1, 2, 0, 0, 3, 2, 0, 1, 0, 3, the most common value is 0, therefore the mode is 0 # **Exercise D:** Calculate the mean, median & mode for the data below: 1) 4, 6, 3, 8, 2, 4, 9 Mean = Median = Mode = 2) 4.4 4.7 3.5 2.2 4.2 6.7 2.9 4.4 1.5 2.0 3.3 Mean = Median = Mode = 3) 25, 35, 37, 36, 28, 29, 36, 26, 22 Mean = Median = Mode = 4) \$150, \$145, \$135, \$150, \$148, \$156, \$143 Mean = Median = Mode = # **Measures of Spread** # Range The maximum is the biggest number. The minimum is the smallest number. # Range = Maximum - Minimum # **Quartiles** The middle value of a set of data is the median. Split the data in half, so that half the data is above the median, and half the data is below the median. The **Lower Quartile (LQ)** is the middle of the bottom half. The **Upper Quartile (UQ)** is the middle of the top half. # **Inter Quartile Range** IQR = UQ - LQ # **Example** Calculate the range, upper quartile, lower quartile and the inter quartile range of the data set: 1) Find the maximum $$Max = Biggest number = 8$$ 2) Find the minimum 3) Calculate the range Range = $$Max - Min = 8 - 6 = 2$$ 4) Find the median by splitting the data into two halves 5) Take the numbers **below** the median - 6) Find the middle number - 6, 6, 6, LQ = 6 - 7) Take the numbers **above** the median - 7, 8, 8 - 8) Find the middle number - 7, 8, 8 UQ = 8 9) Calculate the inter quartile range IQR = UQ - LQ = 8 - 6 = 2 # **Exercise E:** For each of the following data sets: - Put the data in order from smallest to biggest - Find the maximum and minimum - Calculate the Range, - Find the Upper Quartile and Lower Quartile - Calculate the inter-quartile range - 1) 35, 48, 36, 24, 19, 56, 43, 23 | Range | | |----------------|--| | Upper Quartile | | | Lower Quartile | | | IQR | | 2) 3.5, 4.2, 2.6, 3.9, 2.8, 3.9, 4.2 | Range | | |----------------|--| | Upper Quartile | | | Lower Quartile | | | IQR | | 3) 3) \$45, \$35, \$56, \$29, \$89, \$76, \$83, \$74, \$21, \$42 | Range | | |----------------|--| | Upper Quartile | | | Lower Quartile | | | IQR | | # **Displaying data** In statistics, it is useful to visualise our data. This will help us describe the important features of the data such shape, the spread, the center and anything else interesting or unusual (e.g. clusters of data, extreme values or outliers). # The dot plot. Below is a dot plot of a sample of 30 students from the Census at schools survey for 2011. # How to draw a dot plot. Consider this data set of student bag weights from the 2009 Census at schools survey. - Draw an axis for your results. Remember to label your axis - 2) Use dots to plot the data points on the axis. **Note:** If a certain weight is repeated, stack the dot on top of the one already there. 3) Finish plotting the remaining data points. **Note:** if you count the number of dots, this should equal the number of data values. | | A | E | |----|-----------|---| | 1 | bagweight | | | 2 | 900 | | | 3 | 1500 | | | 4 | 1600 | | | 5 | 1900 | | | 6 | 2000 | | | 7 | 2000 | | | 8 | 3000 | | | 9 | 3000 | | | 10 | 3200 | | | 11 | 3200 | | | 12 | 3500 | | | 13 | 3500 | | | 14 | 4300 | | | 15 | 5000 | | | 16 | 5000 | | | 17 | 5000 | | | 18 | 5900 | | | 19 | 7000 | | | 20 | 7000 | | | 21 | 7600 | | | 22 | 9000 | | | 23 | 9600 | | | 24 | 10000 | | | 25 | 16800 | | | - | | | bagweights # **Exercise:** The dataset below shows weekly income of 30 people from the NZ Income Survey. # Weekly Income (\$) | 120 | 190 | 200 | 240 | 290 | 380 | 456 | 460 | 480 | |------|------|------|-----|-----|-----|------|------|------| | 480 | 504 | 504 | 504 | 552 | 580 | 590 | 624 | 624 | | 630 | 690 | 768 | 800 | 852 | 936 | 1100 | 1152 | 1248 | | 1404 | 1428 | 1464 | | | | | | | Draw an axis with the appropriate scale and label, and plot the points to create a dot plot of weekly income. # The Stem and Leaf plot. The **stem** refers to the central (vertical) spine of the data. The **leaf** refers to the numbers shooting off horizontally from the spine. | Stem | | | | | | | / Leaf(or leaves) | | | | | | | | | | |------|---|---|---|---|---|---|-------------------|---|---|---|---|---|----------|---|---|--| | 5 | 1 | 5 | 7 | 7 | | | | | | | | | | | | | | 6 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 3 | 4 | 4 | 7 | ∞ | 8 | 9 | | | 7 | 0 | 0 | 1 | 2 | 2 | 3 | 4 | 5 | 5 | | | | | | | | | 8 | 3 | | | | | | | | | | | | | | | | | 9 | 0 | 0 | | | | | | | | | | | | | | | | 10 | 0 | 0 | 0 | 9 | | | | | | | | | | | | | | 11 | | | | | | | | | | | | | | | | | | 12 | 0 | | | | | | | | | | | | | | | | The above stem and leaf plot shows the weight (kg) of students in a particular university course. Part of the dataset is shown below. # How to read a stem and leaf plot - 1. Start at the stem. This first number is '5'. - 2. On the leaf of '5' the first number is '1'. - 3. The first result is the 51kg. | 57 | | |----|--| | 57 | | | 60 | | | 60 | | | 60 | | | 60 | | | 60 | | | 60 | | Weight 51 55 - 4. The second result is 55kg. - 5. The largest result is 120kg. # **Exercise F:** Create a stem and leaf plot of the dataset and answer the questions. | | Rubber band lengths (mm) | | | | | | | | | | | | |-----|--------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|--|--| | 296 | 223 | 188 | 256 | 216 | 268 | 214 | 260 | 229 | 205 | 152 | | | | 283 | 225 | 189 | 245 | 211 | 235 | 190 | 165 | 239 | 193 | 237 | | | | 283 | 225 | 177 | 241 | 210 | 238 | 199 | 167 | 233 | 242 | 173 | | | | 270 | 221 | 174 | 247 | 208 | 233 | 191 | 164 | 238 | 246 | 177 | | | | 272 | 270 | 220 | 223 | 200 | 200 | 208 | 206 | | | | | | # The box and whisker plot. The Box and whisker plot (or just box plot) shows minimum, lower quartile (LQ), median, upper quartile (UQ) and maximum values of a dataset. The box plot is a useful in showing the *center* of the data (the median) and the *spread* of the data around the median. # How to draw a box plot. Summary statistics from a make believe dataset are shown below. We will create a box plot from these summary statistics. Median = 110 Minimum = 40 Maximum = 190 LQ = 80 UQ = 130 1) Draw an axis for your results 2) Draw the 'Box' by plotting the median, LQ, and UQ as vertical lines. 3) Plot the maximum and minimum. 4) Finish off the box plot by drawing lines to close the top and bottom of the box, a line from the minimum to LQ, a line from the max to the UQ. The summary statistics below are from a sample of 30 people's weekly income from the NZ Income Survey. Draw an axis with the appropriate scale and label, and plot the points to create a box plot of weekly income. Clearly label all the important points. Use the space provided. Median = $$$768$$ $$Minimum = $456$$ $$Maximum = $1,464$$ $$LQ = $504$$ $$UQ = $1,248$$ # **Analysis Interpretation** Here are the features you need to analyse. - 1. Shape - 2. Center - 3. Spread - 4. Middle 50% We will now go through each feature, before putting it all together. # 1. Shape 1) The first thing you need to do is sketch a rough shape over the top of a dot plot. # **Example** 2) The next question you should ask yourself when analysing the shape of the distribution, is "which distribution does my data best match?" # **Normal distribution** (Hill/mound shapes, symmetric, Bell shaped curve) ### Left skewed (Tail is on the left hand side) # **Right Skewed** (Tail is on the right hand side) ### **Multimodal** (There is more than one peak) ### **Uniform** (The sides are straight and it looks like a box) 3) Lastly, you need to write a sentence about the shape of each group. ### **Sentence Framework:** ### Level 2 / 3: I notice that the shape of the plot is <u>hill shaped / a</u> tail on the left / a tail on the right / more than one hill / box shaped. ### Level 4: I notice that the shape of the distribution is ____ symmetric and bell curve / left skewed / right skewed / bimodal, trimodal, etc / uniform. ### Level 5 / 6: I notice that the shape of the distribution for the ___ context is symmetric and bell curve / left skewed / right skewed / bimodal, trimodal, etc / uniform _. # **Example** # Level 2 / 3: I notice that the shape of the plot has a long tail on the left. ### Level 4: I notice that the shape of the distribution is left skewed. # Level 5 / 6: I notice that the shape of the distribution of the heights of students is left skewed as there is a long tail on the left hand side. # **Exercise H:** Sketch and then describe the shape. I notice ... I notice ... I notice ... | I notice | | |----------|---| | | | | | | | | | | | + | | 5. | | | I notice | _ | | | | | | | | | | | | | I notice ... I notice ... | I notice | | | | |----------|--|--|--| | | | | | | | | | | | | | | | | 7 | Cal | 404 | |------------|-----|------| | Z . | cei | nter | | Locate | the | median, | and | tell | me | where | it is | | |--------|-----|-----------|------|------|------|---------|-------|---| | | | IIICalall | alia | CCII | 1110 | VVIICIC | 1010 | • | #### **Sentence Framework:** # Level 2 / 3: I notice that the center is <u>median number and</u> units__. #### Level 4: I notice that the median is <u>median number and</u> <u>units</u>. # Level 5 / 6: I notice that the median <u>context</u> is <u>median</u> number and units. # Median = 3000 grams # Level 2 / 3: I notice that the center is 3000 grams. #### Level 4: I notice that the median is 3000 grams. # Level 5 / 6: I notice that the median bag weight of students is 3000 grams. Find the Range, and tell me how big it is. Remember: Range = Maximum - Minimum #### **Sentence Framework:** # Level 2 / 3: I notice that the spread is from <u>minimum</u> to <u>maximum</u>. #### Level 4: I notice that the range is **range number and units**. # Level 5 / 6: I notice that the range <u>context</u> is <u>range number</u> <u>and units</u>. Range = 7000 - 500 = 6500 grams # Level 2 / 3: I notice that the spread is from 500 grams to 7000 grams. #### Level 4: I notice that the range is 6500 grams. # Level 5 / 6: I notice that the range for bag weights of students is 6500 grams. #### 4. The Middle 50% We want to see where the middle 50% of the data is located. The middle 50% of the data are the values that lie between the UQ and LQ. In other words, the IQR contains the middle 50% of the data. The easiest way to do this is to look at the boxes on the box and whisker graph (as the box is the middle 50%). Look at the boxes. Note where the UQ and LQ of each group is. #### **Sentence Framework:** #### Level 2 / 3 / 4: I notice that the middle 50% is from **LQ** to **UQ**. # Level 5 / 6: I notice that the middle 50% for **__context**__ lies between **LQ** and **UQ**. # Level 2 / 3 / 4: I notice that the middle 50% is from 1600 grams to 5000 grams. # Level 5 / 6: I notice that the middle 50% of student bag weights lies between 1600 grams and 5000 grams. 2000 1000 3000 Analyse the shape, center, spread and middle 50% of the data below. **Problem**: I wonder what the weight of school bags of junior students at Aorere College tend to be? 5000 bagweight 6000 7000 8000 9000 I notice that the shape of the distribution of the bag weights of Aorere College junior students is reasonably symmetric and mound shaped. 4000 I notice that the median of student bag weights of Aorere College Juniors is around 3000 grams. I notice that the range of the Aorere College Junior student bag weights is around 6500 grams. (Range = 7000 - 500 = 6500grams) I notice that the middle 50% of Aorere College Junior student bag weights is between 1600 grams and 4900 grams. # **Exercise I:** Analyse the following data. 1) How many months old are Aorere College Junior students' cell phones? # 2) How heavy are school bags of year 7 Kedgley Intermediate students? 3) How heavy are school bags of year 9 Aorere College students? # Conclusion There are three things you need to do in your conclusion: - Answer the investigation problem - 2) Make an inference about the population - 3) Discuss Sampling Variability # 1. Answer the investigation problem Your problem is usually in the form: I wonder ... You need to make sure that you answer this question. #### 2. Inference The conclusion is valid for the specific population that has been sampled. The conclusion may be applied to a similar population to the one for which the data was collected. #### **Example** If the data is about students in New Zealand, then the conclusions can be applied to New Zealand. It may be that there are sufficient similarities in the population of Australia and NZ for the data to be useful to help offer guidance. # 3. Sampling variability ### If I took another sample ... - When another sample is taken, I will select different people, therefore my data will differ from sample to sample. - Each sample I take should represent the population. - This means that the analysis and conclusion are likely to remain the same. #### If I took a bigger sample ... - The data will be more representative of the population. - The results will be more accurate. - The conclusion will be more accurate. #### **Problem:** I wonder how long an Aorere College Junior students' ring finger tends to be? # **Conclusion:** From our sample, we can conclude that an Aorere College junior student's ring finger tends to be between 70 and 89 cm. This sample was taken from year 9 and 10 students at Aorere College in Auckland. Therefore it is reasonable that the conclusion can be applied to other Year 9 and 10 students across New Zealand. However, the conclusion may not be very accurate for students who are older or younger than this. If I took another sample, I would expect my data to be different, but my results should be similar. If I took a bigger sample, I would have more information, a more representative sample, and my conclusion would be more accurate. # **Exercise J:** Draw conclusions about the following data. 1) **Problem**: How many months old are Aorere College Junior student's cell phones? # 2) **Problem:** How heavy are school bags of Kedgey Intermediate year 7 students? 3) **Problem:** How heavy are school bags of year 9 students? | The population of our school includes | | |--|--| | | | | | | | 5) Would a sample of 30 students from Aorere be representative of the population of NZ? Explain why/why not. | | | | | | | | | 6) Why don't we sample the entire population? | | | | | | | | | 7) It is important for our samples to be randomly selected. Why? | | | | | | Investigation Exercise | |---| | Problem | | I wonder how long a Year 9 or 10 student from Bay of Islands College tends to sleep at night? | | Plan | | Create a detailed plan of how to collect this information. | # **Data** Create a data table to record the information. | Samples | Hours of sleep per night | Samples | Hours of sleep per night | |---------|--------------------------|---------|--------------------------| | 1 | | 16 | | | 2 | | 17 | | | 3 | | 18 | | | 4 | | 19 | | | 5 | | 20 | | | 6 | | 21 | | | 7 | | 22 | | | 8 | | 23 | | | 9 | | 24 | | | 10 | | 25 | | | 11 | | 26 | | | 12 | | 27 | | | 13 | | 28 | | | 14 | 29 | | |----|----|--| | 15 | 30 | | # **Analysis** Calculate summary statistics. | Mean | | |----------------|--| | | | | Median | | | Mode | | | Range | | | Upper Quartile | | | Lower Quartile | | | IQR | | Draw a dot plot and box and whisker plot. | Conclusion Answer the investigation question. | |---| | _ | | _ | | _ | | - | | _ | | | | Make an inference. | | _ | | · - | | , _ | | _ | | _ | | , | | - | | | | - | |--| | _ | | _ | | Discussion of sampling variability (taking another sample, changing sample size, etc.) | | _ | | - | | _ | | | | _ | | _ | | | | - | | - | | - | | | | _ |