
Chromium Stylus Writing into Input Design

Authors: flackr@chromium.org, peconn@chromium.org May 2022

Overview

Users should be able to write text over inputs on the page in order to write into the input. Sites
must also be able to prevent this if they are handling stylus input.

Possible Stylus actions

There are several possible actions which should be supported for users using a stylus system.
In some circumstances the same user action could be used to start multiple gestures. In order
of precedence, a user moving the stylus should do the following:

● Custom developer event handling
● Writing into input fields
● Scroll the page

Developer event handling

Aside from specific security exception cases, developers should always be able to handle input
events instead of any default system handling. For stylus, examples include an application that
supports drawing, annotating on top of web content, or a site or library providing its own richer
custom writing experience.

Example signature field which captures all drawn strokes when used by pen but allows text
entry with other input devices.

Writing

Writing into input fields should be easy even in scrolling areas. For this reason, we should
probably prefer writing into input fields over scrolling.

If the user had no other input mechanism by which to scroll the page, we would have to go the
other way for large contenteditable pages (example page), as lacking any mechanism for
scrolling the page could lead to users being unable to access the full page contents. It's possible
in such circumstances we may want to require focus first before writing can take place in such
cases.

Scrolling / text selection

If nothing else has prevented the stylus' events, it should perform the user agent's default stylus
action whether that is scrolling or text selection.

mailto:flackr@chromium.org
mailto:peconn@chromium.org
https://output.jsbin.com/nazukix/quiet
https://output.jsbin.com/texowaw/quiet


Timing constraint

Any time information is needed from the renderer, it could take arbitrarily long to get this
information. This means that the design should not attempt to make immediate decisions in the
browser process based on input but rather must wait for information from blink, for example,
consider the following timing:

In this case, when the stylus begins moving, the browser process does not yet know whether
the stylus is over an editable field. The decision whether to begin writing must be delayed.

As an example, visit https://output.jsbin.com/vitibeg and try to write into the input field.

Design

The design is broken down into four main areas: beginning writing, continued events once
writing starts, updating the editable field when text has been recognized, and finishing writing.

Beginning writing

InputRouterImpl

When the pen goes down on the screen, InputRouterImpl (browser process) calls
FilterAndSendWebInputEvent to determine the disposition of the touch. This is responded to
with a TouchEventAck giving the allowed touch actions (i.e. default browser actions) of the page
at the touch location. Assuming that writing should be preferred to scrolling, we should disable
all scrolling gestures from the allowed touch action when over an editable field.

https://output.jsbin.com/vitibeg


While we are awaiting the allowed touch action, we should return
FilterGestureResult::kFilterGestureEventDelayed from
TouchActionFilter::FilterGestureEvent to accumulate all movement until the allowed
action is known (i.e. when OnSetTouchActionIsCalled) at which point they are either
dispatched as scrolling or as initial input to the stylus writing API or dropped if the developer is
handling them.

Once we have received the known touch action and processed the GestureScrollBegin (i.e.
indicating sufficient movement to begin writing) we can call out to the platform writing interface
either right away or once we have also seen the GestureScrollBegin to begin handling the event
stream including the events observed so far. See next section for discussion on this point.

Note: For stylus devices which want to show whether writing can commence on hover we may
want to query the effective touch action on hover.

When to begin writing

We could begin writing at the point of GestureScrollBegin or once we know the touch action for
the pointerdown event does not prevent “scrolling” and we have an input field.

Options (Number 2 is implemented):

1. In response to touch action from pointerdown. This will initiate writing even with regular
taps, which means that subsequent stylus movement on screen until it is dismissed will
be consumed by the writing service and translated into text for this input. This has the
disadvantage that stylus taps lead to the writing service stealing subsequent taps which
could be a bad user experience (e.g. they may want to

2. Once we have the touch action and the GestureScrollBegin. This means that if the
user simply taps on an input field blink will continue to get the first opportunity to process
subsequent events.

There are many cases on the web where tapping into an input field shows additional UI which
the user may want to interact with, beginning writing right away makes it difficult to interact with
this UI as tapping anywhere immediately after can be interpreted as wanting to write a period.
For example, autofill suggestions typically show in a suggestion box after tapping into the input
box. Sometimes developer UI has the same, for example the to input box on gmail, or this
simple example showing the pattern

Blink Renderer

In addition to removing scrolling from the allowed touch action when we should be writing into
an input field, blink should also set the element to be written into. This could either be done by
(Option 2 is implemented):

1. Focusing the editable element to be written into (FocusedElementChanged)

https://output.jsbin.com/xofuqop


2. Adding an API similar to focus which would allow InputRouterImpl / the writing service to
later focus the element once writing had been confirmed. This method would also
support hover.

Regardless of which method we use, the browser should be able to determine the bounds of the
element using the WebElement::BoundsInViewport API.

Proximity support
The blink renderer may find nearby input fields so that the user doesn’t have to start directly
over them. This is similar to what is done with touch inputs where we find clickable elements
within the touch size of the center point.

In particular, we would implement this in the PointerEventManager::AdjustTouchPointerEvent
method (after renaming it to be Touch agnostic) by finding nearby nodes which may support
input. We will have to be careful that this does not move the point away from a node which
intended to handle it, e.g. a drawing application with a text field above should still be drawable
to the top of the canvas next to the text field.

Continued writing

Once we begin writing, blink no longer needs to see the events. We can either:

● stop sending any events to blink and send all events directly to the writing service
● allow the writing service to receive events using a more direct path

Committing updates to blink

Regular text insertion at cursor

Once the writing service has recognized some text, it should use existing IME methods to send
this text to blink, e.g.

● SetComposingText to hint at partially recognized text.
● CommitText once recognized text should be finalized.
● ExecuteEditCommands could support various richer text modification cases.

If required we could add new IME methods for as-yet-unsupported editing operations.

Writing gestures
Gestures translate an action over some physical region of the screen to edits on the text at that
location. For example, the following would erase the word “so” from the sentence:

https://source.chromium.org/chromium/chromium/src/+/main:third_party/blink/renderer/core/input/pointer_event_manager.cc?q=PointerEventManager::AdjustTouchPointerEvent%20file:%5C.cc


As such, they require knowledge of the text layout in order to determine the text affected by the
gesture. There are three ways this could be implemented in chromium, of which I think the best
choice is option 3, sending the positional gesture to blink:

NOTE: Option 3 is implemented in blink

Option 1: Synchronous handling in browser
In order to synchronously determine the text modification this would require that the browser
know the specific location of the text. This would require blink sending all of the text locations for
at least the actively edited element as a message through RenderFrameImpl (similar to
SetSelectedText).

Advantages:
● Simple IME messages can be sent to the renderer
● Matches native input interfaces
● IME can differentiate between locations with text and no text

Disadvantages:
● Passing all of this extra layout information from blink to the browser will be expensive,
● The information necessary to represent the text accurately can include arbitrary

transforms and clips and
● writing can begin on a field that is not yet focused. It is not possible to ensure we

have the information in time to handle the gesture as the renderer main thread can
be arbitrarily delayed (see timing section).

Due to the race to get the information from blink at the start of a gesture, we should not pursue
this approach.

Option 2: Asynchronous handling in browser
Once a stylus gesture has begun, the browser could request information from blink about the
text location of the gesture position, e.g.



There is an existing mechanism in the code when the IME calls requestCursorUpdates
(codesearch) where blink will send the character bounds for the current composition (produced
by the GetCompositionCharacterBounds method). We could augment this to also include
character bounds for all on screen characters. This experimental patch tests sending all
character bounds for the current input, e.g.

Advantages:

https://developer.android.com/reference/android/view/inputmethod/InputConnection#requestCursorUpdates(int)
https://source.chromium.org/chromium/chromium/src/+/main:content/public/android/java/src/org/chromium/content/browser/input/ImeAdapterImpl.java;l=1012;drc=b772e1991d8d03a455905b6ec524981ce5c7ac66
https://chromium-review.googlesource.com/c/chromium/src/+/3640520


● Simple IME messages can be sent to the renderer
● IME can differentiate between locations with text and no text
● Supporting additional gestures doesn’t require new gesture messages

Disadvantages:
● Extra round trip required (though could be triggered as soon as the pen goes down)
● Extra APIs required for finding text at location, negates the advantage of keeping the

IME commands simple.

Given the disadvantages, we should not pursue this approach either.

Option 3: Sending gestures with coordinates to renderer
Sending IME messages with location based gestures means that blink can synchronously
determine the affected text and perform the committed edits. We can create a ScreenGesture
messages and send this to blink over the IME interface, each containing the minimal information
required to execute the gesture. E.g. ScreenGesture could be a union of possible gestures such
as:

● Strike out text { Point start, Point end }
● Remove space { Point point, direction? }
● Insert text { Point point, text, direction? }

A success / failure callback could be triggered from blink to inform the browser whether there
was text at the target location such that something that could be interpreted as either a gesture
or text could be reinterpreted as text if there was no text to be affected by the gesture, e.g.

Input Handling

Browser sends Strike out { (30, 15), (45, 15) }
Blink removes “so”, responds with success.

Browser sends Strike out { (80, 15), (95, 15) }
Blink responds with failure
Browser recognizes it as text and inserts “-”

Browser sends Insert text { (40, 5), “ “, BELOW }
Blink inserts a space between “s” and “o”, responds
with success.

Browser sends Insert text { (100, 10), “ “, BELOW }
Blink responds with failure
Browser recognizes it as text and inserts “v”.

Or, an alternate action could be passed along to take if a gesture was not recognized. E.g.
insert “v” if the insert space action fails because there was no text at the drawn location.

Advantages:
● Keeps layout information in blink.

https://chromium.googlesource.com/chromium/src.git/+/HEAD/mojo/public/tools/bindings/README.md#unions


● Easily extensible to future gestures.

Disadvantages:
● Complicates IME interface, though this seems unavoidable.

Summary of options
The above options would result in the following API to be called by the Stylus writing framework
(this is a rough example for illustration only):

The deleteText and insertText methods already exist.

Option API shape

1 TextInfo getTextAt(Rect area)

// deleteText or insertText is called.

2 void getTextAt(Rect area, Callback<TextInfo> onGotText)

// deleteText or insertText is called after onGotText is run.

3 void strikeOut(int x1, int y1, int x2, int y2,
Callback<Void> onNoTextToStrikeOut)

// insertText is called if onNoTextToStrikeOut is run.

4 boolean strikeOut(int x1, int y1, int x2, int y2)

// insertText is called if false is returned.

Finishing writing

The writing service is responsible for recognizing when writing should finish and sending a
message to chrome. This may be:

● A timeout
● Tapping without dragging (used for entering full stop / period, i.e. “.”)
● Some other onscreen UI

This should update the state in InputRouterImpl so that we can again scroll content / deliver
events to blink.

Interfacing with the Stylus framework
There are two different APIs that we need to work with - the Android handwriting API Android
introduced in Android T (13), and the DirectWrite API used on some Samsung devices.



The differences between these APIs should be abstracted behind a common interface and only
the high level Chromium Java code should need to know which is being used.

Android’s API
The Android API consists primarily of the startStylusHandwriting method, which should be called
once we’ve determined writing has begun. Once that method has been called, we receive an
android.view.MotionEvent#FLAG_CANCELED event and further user input is sent directly to
the IME.

Other methods of note are View#setAutoHandwritingEnabled which can be used to disable the
default handwriting triggering, and CursorAnchorInfo.Builder#setEditorBoundsInfo which informs
the IME where the text editing area is.

TODO: Find and document the default triggering behaviour.

Android’s API does not support gestures at the moment.

DirectWrite API
The DirectWrite API (demonstrated here) uses a Service connection. When the user starts
writing, the browser would connect to the DirectWriting Service and forward input events to it.

TODO: Who is responsible for ending the writing session?

The DirectWriting Service sends gestures through a callback, supporting:
● GESTURE_TYPE_BACKSPACE
● GESTURE_TYPE_V_SPACE
● GESTURE_TYPE_WEDGE_SPACE
● GESTURE_TYPE_U_TYPE_REMOVE_SPACE
● GESTURE_TYPE_ARCH_TYPE_REMOVE_SPACE

Combined API

Event Android API action DirectWrite API action

App launch
setAutoHandwritingEnabled(fals
e)

Check if DW is enabled.
Fetch the DW parameters (the
touch thresholds).

User hovers with the
stylus

Eagerly connect to DW Service.

https://developer.android.com/reference/android/view/inputmethod/InputMethodManager#startStylusHandwriting(android.view.View)
https://developer.android.com/reference/android/view/View#setAutoHandwritingEnabled(boolean)
https://developer.android.com/reference/android/view/inputmethod/CursorAnchorInfo.Builder
https://chromium-review.googlesource.com/c/chromium/src/+/3513294


ACTION_HOVER_ENTER

User begins writing startStylusHandwriting
setEditorBoundsInfo

Ensure connected to DW
Service.
Save input events until
connection is established.
Forward touch events to Service.

User stops writing

Window receives
onStop

Disconnect from the Service?

Considerations

Privacy
There are three types of data that Chromium may be sending to the handwriting recognition
service:

● The input events of the user’s handwriting.
● The editable text near where the user is handwriting.
● The bounds of the editable text area on the screen.

In the middle case, the information about the editable text near the user’s cursor is already sent
to the IME through calls such as InputConnection#getSurroundingText. This is used for IME
features such as autocomplete. For handwriting, this is used to support gestures - for example,
recognising the ‘v’ user gesture and determining where in the text a space needs to be inserted.

Android’s API
With the design of Android’s API, Chrome calls startStylusHandwriting and Android forwards the
input events to the IME.

Samsung’s API
Samsung’s API is available only on Samsung devices, so Samsung would be able to intercept
and record/log the user input information before Chrome received it, if it wanted to. In addition,
the DirectWrite service will only be used if Samsung’s keyboard is enabled.

In addition, Samsung says that their DirectWriting service does not collect user information.

https://developer.android.com/reference/android/view/inputmethod/InputConnection#getSurroundingText(int,%20int,%20int)


Security

Android’s API
Once startStylusHandwriting has been called, the Android framework forwards motion events
directly to the IME, effectively taking Chrome out of the process. Once the IME has recognised
the text, it sends the results through standard InputConnection calls.

Samsung’s API
We will check the signature of the DirectWriting service once connected to ensure that it is the
genuine app, published by Samsung.


