
Async Compute Support (2017.3)

Async compute is a feature allowing for more efficient use of GPU resources when performing
compute shader tasks. It is aimed at expert users who are issuing custom compute shader
dispatches and is supported on PS4 only.

Update: As of Unity 2018.3, async compute is also supported on Xbox One.

Getting the most out of the GPU
Typically during a modern rendering pipeline there will be times where the full capacity of the
GPU is not utilised. Getting the highest utilization possible from the available compute units can
be a challenge but can also be a key factor in obtaining acceptable GPU performance from
complex scenes. A typical lull in the utilisation of the compute units occurs during depth only
rendering, such as shadow map creation or depth prepasses. During these stages of the
rendering pipeline there is often no pixel shader bound, vertex shader shader wavefronts cannot
be created fast enough to fully make use of all those available, and consequently the
computational power of the GPU is under used. If we imagine a GPU where we have ten
wavefronts available per SIMD, then the wavefront distribution on a single SIMD unit in this
scenario could be loosely represented by the diagram below. Here we see the GPU performing
some vertex and pixel shader rendering, then switching to perform depth only work, then
performing some compute work, and finally switching back to vertex and pixel shader draws.



Async compute allows us to schedule compute shader work on compute queues to run
simultaneously with tasks being scheduled from the graphics queue to utilise GPU resources
being under used by the rendering process. In the case described above custom compute
shader dispatches could be specifically scheduled on one or more compute queues to coincide
with the depth only rendering on the graphics queue. These compute shader dispatches would
make good use of the computational resources of the GPU which are being neglected during
the depth only pass. The diagram below shows the scenario this time with async compute
applied:

Comparing the two diagrams there are a few key points to observe:

● With async compute in use the overall time to complete all of the work is reduced
constituting a performance gain.

● With async compute in use the time taken to complete only the compute processing is
actually longer than if it was dispatched on the graphics queue.

● Moving the compute work to coincide with either of the two vertex and pixel shader
enabled draw operations may not have been an optimisation as all wave fronts were in
use during these items. However pairing async compute operations that have different
bottlenecks to the tasks running on the graphics queue (e.g. ALU vs bandwidth) can still
result in performance wins in these circumstances. A degree of trial and error may be
needed when trying to determine where async compute operations can overlap with
graphics queue tasks and still yield performance gains.



Using Async Compute

Unity’s async compute scripting interface is best utilised as part of a Scriptable Render Pipeline
as this provides the most flexibility for scheduling when async compute work will occur relative
to the graphics queue. However, async compute can still be used in projects that are not using
Scriptable Render Pipelines.

Work is issued to the async compute queues using the Rendering Command Buffer interface.
Construct a command buffer containing only compute queue compatible work, then submit it
using Graphics.ExecuteCommandBufferAsync or
ScriptableRenderContext.ExecuteCommandBufferAsync, all of the commands within the
submitted buffer will be executed on the same compute queue.

The following commands are valid within command buffers for async compute execution.
Attempting to execute command buffers asynchronously that contain any command not included
below will generate errors visible in the editor console and in the log at runtime.

● CopyCounterValue
● CopyTexture
● CreateGPUFence
● DispatchCompute
● Any of the SetCompute...Param commands
● WaitOnGPUFence

Async execution of command buffers on platforms that do not support async compute will result
in the work being submitted to the graphics queue. Support for async compute on a given
platform can be checked using SystemInfo.supportsAsyncCompute.

Scheduling relative to graphics tasks is accomplished using GPUFences. GPU Fences can be
created using Graphics.CreateGPUFence or CommandBuffer.CreateGPUFence. Fences
created in this fashion will be passed when the last clear, draw, dispatch or copy operation
issued by unity’s graphics processing prior to the processing of the creation of the fence has
completed on the GPU. This may have been as a result of graphics related command issued
from user script or from unity’s own internal processing of rendering the scene.

Graphics.WaitOnGPUFence or CommandBuffer.WaitOnGPUFence can be used to have either
the GPU’s graphics queue or an async compute queue wait for a given fence to have passed
before proceeding. Note neither of these functions will stall the CPU. As described in the above
example, considering when async compute work should start relative to the work being done on
the graphics queue is important for ensuring optimal use of GPU resources. Consequently, most
command buffers designed for async compute use will haveWaitOnGPUFence as their first



entry. Executing command buffers asynchronously that do not wait on a fence created from the
graphics queue will be executed on the GPU at an indeterminate point during that frames GPU
processing possibly occurring before any graphics queue work has commenced.


