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DESIGN AND ANALYSIS OF ALGORITHM 

DYNAMIC PROGRAMMING 

THE GENERAL METHOD 

Dynamic programming is an algorithm design method that can be used when the solution to a 
problem can be viewed as the result of sequence of decisions. 
 
Principle of optimality: 
The principle of optimality states that an optimal sequence of decisions has the property that 
whatever the initial state and decision are, the remaining decisions must constitute an optimal 
decision sequence with regard to the state resulting from the first decision. 
 

1.​  Dynamic Programming is technique for solving problems with overlapping subproblems. 
▪ In this method each sub problem is solved only once. The result of each subproblem is 
recorded in a table from which we can obtain a solution to the original problem. ▪ In 
Dynamic computing duplications in solution is avoided totally. ▪ Efficient then Divide 
and conquer strategy. ▪ Uses bottom up approach of problem solving. 
 

2.​ Dynamic Programming ▪  
Dynamic Programming is an algorithm design technique for optimization problems: often 
minimizing or maximizing. ▪ Like divide and conquer, DP solves problems by combining 
solutions to subproblems. ▪ Unlike divide and conquer, subproblems are not independent. 
▪ Subproblems may share other subproblems ▪ However, solution to one subproblem may 
not affect the solutions to other subproblems of the same problem. 
 

3.​ Principle of Optimality ▪ Obtains the solution using principle of optimality. ▪ In an 
optimal sequence of decisions or choices, each subsequence must also be optimal. When 
it is not possible to apply the principle of optimality it is almost impossible to obtain the 
solution using the dynamic programming approach.  
▪ Example: Finding of shortest path in a given graph uses the principle of optimality. 

 
●​ Dynamic programming is applicable when the sub-problems are dependent. 
●​ For generating decision sequence we use the principle of optimality i.e., output of stage-1 

will be given as input stage-2, output of stage-2 will be given as input for stage-3 and so 
on. 

●​ Initial conditions are given as input for stage-1. 
●​ In greedy method only one decision sequence is generated but in dynamic programming 

many decision sequences may be generated. 
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MULTI STAGE GRAPHS 

 
●​ A multi stage graph G = (V, E) is a directed graph in which the vertices are 

partitioned into k ≥ 2 disjoint sets Vi 1 ≤ i ≤ k.  
●​ In addition, if (u, v) is an edge in E, then u ∈ Vi and v ∈ Vi+1 for some 1≤ i<k. 

The sets V1 and Vk are such that ⎪V1⎪=1 and ⎪Vk⎪=1.  
●​ Let s and t be the vertices in V1 and Vk respectively. The vertex ‘s’ is the source 

vertex and ‘t’ is the sink vertex. 
●​ Let C(i, j) be the cost of edge (i, j). The cost of the path from s to t is the sum of 

the costs of the edges on the path. The multi stage graph problem is to find the 
minimum cost path from s to t. 

​ ​  
A dynamic programming formulation for a k-stage graph problem is obtained by first 
noticing that every s to t path is the result of a sequence of k-2 decisions. It is easy to see 
that principle of optimality holds. 

 
Example: 
 

Find a minimum cost path from s to t in the given multi stage graph. 
 

 
​ ​  
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we solve the problem using two approaches 
i.​ Forward approach 

ii.​ Backward approach 
 
Forward approach: 
 
​ cost(i, j) ​ = min { c(j, l) + cost(i+1, l) } 
​ ​ ​    l∈Vi+1,(j, l)∈E​  
 

cost(1, 1)​ = min { 9+cost(2, 2), 7+cost(2, 3), 3+cost(2, 4), 2+cost(2, 5)} 
= min { 9+7, 7+9, 3+18, 2+15 } = 16 

 
cost(2, 2)​ = min { 4+cost(3, 6), 2+cost(3, 7), 1+cost(3, 8) } 

= min { 4+7, 2+5, 1+7} = min {11, 7, 8} = 7 
 
cost(2, 3)​ = min { 2+cost(3, 6), 7+cost(3, 7)} = min {2+7, 7+5}  

= min { 9, 12} = 9 
 
cost(2, 4)​ = min { 11+cost(3, 8)} = min { 11+7} = 18 
 
cost(2, 5)​ = min { 11+cost(3, 7), 8+cost(3, 8)} 

= min { 11+5, 8+7 } = min { 16, 15} = 15 
 
cost(3, 6)​ = min { 6+cost(4, 9), 5+cost(4, 10)} 

= min { 6+4, 5+2 } = min {10, 7 } = 7 
 
cost(3, 7)​ = min { 4+cost(4, 9), 3+cost(4, 10)} 

= min { 4+4, 3+2 } = min {8, 5} = 5 
 
cost(3, 8)​ = min { 5+cost(4, 10), 6+cost(4, 11)} 

= min { 5+2, 6+5 } = min {7, 11} = 7 
 
cost(4, 9) = 4​ ​ cost(4, 10) = 2​​ cost(4, 11) = 5 
 
For finding path, we obtain 

d(i, j)​ = the value of l(l is a node) that min { c(j, l)+cost(i+1, l)}   
d(1, 1) = 2 
d(2, 2) = 7​ d(2, 3) = 6​ d(2, 4) = 8​ d(2, 5) = 8 
d(3, 6) = 10​ d(3, 7) = 10​ d(3, 8) = 10 

 
The minimum cost path is s=v1=1, v2, v3, v4,12=v5=t  where vi+1 = d(i, vi) 
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v2 = d(1, v1)=d(1, 1) = 2​ v3 = d(2, v2) = d(2,2) = 7​ v4 = d(3, v3)  = d(3, 7) = 10 
 
Therefore, the minimum cost path is 1— 2 --- 7 ----10 ---- 12   and  cost = 16. 
 
Algorithm: 
 
Algorithm FGraph ( G, k, n, p) 
{ 
​ cost [n] = 0; 
​ for j = n-1 to 1 step -1 do 
​ { 

Let r be the vertex such that (j, r) is an edge of G and c[ j, r]+cost[r] is 
minimum; 
cost[j] = c[j, r] + cost[r]; 
d[j] = r; 

​ } 
​ P[1] = 1; 
​ P[k] = n; 
​ for j = 2 to k-1 do 
​ ​ p[j] = d[ p[j-1]]; 
} 
 

Backward  approach: 
 
​ bcost(i, j) ​ = min { c(l, j) + bcost(i-1, l) } 
​ ​ ​    l∈Vi-1,(l, j)∈E​  
 

bcost(5, 12)​ = min { 4+bcost(4, 9), 2+bcost(4, 10), 5+bcost(4, 11)} 
= min { 4+15, 2+14, 5+16} = 16 

 
bcost(4, 9)​ = min { 6+bcost(3, 6), 4+bcost(3, 7) } 

= min { 6+9, 4+11, } = min {15, 15 } = 15 
 
bcost(4, 10)​ = min { 5+bcost(3, 6), 3+bcost(3, 7), 5+bcost(3, 8)}  

= min {5+9, 3+11, 5+10}= min { 14, 14, 15} = 14 
 
bcost(4, 11)​ = min { 6+bcost(3, 8)} = min { 6+10} = 16 
 
bcost(3, 6)​ = min { 4+bcost(2, 2), 2+bcost(2, 3)}  
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= min { 4+9, 2+7 } = min { 13, 9} = 9 
 
bcost(3, 7)​ = min { 2+bcost(2, 2), 7+bcost(2,3), 11+bcost(2, 5)} 

= min { 2+9, 7+7, 11+2 } = min {11, 14, 13 } = 11 
 
bcost(3, 8)​ = min { 1+bcost(2, 2), 11+bcost(2, 4), 8+bcost(2, 5)} 

= min { 1+9, 11+3, 8+2 } = min {10, 14, 10 } = 10 
 
bcost(2, 2) = 9​​ bcost(2, 3) = 7​​ bcost(2, 4) = 3​​ bcost(2, 5) = 2 
 
For finding path, we obtain 

d(i, j)​ = the value of l(l is a node) that min { c(l, j)+cost(i-1, l)}     
d(5, 12) = 10 
d(4, 9) = 6 or 7​ d(4, 10) = 7​ d(4, 11) = 8​  
d(3, 6) = 3​ d(3, 7) = 2​ d(3, 8) = 2 

 
The minimum cost path is s=v1=1, v2, v3, v4, 12==v5=t  where vi = d(i+1, vi+1) 
v4 = d(5, v5) =d(5, 12)= 10​ v3 = d(4, v4) = d(4, 10) = 7​ v2 = d(3, v3)  = d(3, 7) = 2 
 
Therefore, the minimum cost path is 1— 2 --- 7 ----10 ---- 12   and  cost = 16. 
 
Algorithm: 
 
Algorithm Bgraph ( G, k, n, p ) 
{ 
​ bcost[1] = 0; 
​ for j = 2 to n do  
​ { 
​ ​ Let r be such that (r, j) is an edge of G and bcost[j] + c[r, j] is minimum; 
​ ​ bcost[j] = bcost[r]+c[r, j]; 
​ ​ d[j] = r; 
​ } 
​ P[1] = 1; 
​ P[k] = n; 
​ for j = k-1 to 2 step -1 do 
​ ​ p[j] = d[ p[j+1]]; 
} 
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ALL PAIRS SHORTEST PATHS 
 

●​ All pairs shortest paths problem is to find the length of the shortest paths from 
each vertex to all other vertices.  

●​ We record the length of shortest paths in an nXn matrix ‘D’ is called the distance 
matrix.  

●​ We computes the distance matrix of a weighted graph with n vertices through a 
series of nXn matrices D0,  D1,  D2, ……, Dn 

 
The elements ​  

dij
k in the matrix Dk​ = the length of the shortest path among all paths from the  

i th vertex to the j th vertex with each intermediate vertex,     
if any, numbered not higher than k. 

therefore, ​ dij
k​ = min { dij

k-1 , dik
k-1 + dkj

k-1 }   for k ≥ 1 and dij
0 = wij 

 
Example: 
 

 
 
​ ​ 0​ 4​ 11​ ​ ​ ​ 0​ 4​ 11 

D0 = ​ 6​ 0​ 2​ ​ ​ D1= ​ 6​ 0​ 2 
​ 3​ ∞​ 0​ ​ ​ ​ 3​ 7​ 0 
 
 
​ 0​ 4​ 6​ ​ ​ ​ 0​ 4​ 6 
D2 =  ​ 6​ 0​ 2​ ​ ​ D3 = ​ 5​ 0​ 2 
​ 3​ 7​ 0​ ​ ​ ​ 3​ 7​ 0 
Algorithm Allpaths ( cost, D, n) 
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{ 
​ for i = 1 to n do 
​ ​ for j = 1 to n do  
​ ​ ​ D [i , j] = cost [i , j]; 
​ for k = 1 to n do 
​ ​ for i = 1 to n do 
​ ​ ​ for j = 1 to n do  
​ ​ ​ ​ D [i, j] = min { D[i, j], D[i, k] + D[k, j]}; 
}  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

OPTIMAL BINARY SEARCH TREE(OBST) 
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Given a fixed set of identifiers, we wish to create a binary search tree organization. We construct 
different binary search trees for the same identifier set. If n identifiers in the set then we 
construct binary search trees are  
​ ​ ​ ​ C(n) = 2nCn 1/(n+1) called Catalan number. 
 

In general, we can expect different identifiers to be searched for with different 
frequencies (probabilities). In addition, we can expect unsuccessful searches are also to be made. 

 
Let us assume that the given set of identifiers is { a1, a2, ….., an } with a1 < a2 < …..< 

an. Let P(i) be the probability with which we search for ai. Let q(i) be the probability that the 
identifier ‘x’ being searched for is such that ai < x <ai+1. 
 

We add fictitious node in place of every empty sub tree in the binary search tree, such 
nodes are called external nodes. If a binary search tree represents n identifiers then there will be 
exactly n internal nodes and n+1 external nodes. Every internal node represents a point where a 
successful search may terminate. Every external node represents a point where an unsuccessful 
search may terminate.  
 
The identifiers not in the binary search tree can be partitioned into n+1 equivalence classes Ei, 0 
≤ i ≤ n.  

The class E0 contains the identifiers x, x<a1. 
The class Ei contains the identifiers x, ai < x < ai+1, 1≤i<n 
The class En contains the identifiers x, x>an. 

 
The cost of an internal node ai is p(i) * level(ai)  
If  the failure for Ei is at level l, then only l-1 iterations required. So the cost of an external node 
is q(i) * level(Ei-1). 
Therefore, the cost of the binary search tree is   

 +   
1≤𝑖≤𝑛
∑ 𝑝 𝑖( ) * 𝑙𝑒𝑣𝑒𝑙(𝑎𝑖)

0≤𝑖≤𝑛
∑ 𝑞 𝑖( ) * 𝑙𝑒𝑣𝑒𝑙(𝐸𝑖 − 1)

 
 
 
 
Example:  
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find the cost given binary search tree, {do, for, if, int, while} (p1,p2,p3,p4,p5) = 
(2/20,1/20,1/20,3/20,1/20) and (q0,q1,q2,q3,q4,q5) = (1/20,2/20,3/20,2/20,3/20,1/20). 
 

 
​ ​ ​ ​ ​ ​ ------- level 1 
 
 
​ ​ ​ ​ ​ ​ ​ ​ ------ level 2 

 
 
 
​ ​ ​ ​ ​ ​ ​ ​ ​ ----level 3 
 
 
​ ​ ​ ​ ​ ​ ​ ----- level 4 
 
 
​ ​ ​ ​ ​ ​ ----- level 5 
 
 
 

cost =   +   
1≤𝑖≤5
∑ 𝑝 𝑖( ) * 𝑙𝑒𝑣𝑒𝑙(𝑎𝑖)

0≤𝑖≤5
∑ 𝑞 𝑖( ) * 𝑙𝑒𝑣𝑒𝑙(𝐸𝑖 − 1)

​  
= (2*2/20 + 1*1/20 + 4*1/20 + 3*3/20 + 2*1/20) + (2*1/20 + 2*2/20 + 4*3/20 + 
4*2/20 + 3*3/20 + 2*1/20) 

​ = ((4+1+4+9+2)/20) + ((2+4+12+8+9+2)/20) = (20/20) +(37/20) = 57/20 = 2. 85 
 
To apply dynamic programming to the problem of obtaining an optimal binary search tree, we 
need to view construction of such a tree as the result of a sequence of decisions and then observe 
that the principle of optimality holds.  
 
​ A possible approach to this would be to make a decision as to which of the ai’s should be 
assigned to the root node of the tree. if we choose ak, then the internal nodes a1, a2, …, ak-1 and 
the external nodes for the classes E0, E1, …., Ek-1 will lie on the left sub tree(l), the internal 
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nodes ak+1, ak+2, …, an and the external nodes for the classes Ek, Ek+1, …., En will lie on the 
right sub tree(r) and the root of the tree is ak. 
Therefore the tree is  
 

 
 
We obtain, cost of the tree is 

= pk +  +  + ​
1≤𝑖≤𝑘−1
∑ 𝑝 𝑖( ) * (𝑙𝑒𝑣𝑒𝑙 𝑎𝑖( ) + 1))

0≤𝑖≤𝑘−1
∑ 𝑞 𝑖( ) * (𝑙𝑒𝑣𝑒𝑙 𝐸𝑖( ) − 1 + 1))

 +  
𝑘+1≤𝑖≤𝑛
∑ 𝑝 𝑖( ) * (𝑙𝑒𝑣𝑒𝑙 𝑎𝑖( ) + 1))

𝑘≤𝑖≤𝑛
∑ 𝑞 𝑖( ) * (𝑙𝑒𝑣𝑒𝑙 𝐸𝑖( ) − 1 + 1))

 

= pk +  +  +  + 
1≤𝑖≤𝑘−1
∑ 𝑝 𝑖( ) * 𝑙𝑒𝑣𝑒𝑙 𝑎𝑖( )

0≤𝑖≤𝑘−1
∑ 𝑞 𝑖( ) * (𝑙𝑒𝑣𝑒𝑙 𝐸𝑖( ) − 1)

𝑘+1≤𝑖≤𝑛
∑ 𝑝 𝑖( ) * 𝑙𝑒𝑣𝑒𝑙 𝑎𝑖( ))

 +  +  +  +  
𝑘≤𝑖≤𝑛
∑ 𝑞 𝑖( ) * (𝑙𝑒𝑣𝑒𝑙 𝐸𝑖( ) − 1)

1≤𝑖≤𝑘−1
∑ 𝑝 𝑖( )

0≤𝑖≤𝑘−1
∑ 𝑞 𝑖( )

𝑘+1≤𝑖≤𝑛
∑ 𝑝 𝑖( )

𝑘≤𝑖≤𝑛
∑ 𝑞 𝑖( )

 

But,​ cost(l) =  +  
1≤𝑖≤𝑘−1
∑ 𝑝 𝑖( ) * (𝑙𝑒𝑣𝑒𝑙 𝑎𝑖( ))

0≤𝑖≤𝑘−1
∑ 𝑞 𝑖( ) * (𝑙𝑒𝑣𝑒𝑙 𝐸𝑖( ) − 1)

 

cost(r) =  +  
𝑘+1≤𝑖≤𝑛
∑ 𝑝 𝑖( ) * (𝑙𝑒𝑣𝑒𝑙 𝑎𝑖( ))

𝑘≤𝑖≤𝑛
∑ 𝑞 𝑖( ) * (𝑙𝑒𝑣𝑒𝑙 𝐸𝑖( ) − 1)
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Let ​ W[i, j] =    +  
𝑖+1≤𝑘≤𝑗
∑ 𝑝(𝑘)

𝑖≤𝑘≤𝑗
∑ 𝑞(𝑘)

 
Therefore, the cost of (1) = pk + cost(l) + cost(r) + W[0, k-1] + W[k, n]. 
 
Let C[i, j] = the cost of an optimal binary search tree containing the internal nodes ai+1, ai+2, 
…., aj and the external nodes Ei, Ei+1, …., Ej . 
 

If  the binary search tree (1) is an optimal, then by using principle of optimality the left 
sub tree(l) and the right sub tree(r) are also an optimal binary search trees.  
So, cost(l) = C[0, k-1] ​ ​ and ​ cost(r) = C[k, n] 
Therefore, cost of (1) = pk + C[0, k-1] + C[k, n] + W[0, k-1] + W[k, n] 

 
Take every node in a1, a2, …., an as a root and find the cost of optimal binary search tree, 
which tree gives the minimum value that binary search tree is the optimal binary search 
tree for the identifiers a1, a2, …., an. 

 

​ So, ​ C[0, n] = { C[0, k-1] + C[k, n] } + pk + W[0, k-1] + W[k, n] 𝑚𝑖𝑛
𝑘=0
𝑛

​ ​ ​  

​ ​ ​  = { C[0, k-1] + C[k, n] } + W[0, n]  𝑚𝑖𝑛
𝑘=0
𝑛

​ ​  
We can generalized, we obtain, 

​ ​ ​ ​ C[i, j] = { C[i, k-1] + C[k, j] } + W[i, j]  𝑚𝑖𝑛
𝑘=𝑖+1
𝑗

​ ​ ​ ​  
Initially,​  C[i, i] = 0 ​ and ​ W[i, i] = q(i). 

 
For solving C[0, n] first compute C[i, j] such that j-i = 1, j-i = 2 and so on. 

 
Example: 

Find the optimal binary search tree for the given instances n = 4 (a1, a2, a3, a4) = (count, 
float, if, while) , p(1, 2, 3, 4) = (2/20, 1/20, 3/20, 3/20) and (q0, q1, q2, q3, q4) = (2/20, 
3/20, 2/20, 3/20, 1/20) 

Solution: 
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C[i, j] = { C[i, k-1] + C[k, j] } + W[i, j]  𝑚𝑖𝑛
𝑘=𝑖+1
𝑗

​ ​  

W[i, j] =   +   
𝑘=𝑖+1

𝑗

∑ 𝑝(𝑘)
𝑘=𝑖

𝑗

∑ 𝑞(𝑘)

 
C[i, i] = 0 ​ and ​ W[i, i] = q(i) 

 
 
 
 
 
 
 
 
​ ​ `0​ ​ ​ 1​ ​ 2​ ​ ​ 3​          4​​  

 
0 

W[0, 0]=2/20 
C[0, 0]=0 
r[0, 0]=0 

W[1, 1]=3/20 
C[1, 1]=0 
r[1, 1]=0 

W[2, 2]=2/20 
C[2, 2]=0 
r[2, 2]=0 

W[3, 3]=3/20 
C[3, 3]=0 
r[3, 3]=0 

W[4, 4]=1/20 
C[4, 4]=0 
r[4, 4]=0 

 
1 

W[0, 1]=7/20 
C[0, 1]=7/20 
r[0, 1]=1 

W[1, 2]=6/20 
C[1, 2]=6/20 
r[1, 2]=2 

W[2, 3]=8/20 
C[2, 3]=8/20 
r[2, 3]=3 

W[3, 4]=7/20 
C[3, 4]=7/20 
r[3, 4]=4 

 
2 

W[0, 2]=10/20 
C[0, 2]=16/20 
r[0, 2]=1 

W[1, 3]=12/20 
C[1, 3]=18/20 
r[1, 3]=3 

W[2, 4]=12/20 
C[2, 4]=19/20 
r[2, 4]=3 

 
3 

W[0, 3]=16/20 
C[0, 3]=31/20 
r[0, 3]=2 

W[1, 4]=16/20 
C[1, 4]=29/20 
r[1, 4]=3 

 
4 

W[0, 4]=20/20 
C[0, 4]=43/20 
r[0, 4]=3 

 
W[0, 4] = (p(1)+p(2)+p(3)+p(4)) + (q(0)+q(1)+q(2)+q(3)+q(4)) 
​  = (2/20 + 1/20 + 3/20 + 3/20) + (2/20 + 3/20 + 2/20 + 3/20 + 1/20) 
​ = (9/20) + (11/20) = 20/20 
C[0, 4] = k = 1 ​ C[0, 0] + C[1, 4] = 0 + 29/20 = 29/20 
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​    k = 2 ​ C[0, 1] + C[2, 4] = 7/20 +19/20 = 26/20 
​    k = 3 ​ C[0, 2] + C[3, 4] = 16/20 + 7/20 = 23/20 
​    k = 4 ​ C[0, 3] + C[4, 4] = 31/20 + 0 = 31/20    
The optimal binary search tree is 

 
Cost = 43/20 = 2.15 

 
Algorithm: 
Algorithm OBST (p, q, n) 
{ 
​ for i = 0 to n-1 do //Initialize 
​ { 
​ ​  W[i, i] = q(i); r[i, i] = 0; c[i, i] = 0; 
​ ​ W[i, i+1] = q(i) + q(i+1) + p(i+1); 
​ ​ r[i, i+1] = i+1; 
​ ​ c[i, i+1] = q(i) + q(i+1) + p(i+1); 
​ } 
​ W[n, n] = q(n); r[n, n] = 0; c[n, n] = 0; 

for m = 2 to n do  
​ ​ for i = 0 to n-m do 
​ ​ { 
​ ​ ​ j = i+m; 
​ ​ ​ W[i, j] = W[i, j-1] +p(j) +q(j); 
​ ​ ​ k = find (c, r, i, j); 
​ ​ ​ c[i, j] = W[i, j] + c[i, k-1] + c[k, j]; 
​ ​ ​ r[i, j] = k; 
​ ​ } 
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​ write ( c[0, n], W[0, n], r[0, n]); 
} 
 
Algorithm find (c, r, i, j) 
{ 
​ min = ∞;  
​ for m = r[i, j-1] to r[i+1, j] do 
​ { 
​ ​ if ( c[i, m-1] + c[m, j] < min) then 
​ ​ { 
​ ​ ​ min = c[i, m-1] + c[m, j]; 
​ ​ ​ l = m; 
​ ​ } 
​ } 
​ return l; 
} 

 
RELIABILITY DESIGN 

 
The problem is to design a system that composed of several devices. 
 
Devices​ D1​ D2​ D3​ D4 
Cost​ ​ C1​ C2​ C3​ C4 
Reliability​ r1​ r2​ r3​ r4 
Reliability​ 0.9​ 0.9​ 0.9​ 0.9 ​ (example) 
 

So, the reliability of  the entire system =  = (0.9)4 = 0.6561 
𝑖=1

4

∏ 𝑟𝑖

 
​ The problem is design a system such that the reliability is maximum, so we 
should have more than one copy of devices. 
The devices are connected serial 
 
​ ​ ​ ​ ​ ​ ​ ….. 
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Suppose we have more than one device, the devices are connected as 
 
 
 
 
 
 
 
 
One device is working and the remaining are back up. 
The reliability of D1 have 3 copies is ( r1 = 0.9) 
​ r1 = 0.9​ 1-r1 = 1-0.9 = 0.1 (reliability for not working) 
​ ​ ​ (1-r1)3 = (0.1)3 = 0.001 (for failed all copies) 
​ ​ ​ 1-(1-r1)3 = 0.999 ( for working all copies) 
 
 
 
 
 
Example: 
Design a three stage system with devices D1, D2, D3 and cost(C) = 105 
 

Di Ci ri 
D1 30 0.9 
D2 15 0.8 
D3 20 0.5 

 
Solution: 
We maintain multiple copies of devices. We maintain at least one copy of each device.  
So, the minimum cost required = Σ Ci = 30+15+20 = 65 
The remaining cost = 105 – 65 = 40   
 

Di Ci ri Ui 
D1 30 0.9 2 
D2 15 0.8 3 
D3 20 0.5 3 
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​ ​ ​  
We solve the problem using set method. We take an order pair (r, C) (reliability, cost) 
 
Initially ​ S0 = { (1, 0)} 
 
Consider D1: 
 
​ ​ S1

1 = { ( 0.9, 30)} 
​ ​ S1

2 = {(0.99, 60)} 
 
So ,​ ​ S1 = {(0.9, 30), (0.99, 60)} 
 
Consider D2: 
 
​ ​ S2

1 = { ( 0.72, 45), (0.792, 75)} 
​ ​ S2

2 = {(0.864, 60), (0.9504, 90)}  
​ We eliminate (0.9504, 90), because not enough money for third device(D3) 
​ ​ S2

3 = { ( 0.8925, 75), (---, 105)} 
 
 
So ,​ ​ S2 = {(0.72, 45), (0.864, 60),(0.792, 75), (0.8925, 75) } 
By using the dominance rule, if reliability increase then cost is also increase. So we eliminate the 
order pair (0.792, 75). 
So, ​ ​ S2 = {(0.72, 45), (0.864, 60),(0.8925, 75) } 
Lo 
Consider D3: 
 
​ ​ S3

1 = { ( 0.36, 65), (0.432, 80), (0.4464, 95)} 
​ ​ S3

2 = {(0.54, 85), (0.648, 100), (---, 115)}  
​ We eliminate (---, 115) 
​ ​ S3

2 = {(0.54, 85), (0.648, 100),} 
​ ​ S3

3 = { ( 0.63, 105), (---, 120), (---, 135)} 
We eliminate (---, 120), (---, 135) 
​ S3

3 = { ( 0.63, 105)} 
 
So ,​ ​ S3 = {(0.36, 65), (0.432, 80),(0.54, 85), (0.4464, 95), (0.648, 100), (0.63, 105) } 
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By using the dominance rule, if reliability increase then cost is also increase. So we eliminate the 
order pair (0.4464, 95) and (0.63, 105). 
So, ​ ​ S3 = {(0.36, 65), (0.432, 80),(0.54, 85), (0.648, 100) } 
 
Therefore the system is 
​ ​ ​ ​ ​ ​  
 
 
 
 
 
 
Reliability = 0.648 ​ cost = 100 
 
 
 
 
 
 
 
 

0/1   KNAPSACK PROBLEM 
 

We are given n objects and a knapsack or bag. Object i has a weight wi and profit pi and 
the knapsack has a capacity m. If a object i is selected, then weight wi is placed into the 
knapsack and profit pi is earned. The object is to obtain a filling the knapsack that 
maximize the total profit earned. 

 
Solution to the knapsack problem can be obtained by making a sequence of decisions on 
variables x1,x2,x3…….xn i.e., the decision determine which of the values 0/1 is assigned 
to the variables. 
It may be in one of the two possible states,if an object is directly placed into a knapsack 
then x=1 otherwise x=0. 

 
PROCEDURE:- 

Step1:- Let fi(m) represents the optimum solution. 
Step2:- S[i] is a pair of (profit,weight) by using Si. We calculate next  values i.e., Si+1 . 
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Step3:- Initially si={0,0}. To obtain the optimal solution we use                                                                   
fn(m)=max{ fn-1(m),fn-1(m-wn)+fn }​     we need to compute the ordered set Si={ 
f((yi),yj) / 1≤j≤k }  to represent fi(y). 

Step4:- Each member of Si is a pair of (p,w) where p=fi(yi) , w=yj. 
Step5:- We can compute Si+1  from Si by first computing si

1 .If contains two pairs (pj ,wj), 
(pk ,wk) with the property pj≤pk , wj≥wk.then  the pair (pj , wj) can be discarded. 

This is known as rule and sometimes it is known as purging rule. 
 
EXAMPLE:- Let us consider a knapsack instance  

        pi        wi 

        1 
        2 
        5 
        6 

       2 
       3 
       4 
       5 

                        Where n=4 and m=8. 
Sol:-   We  have  S0=(0,0)​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ Object 1: 
​ ​ S0

1={ (0,0)}​ ​ ​ (not include object 1)​ ​  
​  S1

1=(0+1,0+2)= { (1,2) }​ (include object 1)​ ​ ​ ​ ​
​ ​ ​ ​  

S1={(0,0)(1,2)}  ​ ​ ​ ​ ​ ​ ​  
Object 2: 
​ S0

2={ (0,0), (1, 2)}​ ​ ​ ​ ​ (not include object 2)​ ​  
S1

2 ={(0+2,0+3), (1+2, 2+3)= { (2,3), (3, 5) }​ (include object 2)​ ​ ​
​ ​ ​ ​ ​ ​  

S2={(0,0), (1,2), (2,3), (3,5)} 
Object 3: 
​ S0

3={(0,0), (1,2), (2,3), (3,5)}​​ ​ (not include object 3)​ ​  
S1

3={(0+5,0+4)(1+5,2+4)(2+5,3+4)(3+5,5+4)}​ (include object 3)​ ​ ​
​       = {(5,4), (6,6), (7,7), (8,9)}​ ​ ​ ​ ​  

S3={(0,0), (1,2), (2,3), (3,5), (5,4), (6,6), (7,7), (8,9)} 
(after applying dominance rule (3,5) will be discarded and (8,9) discard because 
weight exceed the capacity of knapsack )​ ​ ​ ​  

={(0,0), (1,2), (2,3), (5,4), (6,6), (7,7)}​  
Object 4: 
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S0
4={(0,0), (1,2), (2,3), (5,4), (6,6), (7,7)}​ ​ (not include object 4)​ ​  

S1
4={(0+6,0+5)(1+6,2+5)(2+6,3+5)(5+6,4+5)(6+6,6+5),(7+6,7+5)}(include object 4)​  

​ ={(6,5), p (11,9), (12,11), (13,12)}​ ​ ​ ​ ​  
 

S4={(0,0), (1,2), (2,3), (5,4), (6,5),  (6,6), (7,7), (8,8), (11,9), (12,11), (13,12), (14,14)} 
​ (after applying dominance rule (6,6) will be discarded and (11,9), (12, 11), (13, 12),        
              (14, 14) discard because weight exceed the capacity of knapsack )​​ ​ ​  

={(0,0), (1,2), (2,3), (5,4), (6,5), (7,7), (8,8)} 
 
The pair (8, 8) ∈ S4 and (8, 8) ∉ S3 so, the object 4 include the solution and x4 = 1. 
The pair (8, 8) came from the pair (8-p4, 8-w4) = (8-6, 8-5) = (2, 3) 
 
The pair (2,3) ∈S3 and (2, 3) ∈S2 so, the object 3 not include the solution and x3 = 0. 
 
The pair (2,3) ∈S2 and (2, 3) ∉ S1 so, the object 2 include the solution and x2 = 1. 
The pair (2, 3) came from the pair (2-p2, 3-w2) = (2-2, 3-3) = (0, 0) 
 
The pair (0,0) ∈S1 and (0, 0) ∈S0 so, t wehe object 1 not include the solution and x1 = 0. 
 
Therefore the optimal solution is (0, 1, 0, 1) and profit = 8. 
 
 
 
ALGORITHM:- 
​ Algorithm DKP (p,w,n,m) 

{ 
​ ​ S0={(0,0)}; 
​ ​ for i:=1 to n-1 do{ 
​ ​ ​ S1

0 = S1
i-1:={(p,w)/(p-pi , w-wi) ϵ Si-1 and w≤m; 

​ ​ ​ Si:= merge purge(Si-1,Si-1); �(S0+S1
1 = S1) 

​ ​ ​ S1 = (S0,Si) 
​ ​ } 
​ ​ (pX,wX) : = last pair in Sn-1 
​ ​ (pY,wY) := (p1+pn,w1,wn) where w1 is large w pair in Sn-1 such  
​ ​ ​        that w+wn≤m; 
​ ​ //True back for xn,xn-1,…….x1 
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​ ​     If (px>py) then xn=0; 
​ ​     else 
​ ​ ​ xn:=1 
​ ​     True back for(xn-1.......x1); 

} 

Time Complexity is -  O(2n/2) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Travelling Salesman Problem: 
 

●​ Let the ‘G’ be a directed graph with n vertices and edges each edge contains some cost. 
●​ A tour of G is simple cyclic that includes every vertex in ‘G’. 

     The cost of the tour is the sum of the edges on the tour. 
●​ The main objective of travelling salesman problem is to find the tour of the minimum 

cost. 

Example: 

1.​ Suppose we have to route a postal van to pickup mails from boxes located at  n different 
sites. 

2.​ And n+1 vertex graph may be used to represents the situation. 
3.​ One vertex represents the post office from which postal van starts and to which it return. 
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4.​ The route taken by a van is atour. 
5.​ We need to find the tour with minimum length. 

●​ Every tour consists of an edge <i,k> for some k belongs to v – { 1 }. 
And  path from k to 1 

●​ A path from vertex k to vertex 1 goes through each vertex in v – {1,k} exactly 
once. 

●​ Let g(i,S) = the length of shortest path starting at vertex i, going through all 
vertices in S and terminating at vertex 1. 

●​ The function g(1,v – {1}) is the cost of the traveling salesman problem. 
 

g(i, S) = { cij + g( j , S-{j} ) } 𝑚𝑖𝑛
𝑗𝑆

 
●​ For calculating distance from initial vertex to remaining vertices. 

g(i,∅ ) = ci1,1≤ i ≤n ∅
 
 
 
 
 
 
 
 
 
 
Example: 
consider the following graph 
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Adajacency matrix for the above graph is  :​ ​  0​ 10​ 15​ 20 

​ ​ ​ ​ ​ ​ ​ 5​ 0​ 9​ 10 

​ ​ ​ ​ ​ ​ ​ 6​ 13​ 0​ 12 

​ ​ ​ ​ ​ ​ ​ 8​ 8​ 9​ 0 

We know that, g(i, ∅) = ci1 , 1<i≤n ∅)

g(2, ∅) = C21 = 5 ​ g(3, ∅) = C31 = 6​ g(4, ∅) = C41 = 8 

Before solving this problem we make an assumption that traveling salesmanproblem 
starts and end at vertex 1. 
g(1 , {2 , 3 , 4} ) 
      = min { c12 + g(2 , {2,3,4} – 2) , c13 + g(3 , {2,3,4} – 3), c14 + g(4 , {2,3,4} – 4) } 
      = min { c12 + g(2 , {3,4}) , c13 + g(3 , {2,4}), c14 + g(4 , {2,3}) } 
      = min { 10+25, 15+ 27, 20+23 } 
      =min {35,40,43} 
    = 35 
 
 
 
g( 2 , {3,4} ) =  

= min { c23  + g( 3 , {3,4} – 3 ) , c24  + g( 4 , {3,4} – 4 ) } 
​ = min { 9 + g(3,{4}) , 10 + g(4,{3}) } 
​ = min { 9 + 20 ,10 + 15} 
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=  min { 29 ,25 } = 25  
g(3 , {2,4} ) =  

= min { c32 + g( 2 , {2,4} – 2 ) , c34  + g( 4 , {2,4} – 4 ) } 
​ = min { 13 + g(2,{4}) , 12 + g(4,{3}) } 
​  = min { 13 + 18 ,12 + 15 } 

=  min{ 31, 27 } = 27 
g(4 , {2,3} ) =  

= min { c42 + g( 2 , {2,3} – 2 ) , c43 + g( 3 , {2,3} – 3 ) } 
​ = min { 8 + g(2,{3}) , 9 + g(3,{2}) } 
​  = min { 8 + 15 ,9 + 18} 

=  min{ 23 ,27 } = 23 
g(2, {3}) = min { c23 + g( 3 , 3 – { 3 }) } 
           = min { 9 + g(3,∅)} 
           = min { 9 + 6 } 
           = min {15} = 15 
g(2, {4}) = min { c24 + g( 4 , 4 – { 4 } ) } 
           = min {10 + g(4,∅)} 
           = min { 10 + 8 } 
           = min {18} = 18 
g(3, {2}) = min { c32 + g( 2 , 2 – { 4 } ) } 
           = min { 13 + g(2,∅)} 
           = min { 13 + 5 ) 
           = min {18} = 18 
g(3, {4}) = min { c34 + g( 4 , 4 – { 4 } ) } 
           = min {12 + g(4,∅)} 
           = min { 12 + 8 } 
           = min {20} = 20 
g(4, {2}) = min { c42 + g( 2 , 2 – { 2} ) } 
           = min { 8 + g(2,∅)} 
        = min { 8 + 5 } 
           = min {13} = 13 
 
 
g(4, {3}) = min { c43 + g( 3 , 3 – { 3 } ) } 
           = min { 9 + g(3,∅)} 
           = min { 9 + 6 ) 
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= min {15} = 15 
 
 
The shortest path for visiting all the vertices is  1-2-4-3-1 and cost = 35. 
Analysis:-​ Time complexity is O(n2,2n) 
​ Space complexity is O(n,2n) 
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