Unit 3 AOS 1: How do physicists explain motion in two dimensions?

In this unit students use Newton's laws to investigate motion in one and two dimensions. They explore the concept of the field as a model used by physicists to explain observations of motion of objects not in apparent contact. Students compare and contrast three fundamental fields – gravitational, magnetic and electric – and how they relate to one another. They consider the importance of the field to the motion of particles within the field. Students examine the production of electricity and its delivery to homes. They explore fields in relation to the transmission of electricity over large distances and in the design and operation of particle accelerators.

Lesso n	Edrolo lesson	Study design dot point	Key knowledge
Chapter	1 – Force and motion		
1A	Kinematics recap		Quantities of motionConstant acceleration equations
1B	Forces recap	 investigate and apply theoretically and practically Newton's three laws of motion in situations where two or more coplanar forces act along a straight line and in two dimensions 	 Force vectors The net force Newton's laws The gravitational force The normal force
1C	Inclined planes	• investigate and apply theoretically and practically Newton's three laws of motion in situations where two or more coplanar forces act along a straight line and in two dimensions	 Forces on an inclined plane
1D	Connected bodies	• investigate and apply theoretically and practically Newton's three laws of motion in situations where two or more coplanar forces act along a straight line and in two dimensions	Connected bodies in tensionConnected bodies in contact
1E	Basic circular motion	 investigate and analyse theoretically and practically the uniform circular motion of an object moving in a horizontal plane: (F_{net} = mv²/r), including: a vehicle moving around a circular road a vehicle moving around a banked track 	 Circular speed Centripetal acceleration Centripetal force

		 an object on the end of a string 		
1F	Banked circular motion	 investigate and analyse theoretically and practically the uniform circular motion of an object moving in a horizontal plane: (F_{net} = mv²/r), including: a vehicle moving around a circular road a vehicle moving around a banked track an object on the end of a string 	Banked tracksConical pendulums	
1G	Vertical circular motion	 investigate and apply theoretically Newton's second law to circular motion in a vertical plane (forces at the highest and lowest positions only) 	 Forces in vertical circular motion Zero normal force in vertical circular motion 	
1H	Projectile motion	 investigate and analyse theoretically and practically the motion of projectiles near Earth's surface, including a qualitative description of the effects of air resistance 	 Vertical motion of projectiles Horizontal motion of projectiles Linking vertical and horizontal motion of projectiles Effect of air resistance on projectiles 	
11	Momentum and impulse	 investigate and apply theoretically and practically the laws of energy and momentum conservation in isolated systems in one dimension investigate and analyse theoretically and practically impulse in an isolated system for collisions between objects moving in a straight line: FΔt = mΔv 	 Momentum Impulse and the conservation of momentum 	
Chapter ?	1 review			
Chapter	2 – Energy and collision	ns		
2A	Kinetic energy, work and power	 investigate and apply theoretically and practically the concept of work done by a force using: work done = force × displacement work done = area under force vs distance graph (one dimensional only) 	 Work done Power as the rate of change in energy Kinetic energy 	

2

3

		 analyse transformations of energy between kinetic energy, elastic potential energy, gravitational potential energy and energy dissipated to the environment (considered as a combination of heat, sound and deformation of material): kinetic energy at low speeds: E_k = ¹/₂mv²; elastic and inelastic collisions with reference to conservation of kinetic energy 	
		 strain potential energy: area under force-distance graph including ideal springs obeying Hooke's Law: E_s = 1/2 kΔx² gravitational potential energy: E_g = mgΔh or from area under a force-distance graph and area under a field-distance graph multiplied by mass 	
2B	Elastic and inelastic collisions	 analyse transformations of energy between kinetic energy, elastic potential energy, gravitational potential energy and energy dissipated to the environment (considered as a combination of heat, sound and deformation of material): kinetic energy at low speeds: E_k = 1/2 mv²; elastic and inelastic collisions with reference to conservation of kinetic energy strain potential energy: area under force-distance graph including ideal springs obeying Hooke's Law: E_s = 1/2 kΔx² gravitational potential energy: E_g = mgΔh or from area under a force-distance graph and area under a field-distance graph multiplied by mass investigate and apply theoretically and practically the laws of energy and momentum conservation in isolated systems in one dimension 	 Energy dissipation Elastic and inelastic collisions Gravitational potential energy
2C	Gravitational potential energy	 analyse transformations of energy between kinetic energy, elastic potential energy, gravitational potential energy and energy dissipated to the environment (considered as a combination of heat, sound and deformation of material): kinetic energy at low speeds: E_k = 1/2 mv²; elastic and inelastic collisions with reference to conservation of kinetic energy strain potential energy: area under force-distance graph including ideal springs obeying Hooke's Law: E_s = 1/2 kΔx² gravitational potential energy: E_g = mgΔh or from area under a force-distance graph and area under a field-distance graph multiplied by mass 	 Gravitational potential energy Conservation of energy

VUE UNIT	5 3&4 – PNYSICS		
2D	Strain potential energy	 analyse transformations of energy between kinetic energy, elastic potential energy, gravitational potential energy and energy dissipated to the environment (considered as a combination of heat, sound and deformation of material): kinetic energy at low speeds: E_k = ¹/₂mv²; elastic and inelastic collisions with reference to conservation of kinetic energy strain potential energy: area under force-distance graph including ideal springs obeying Hooke's Law: E_s = ¹/₂kΔx² gravitational potential energy: E_g = mgΔh or from area under a force-distance graph and area under a field-distance graph multiplied by mass 	 Hooke's law Strain potential energy
2E	Vertical spring-mass systems	 analyse transformations of energy between kinetic energy, elastic potential energy, gravitational potential energy and energy dissipated to the environment (considered as a combination of heat, sound and deformation of material): kinetic energy at low speeds: E_k = 1/2 mv²; elastic and inelastic collisions with reference to conservation of kinetic energy strain potential energy: area under force-distance graph including ideal springs obeying Hooke's Law: E_s = 1/2 kΔx² gravitational potential energy: E_g = mgΔh or from area under a force-distance graph and area under a field-distance graph multiplied by mass 	 Vertical spring-mass system
Chapter 2	2 review		
Unit 3 Ar	ea of Study 1 review		

Unit 3 AOS 2: How do things move without contact

NOT UNITO ON A Diversion

Field models are used to explain the behaviour of objects when there is no apparent contact. In this area of study, students examine the similarities and differences between three fields: gravitational, electric and magnetic. Students explore how positions in fields determine the potential energy of, and the force on, an object. They investigate how concepts related to field models can be applied to construct motors, maintain satellite orbits and to accelerate particles including in a synchrotron.

Lesson	Edrolo lesson	Study design dot point	Key knowledge
--------	---------------	------------------------	---------------

Chapter 4	 Gravitational fields 		
3А	Gravitational fields and forces	 describe gravitation, magnetism and electricity using a field model investigate and compare theoretically and practically gravitational fields and electrical fields about a point mass or charge (positive or negative) with reference to: the direction of the field the shape of the field the use of the inverse square law to determine the magnitude of the field potential energy changes (qualitative) associated with a point mass or charge moving in the field analyse the use of gravitational fields to accelerate mass, including: gravitational field and gravitational force concepts: g = G M/r² and F_g = G M/r²/r² potential energy changes in a uniform gravitational field: E_g = mgΔh describe the interaction of two fields, allowing that electric charges, magnetic poles and current carrying conductors can either attract or repel, whereas masses only attract each other 	 Field model of gravity Inverse square law Gravitational force and field strength Interactions between two gravitational fields
3В	Gravitational potential energy in uniform and non-uniform fields	 investigate and compare theoretically and practically gravitational fields and electrical fields about a point mass or charge (positive or negative) with reference to: the direction of the field the shape of the field the use of the inverse square law to determine the magnitude of the field potential energy changes (qualitative) associated with a point mass or charge moving in the field analyse the use of gravitational fields to accelerate mass, including: gravitational field and gravitational force concepts: g = G M/r^2 and F_g = G M/r^2/r^2. potential energy changes in a uniform gravitational field: E_g = mg \Delta h 	 Potential energy change in non-uniform fields Gravitational potential energy in uniform fields

VCE UNITS	3&4 – Physics		
		 analyse the change in gravitational potential energy from area under a force vs distance graph and area under a field vs distance graph multiplied by mass 	
3C	Orbital motion	 apply the concepts of force due to gravity and normal force including in relation to satellites in orbit where the orbits are assumed to be uniform and circular model satellite motion (artificial, Moon, planet) as uniform circular orbital motion: a = v²/r = 4π²r/T² 	 The force on an object in orbit The normal force in gravitational fields Orbital radius, period, and speed Satellite motion
Chapter 3	review		
Chapter 4	– Electric and magnetic f	ields	
4A	Electric fields	 describe gravitation, magnetism and electricity using a field model investigate and compare theoretically and practically gravitational, magnetic and electric fields, including directions and shapes of fields, attractive and repulsive effects, and the existence of dipoles and monopoles investigate and compare theoretically and practically gravitational fields and electrical fields about a point mass or charge (positive or negative) with reference to: the direction of the field the shape of the field the use of the inverse square law to determine the magnitude of the field potential energy changes (qualitative) associated with a point mass or charge moving in the field investigate and compare theoretically and practically gravitational, magnetic and electric fields, including directions and shapes of fields, attractive and repulsive effects, and the existence of dipoles and monopoles investigate and compare theoretically and practically gravitational, magnetic and electric fields, including directions and shapes of fields, attractive and repulsive effects, and the existence of dipoles and monopoles identify fields as static or changing, and as uniform or non-uniform analyse the use of an electric field to accelerate a charge, including: electric field and electric force concepts: E = k \frac{q}{r^2} and F = k \frac{q_1q_2}{r^2} 	 Electric fields around point charges Electric fields between charged plates

	7	

		 potential energy changes in a uniform electric field: W = qV, E = V/d the magnitude of the force on a charged particle due to a uniform electric field: F = qE describe the interaction of two fields, allowing that electric charges, magnetic poles and current carrying conductors can either attract or repel, whereas masses only attract each other model the acceleration of particles in a particle accelerator (including synchrotrons) as uniform circular motion (limited to linear acceleration by a uniform electric field and direction change by a uniform magnetic field). 	
4B	Magnetic fields	 describe gravitation, magnetism and electricity using a field model investigate and compare theoretically and practically gravitational, magnetic and electric fields, including directions and shapes of fields, attractive and repulsive effects, and the existence of dipoles and monopoles describe the interaction of two fields, allowing that electric charges, magnetic poles and current carrying conductors can either attract or repel, whereas masses only attract each other investigate and apply theoretically and practically a field model to magnetic phenomena, including shapes and directions of fields produced by bar magnets, and by current-carrying wires, loops and solenoids identify fields as static or changing, and as uniform or non-uniform 	 Magnetic fields Magnetic field patterns
4C	Magnetic forces on charged particles	 analyse the use of a magnetic field to change the path of a charged particle, including: the magnitude and direction of the force applied to an electron beam by a magnetic field: F = qvB, in cases where the directions of v and B are perpendicular or parallel the radius of the path followed by an electron in a magnetic field: qvB = mv/r², where v≪c investigate and analyse theoretically and practically the force on a current carrying conductor due to an external magnetic field, F = nILB, where the 	 Magnetic forces on charged particles Circular motion in magnetic fields Magnetic forces on current-carrying wires

		directions of <i>I</i> and <i>B</i> are either perpendicular or parallel to each other	
4D	DC motors	 investigate and analyse theoretically and practically the operation of simple DC motors consisting of one coil, containing a number of loops of wire, which is free to rotate about an axis in a uniform magnetic field and including the use of a split ring commutator investigate, qualitatively, the effect of current, external magnetic field and the number of loops of wire on the torque of a simple motor 	 DC motor operation Split ring commutators in DC motors Variation in torque of a DC motor
Chapter 4 review			
Unit 3 Area of Study 2 review			

Unit 3 AOS 3: How are fields used in electricity generation?

The production, distribution and use of electricity has had a major impact on the way that humans live. In this area of study, students use empirical evidence and models of electric, magnetic and electromagnetic effects to explain how electricity is produced and delivered to homes. They explore the transformer as critical to the performance of electrical distribution systems in minimising power loss.

Lesson	Edrolo lesson	Study design dot point	Key knowledge			
Chapter 5	Chapter 5 – Generating electricity					
5A	EMF and Faraday's law	 calculate magnetic flux when the magnetic field is perpendicular to the area, and describe the qualitative effect of differing angles between the area and the field: Φ_B = B_⊥A investigate and analyse theoretically and practically the generation of electromotive force (emf) including AC voltage and calculations using induced emf:ε =- N ΔΦ_B/Δt, with reference to: rate of change of magnetic flux number of loops through which the flux passes 	 Magnetic flux Faraday's law 			

		 direction of induced emf in a coil 	
5B	Direction of induced current and Lenz's law	 investigate and analyse theoretically and practically the generation of electromotive force (emf) including AC voltage and calculations using induced emf: ε = - N ΔΦ_B/Δt, with reference to: rate of change of magnetic flux number of loops through which the flux passes direction of induced emf in a coil 	• Lenz's law
5C	Generators and alternators	 explain the production of DC voltage in DC generators and AC voltage in alternators, including the use of split ring commutators and slip rings respectively compare sinusoidal AC voltages produced as a result of the uniform rotation of a loop in a constant magnetic field with reference to frequency, period, amplitude, peak-to-peak voltage (V_{p-p}) and peak-to-peak current (I_{p-p}) 	 Alternators DC generators AC power quantifies
5D	Photovoltaic cells	• describe the production of electricity using photovoltaic cells and the need for an inverter to convert power from DC to AC for use in the home (not including details of semiconductors action or inverter circuitry)	Producing electricity with photovoltaic cellsInverters for power use in the home
Chapter 5	review		
Chapter 6	- Transmitting electricity		
6A	Electricity recap		 Electrical quantities Ohm's law Series circuits Power in circuits
6B	Transformer and comparing AC and DC power	 compare sinusoidal AC voltages produced as a result of the uniform rotation of a loop in a constant magnetic field with reference to frequency, period, amplitude, peak-to-peak voltage (V_{p-p}) and peak-to-peak current (I_{p-p}) 	 RMS, peak and peak-to-peak values of an AC supply Comparing RMS and DC power Transformers

		 compare alternating voltage expressed as the root-mean-square (rms) to a constant DC voltage developing the same power in a resistive component analyse transformer action with reference to electromagnetic induction for an ideal transformer: ^N₁/_{N2} = ^V₁/_{V2} = ^I₂/_{I1} 	
6C	Transmission of power	 analyse the supply of power by considering transmission losses across transmission lines 	Power supply and transmission lossesTransformers in power transmission
Chapter 6 review			
Unit 3 Area of Study 3 review			

Unit 4 AOS 1: How has understanding about the physical world changed?

In this area of study, students learn how understanding of light, matter and motion have changed over time. They explore how major experiments led to the development of theories to describe these fundamental aspects of the physical world.

When light and matter are probed, they appear to have remarkable similarities. Light, previously described as an electromagnetic wave, appears to exhibit both wave-like and particle-like properties. Findings that electrons behave in a wave-like manner challenged thinking about the relationship between light and matter.

Chapter 7 – Properties of a mechanical wave			
7A	Waves recap		Wave definitionWave properties
7B	Wave interference and path difference	 explain the results of Young's double slit experiment with reference to: 	Constructive and destructive interferenceHow path difference affects wave interference

		 evidence for the wave-like nature of light constructive and destructive interference of coherent waves in terms of path differences: <i>n</i>λ and (<i>n</i> - ¹/₂)λ respectively, where <i>n</i> = 0, 1, 2, effect of wavelength, distance of screen and slit separation on interference patterns: Δx = ^{λL}/_d when L≫d 		
7C	Standing wave	 explain the formation of a standing wave resulting from the superposition of a travelling wave and its reflection analyse the formation of standing waves (only those with nodes at both ends is required) 	Wave reflectionResonanceStanding waves on a string with two fixed ends	
7D	Diffraction	• investigate and explain theoretically and practically diffraction as the directional spread of various frequencies with reference to different gap width or obstacle size, including the qualitative effect of changing the ratio $\frac{\lambda}{w}$, and apply this to limitations of imaging using electromagnetic waves	Describing diffractionAnalysing diffraction	
Chapter 7 review				
Chapter 8	Chapter 8 – Light behaving as a wave			
8A	Electromagnetic waves	 describe light as a transverse electromagnetic wave which is produced by the acceleration of charges, which in turn produces changing electric fields and associated changing magnetic fields identify that all electromagnetic waves travel at the same speed, <i>c</i>, in a vacuum 	 Light as an electromagnetic wave 	
8B	Young's Double Slit experiment	 explain the results of Young's double slit experiment with reference to: evidence for the wave-like nature of light constructive and destructive interference of coherent waves in terms of path differences: nλ and (n - 1/2)λ respectively, where n = 0, 1, 2, effect of wavelength, distance of screen and slit separation on interference patterns: Δx = λL/d when L≫d 	 Evidence for the wave-like nature of light Fringe spacing 	
Chapter 8 review				

Chapter 9	Chapter 9 – Light behaving as a particle					
9A	Experimental design of the photoelectric effect	 analyse the photoelectric effect with reference to: evidence for the particle-like nature of light experimental data in the form of graphs of photocurrent versus electrode potential, and of kinetic energy of electrons versus frequency kinetic energy of emitted photoelectrons: E_{kmax} = hf - φ, using energy units of joule and electron-volt effects of intensity of incident irradiation on the emission of photoelectrons 	 The electron-volt Understanding the photoelectric effect experiment Work function Dependent and independent variables of the photoelectric effect experiment Stopping voltage as a way to determine the maximum kinetic energy of electrons 			
9B	Changing intensity in the photoelectric effect	 analyse the photoelectric effect with reference to: evidence for the particle-like nature of light experimental data in the form of graphs of photocurrent versus electrode potential, and of kinetic energy of electrons versus frequency kinetic energy of emitted photoelectrons: E_{kmax} = hf - φ, using energy units of joule and electron-volt effects of intensity of incident irradiation on the emission of photoelectrons 	 Photoelectric effect graphs Effect of changing the intensity of light 			
9C	Changing frequency in the photoelectric effect	 analyse the photoelectric effect with reference to: evidence for the particle-like nature of light experimental data in the form of graphs of photocurrent versus electrode potential, and of kinetic energy of electrons versus frequency kinetic energy of emitted photoelectrons: E_{kmax} = hf - φ, using energy units of joule and electron-volt 	 Effect of changing the frequency of light The relationship between electron kinetic energy and frequency of light 			

		 effects of intensity of incident irradiation on the emission of photoelectrons 	
9D	Explaining the photoelectric effect	 analyse the photoelectric effect with reference to: evidence for the particle-like nature of light experimental data in the form of graphs of photocurrent versus electrode potential, and of kinetic energy of electrons versus frequency kinetic energy of emitted photoelectrons: E_{k max} = hf - φ, using energy units of joule and electron-volt effects of intensity of incident irradiation on the emission of photoelectrons apply the quantised energy of photons: E = hf = hc/λ describe the limitation of the wave model of light in explaining experimental results related to the photoelectric effect 	 Evidence for the particle-like nature of light The energy of a photon Why the wave model fails
Chapter 9	review		
Chapter 1	0 – The wave-particle dual	ity of light and matter	
10A	Comparing light and matter	 investigate and explain theoretically and practically diffraction as the directional spread of various frequencies with reference to different gap width or obstacle size, including the qualitative effect of changing the ratio ^λ/_w, and apply this to limitations of imaging using electromagnetic waves interpret electron diffraction patterns as evidence for the wave-like nature of matter distinguish between the diffraction patterns produced by photons and electrons calculate the de Broglie wavelength of matter: λ = h/p 	 The limitations of imaging using light Matter waves: electrons diffract Comparing the diffraction patterns produced by photons and electrons Comparing the momentum of photons and matter Photons and electrons in the double slit experiment

		 compare the momentum of photons and of matter of the same wavelength including calculations using: p = h/λ interpret the single photon and the electron double slit experiment as evidence for the dual nature of light and matter 	
10B	Absorption and emission spectra	 apply the quantised energy of photons: E = hf = hc/λ explain the production of atomic absorption and emission line spectra, including those from metal vapour lamps interpret spectra and calculate the energy of absorbed or emitted photons: E = hf analyse the emission or absorption of a photon by an atom in terms of a change in the electron energy state of the atom, with the difference in the states' energies being equal to the photon energy: E = hf = hf = hc/λ describe the quantised states of the atom with reference to electrons forming standing waves, and explain this as evidence for the dual nature of matter discuss the importance of the idea of quantisation in the development of knowledge about light and in explaining the nature of atoms 	 Energy level diagrams Electron standing waves Atomic absorption and emission spectra Atomic energy transitions The importance of quantisation
Chapter 10 review			

Chapter 11 – Special relativity and mass-energy equivalence				
11A	Special relativity concepts	 describe Einstein's two postulates for his special theory of relativity that: describe the limitation of classical mechanics when considering motion approaching the speed of light the laws of physics are the same in all inertial (non-accelerated) frames of reference -the speed of light has a constant value for all observers regardless of their motion or the motion of the source interpret the null result of the Michelson-Morley experiment as evidence in support of Einstein's special theory of relativity 	 Limitations Einstein's first postulate Einstein's second postulate Classical physics and special relativity Limitations of classical mechanics 	

		 compare Einstein's special theory of relativity with the principles of classical physics describe the limitation of classical mechanics when considering motion approaching the speed of light 	
11B	Length contraction and time dilation	 describe proper time (t₀) as the time interval between two events in a reference frame where the two events occur at the same point in space describe proper length (L₀) as the length that is measured in the frame of reference in which objects are at rest model mathematically time dilation and length contraction at speeds approaching <i>c</i> using the equations: t = γt₀ and L = ^{L₀}/_γ where γ = ¹/_{√1-^{v²}/_{c²}} 	Time dilationLength contractionThe Lorentz factor
11C	Relativity examples	 explain and analyse examples of special relativity including that: muons can reach Earth even though their half-lives would suggest that they should decay in the upper atmosphere particle accelerator lengths must be designed to take the effects of special relativity into account time signals from GPS satellites must be corrected for the effects of special relativity due to their orbital velocity 	 Muon detection as evidence of the effect of special relativity The effects of special relativity in particle accelerators GPS time signals
11D	Mass-energy	 interpret Einstein's prediction by showing that the total 'mass-energy' of an object is given by: E_{tot} = E_k + E₀ = γmc² where E₀ = mc², and where kinetic energy can be calculated by: E_k = (γ - 1)mc² apply the energy-mass relationship to mass conversion in the Sun, to positron-electron annihilation and to nuclear transformations in particle accelerators (details of the particular nuclear processes are not required). 	 Rest energy Relativistic kinetic energy Total mass-energy Conservation of mass-energy
Chapter 11 review			

Unit 4 AOS 2: How is scientific inquiry used to investigate fields, motion or light?

Students undertake a student-designed scientific investigation in either Unit 3 or Unit 4, or across both Units 3 and 4. The investigation involves the generation of primary data relating to fields, motion or light. The investigation draws on knowledge and related key science skills developed across Units 3 and 4 and is undertaken by students in the laboratory and/or in the field.

When undertaking the investigation students are required to apply the key science skills to develop a question, state an aim, formulate a hypothesis and plan a course of action to answer the question, while complying with safety and ethical guidelines. Students then undertake an investigation to generate primary quantitative data, analyse and evaluate the data, identify limitations of data and methods, link experimental results to scientific ideas, discuss implications of the results, and draw and evaluate a conclusion in response to the question. Students are expected to design and undertake an investigation involving one continuous independent variable. The presentation format for the investigation is a scientific poster constructed according to the structure outlined on page 13 of the study design. A logbook is maintained by the students for record, assessment and authentication purposes.

Chapter 12 - Scientific Investigations				
12A		 explain the characteristics of the selected scientific methodology and method including: techniques of primary qualitative and quantitative data generation relevant to the selected investigation; and appropriateness of the use of independent, dependent and controlled variables in the selected scientific investigation discuss the nature of evidence that supports or refutes a hypothesis, model or theory 	 The scientific method Variables, types of data, and characteristics of data Theories, models and laws 	
12B	Scientific conventions	 apply the conventions of science communication: scientific terminology and representations; symbols, equations and formulas; standard abbreviations; significant figures; and units of measurement 	Units of measurementsSignificant figures	

VCE UNITS	VCE UNITS 3&4 – Physics				
12C	Collecting data	 identify and apply concepts of accuracy, precision, repeatability, reproducibility, resolution and validity of data; and the identification of, and distinction between, error and uncertainty model the scientific practice of using a logbook to authenticate generated primary data 	 Precision, accuracy & resolution Error & uncertainty Validity, repeatability & reproducibility 		
12D	Representing and analysing data	 apply methods of organising, analysing and evaluating primary data to identify patterns and relationships including: the physical significance of the gradient of linearised data; causes of uncertainty; use of uncertainty bars; and assumptions and limitations of data, methodologies and methods 	 Plotting data Drawing straight and curved lines of best fit Calculating the gradient 		
12E	Communicating findings	 explain the key findings and implications of the selected investigation apply the conventions of scientific poster presentation, including succinct communication of the selected scientific investigation, and acknowledgement of references identify the physics concepts specific to the investigation and explain their significance, including definitions of key terms and physics representations 			
Chapter 12	2 review				

The copyright in substantial portions of this material is owned by the Victorian Curriculum and Assessment Authority. Used with permission. The VCAA does not endorse this product and makes no warranties regarding the correctness or accuracy of its content. To the extent permitted by law, the VCAA excludes all liability for any loss or damage suffered or incurred as a result of accessing, using or relying on the content. Current and past VCAA exams and related content can be accessed directly at www.vcaa.vic.edu.au

17

