Use File > Make a copy to make your own copy of this worksheet, so that you can edit it.

Power boxes - series circuit

Link to the <u>power boxes - series circuit simulation</u>

Play with the simulation for a couple of minutes, to explore what you can do with it.

1.	One way to calculate power is to multiply the voltage across a circuit component by the current passing through it. The graphs in the simulation plot voltage as a function of current. This means the power is the			
	[] slope of the line	[] shaded area under the	curve	
2.	Each of the graphs has 36 small squares on it. The area of one of these small squares represents a power of			
	W			
3.	Given the limits imposed by the sliders in the simulation, the maximum amount of electrical power that can be put into the circuit by the battery is			
	W			
4.	Given the limits imposed by the sliders in the simulation, the minimum amount electrical power that can be put into the circuit by the battery is			
	W			
5.	Start by setting the resistance of each resistor to 6 ohms. If you then decrease the resistance of resistor 1, the power provided to the circuit by the battery			
	[] increases	[] decreases	[] stays the same	
	because the current in the circuit			
	[] increases	[] decreases	[] stays the same	

	, ,	stance of each resist r 1, the power dissip	or to 6 ohms. If you then decrease ated in		
Resistor 1	[] increases	[] decreases	[] stays the same		
Resistor 2	[] increases	[] decreases	[] stays the same		
Resistor 3	[] increases	[] decreases	[] stays the same		
 7. When three resistors are in series, as they are here, the resistor dissipating the most power is the one with the [] most resistance [] least resistance 					

This worksheet was created by Andrew Duffy of Boston University on Dec. 28, 2022.