
 

The Complete Guide to Account 
Abstraction in Ethereum (Part 1) 
 
Having observed the significant changes that were introduced to Ethereum through the Deneb 
upgrade, we have begun looking ahead to what the next hardfork, called Pectra, will introduce. 
To help shape the discussions to come, we seek to describe the current landscape of account 
abstraction surrounding Ethereum and its rollup ecosystem to potentially map a clear path 
forward. 
 
Account abstraction seeks to improve user and developer experiences across the entire 
Ethereum ecosystem. Along with making on-chain experiences more accessible and enjoyable 
to users, it also empowers developers to be able to do more powerful things on Ethereum and 
serve users in even more meaningful ways. In this three-part series we will be comprehensively 
covering the account abstraction landscape within Ethereum, carefully exploring different 
approaches and solutions proposed along their lines and thereafter critically evaluating whether 
they are serious candidates for consideration in adopting within Ethereum whether it be a 
protocol change or set of standards the community should collectively start to follow. 

An overview of the account abstraction landscape 
Our classification of the approaches to account abstraction is as follows: 
 

1.​ EOA programmability: Protocol-level changes that enable EOAs to redefine the 
execution logic portion of their validity rules. 

2.​ EOA conversion/migration: Complete conversion of EOAs to CAs. 
3.​ Smart Accounts: Designs that enable both EOAs and CAs to behave as “smart 

accounts” by allowing them to totally redefine their validity rules. 
 
With EOA programmability, this involves considering changes to make to how EOA 
(externally-owned accounts) work and introducing new capabilities. As well-known within the 
development community, EOAs are accounts typically associated with end-users, therefore 
solutions that fall within this approach will empower end-user accounts with more control over 
what sort of actions they can authorize compared to how this can be managed today. 
 
With EOA conversion/migration, The integral idea of this approach is that contract accounts 
already offer most of the benefits offered by smart accounts, so there should be no need to 
complicate things anymore; everyone should simply use a contract account as their primary 
account (through smart contract wallets). 
 



With Smart Accounts, this approach features mechanisms which allow an EOA to transition to 
a CA, without having to move its assets, such as EIP 7377 and EIP 5003 (when considered 
alongside EIP 3074). Various proposals have been previously made for the creation of smart 
accounts and account abstraction enshrinement at the protocol level; EIP-86 and EIP-2938 are 
some of the more cited ones. However, there was a lot of pushback due to the perceived 
complexity introduced by this design and the somewhat majority opinion that Ethereum isn't 
ready for such complexity. Following Vitalik's revival of the topic after The Merge, ERC-4337 
was proposed as an opt-in version of the smart account standard, similar to the PBS 
(Proposer-Builder Separation) infrastructure for MEV (Maximal Extractable Value). Thus, users 
who seek to access the benefits of smart accounts could simply use the 4337 pipeline to 
redefine their account's logic and transactions’ validity rules in structures referred to as a 
UserOperation (or UserOps for short). ERC 4337 brings the benefits of smart accounts to 
present day Ethereum without enshrining any of the complexity, by functioning as an 
out-of-protocol alternative to enshrined smart accounts. However, this doesn't mean that the 
infrastructure is optimal in its current state as its own complexity is still a considerable 
point-of-failure. To address this complexity, RIP 7560 was drafted as an enshrined version of the 
ERC 4337 infrastructure across Ethereum and its L2s, so that it inherits the network's 
sybil-resistance schemes rather than having to define a new suite of rules (as ERC 4337 does 
with ERC 7562). 
 
In this report, we will be focused on exploring EOA programmability covering the various EIPs 
that describe solutions along this line and discuss their merits and drawbacks. In Part 2 and 3 of 
this series, we will cover the remaining two classes of approach to account abstraction being 
explored within Ethereum. 

A Primer on Ethereum Accounts and Transactions 
In order to seek out what can be abstracted, we need a (somewhat) full picture of the current 
account design. This section will mostly serve as a revision of sorts for what accounts on 
Ethereum actually are, and how their transactions are validated and executed. 
 
Ethereum accounts are entities with an ether (ETH) balance and the ability to send transactions 
on the Ethereum blockchain. They are represented as a 42-character hexadecimal “address”, 
which serves as a unique pointer to the account's holdings and transactions. 
 
An address acts as a key into the blockchain's state trie. The leaf nodes of this trie are 
account data structures which can be decomposed into four fields: 

a.​ nonce: A linear counter used to indicate the number of outbound transactions initiated 
by an account. Also crucial in preventing replay attacks. 

 
b.​ balance: The wei-denominated amount of ether owned by an account.  

 



c.​ codeHash: A hash of the EVM-executable code contained in an account. The EVM 
(Ethereum Virtual Machine) is Ethereum's bespoke execution environment responsible 
for handling complex state transitions beyond simple “send” transactions. The code 
content of an account is immutably programmed to carry out specific forms of state 
transition on the Ethereum blockchain, through the EVM. 

 
d.​ storageHash: A hash of an account's storage root, used to represent the storage 

contents of an account as a 256-bit hash of a merkle patricia trie's root node. Simply, it is 
a hash of the state-variable data related to an account's code content. 

 
The contents of these four fields are used to define an account's type, and ultimately go on to 
define the extent of its functionalities. Thus, the two types of Ethereum accounts are: 
 

a.​ Externally-owned Accounts (EOAs)- which are initialized as a cryptographic key pair: 
-​ A private key which is an encryptable and provably random 64-hex character, 

and its complementary counterpart; 
-​ A public key which is derived from the private key using the ECDSA (Elliptic 

Curve Digital Signature Algorithm). 
 

They have empty codeHash and storageHash fields and can only be controlled by 
anyone who possesses the private keys. 
 
The address of an EOA is obtained from its public key by prefixing “0x” to the last twenty 
characters of the account's public key's keccak-256 hash.  

 
b.​ Contract Accounts (CAs)- which can only be created by a pre-existing EOA. They are 

initialized due to an EOA deploying executable code content on the EVM. This code 
content (stored as the codeHash) is enshrined in the EVM, and is responsible for 
controlling the account by defining its logic and interactions. 
Their transactions are entirely pull-based and predicated on their deployed code's logic. 
Since these accounts can only be controlled by their code content, they have no need 
for a private key and only have a public key. Thus, any agent who has the ability to 
update/change a contract account's code content would be able to access its balance. 
 
The address of a CA is derived from its creator's address and its nonce up to the point of 
the contract's deployment. 

 
Transactions 
We recently described accounts as entities that possess the ability to send transactions across 
Ethereum. We can therefore understand that a primary purpose of an account is to send and 
receive transactions, while the blockchain acts as a ledger recording history of transactions as 
well as describing how transactions alter account fields based on rules described in the 
blockchain protocol specification. 
 



So what are these “transactions”? 
 
Transactions are operations sent from an account, which cause a change in the “state” of the 
network. They are cryptographically signed instructions from accounts, which result in a 
network-wide state update when executed. 

 
 
Permissionlessness comes with the cost of perverse incentives, to deal with these, stringent 
guidelines (or validity rules) have to be defined for interactions in such environments. 
In this context, transactions have to follow certain validity rules to be considered valid and 
executed. Most of these validity rules are implemented via constraints placed on the account 
sending the transaction, and vary based on what type of account it is. 
 
Accounts and Transaction Validity 
On Ethereum, EOAs are optimized for usability as they are end-user facing. They have the 
ability to send transactions in a specific manner and perfectly operate autonomously. They can 
also be created locally, the more common method being the use of wallet providers such as 
MetaMask, Rainbow, Rabby etc. 
On the other hand, contract accounts can only send transactions permitted by their logic, in 
response to being “called”. They can only be created by an EOA which has a sufficient 
balance to pay for its network storage.  
 
A more high-level description would be that EOAs can only hold a balance, while CAs can hold 
both a balance and logic that dictates how this balance can be spent.  
 
These properties are due to the following logic parameters which define the rules an account's 
transactions must adhere to: 
 

a.​ Authentication Logic - Used to define how an account proves its identity to the network 
while changing its balance and/or logic. 

b.​ Authorization Logic - Used to define an account's access policy, i.e., who is able to 
access and make changes to the account's balance and/or logic. 

c.​ Nonce Logic - which defines the order in which transactions from an account are to be 
executed. 

d.​ Gas Payment Logic - Used to define the party responsible for settling a transaction's 
gas fee. 

e.​ Execution Logic - Used to define what forms of transactions an account can send, or 
how a transaction is to be executed. 

 



These parameters are designed to be rigid for EOAs thus: 
 

-​ Authentication and authorization is provided by an ECDSA-based private key, i.e., a user 
who wishes to send a transaction from their EOA must use their private key to access 
the account and thus prove they have the right to carry out any changes to its balance. 

-​ Nonce logic is a sequential counter scheme, which allows only one transaction per 
unique nonce to be executed sequentially per account. 

-​ Gas payment logic specifies that the gas fee for transactions must be settled by the 
sender/originating account, 

-​ Execution logic specifies that EOAs can only send the following transaction forms: 
a.​ Regular transfers between two EOAs. 
b.​ Contract deployment. 
c.​ CA calls which target a deployed CA's logic. 

 
More generally, the execution logic of EOAs constricts them to one transaction per valid 
signature. 

 
On the other hand, CAs have more flexibility around these parameters: 
 

-​ Authentication isn't necessary, as their transactions are consequential/pull-based in 
nature  

-​ Authorization for CAs can take two forms: 
a.​ Ability to “call” the CAs content code (or execute its smart contract), which 

depends on the logic of the account's smart contract and its invariants. 
b.​ Ability to make changes to the CAs content code, which mostly depends on 

whether the content code is upgradeable or not. 
 
In most practical cases, the logic used is a multi-signature scheme which 
stipulates that an M of N valid signatures (where M < N) is required from specific 
accounts (commonly EOAs) in order for a change of the CA's logic to be valid. 
 

-​ Transaction ordering is loosely nonce-based. The CA itself is able to send out as many 
transactions to as many diverse callers as possible, however each caller is limited based 
on their own capabilities. 

-​ Gas payment is commonly handled by the caller of the CA's logic. 
-​ The execution logic of CAs is more diverse to enable UX improvements such as muticall 

transactions and atomic transactions. 
 
Evaluating these features, we observe that each type of account is designed to have a tradeoff 
between autonomy and programmability. 
 
EOAs have full autonomy but limited programmability; they can authorize and send transactions 
whenever they want, but these transactions must follow a rigid format to be considered valid. 
CAs have full programmability (limited only by the EVM's design) but limited autonomy; their 



transactions do not have to follow any rigid format, but can only be sent out due to their logic 
being called first. 

[EOAs have each logic strictly defined for them 
 

CAs are able to define their execution logic via EVM-executable code 
 

smart accounts are able to have each logic uniquely defined.] 
 

In the following section, we will now study the implications of these design choices, and 
introduce our primary topic throughout this series– account abstraction. 
 

How Account Abstraction Helps Ethereum 
Now that we have a somewhat succinct knowledge of the different accounts’ functionalities, we 
can easily identify their selling points as well as the issues they present to both user- and 
developer-experience on Ethereum. 
 
As we previously mentioned, EOAs are designed as first-class accounts targeting end-users. 
Applications are designed to easily interact with them, there's almost no complexity to them, and 
of course there's no cost for creating one. However, its simplicity comes with a significant loss of 
novelty as they are designed to be strictly deterministic. 
 
Some of the concerns around them are: 
 

a.​ Susceptibility to quantum attacks - The ECDSA signature scheme used by their key 
pair is not quantum-resistant, and with an optimistic timeline of 5 - 10 years for industrial 
quantum systems being achieved, this poses a significant threat to Ethereum and its 
applications which heavily rely on the ECDSA scheme for cryptographic proofs and 
security. 

 
b.​ Lack of expression - The rigid format of EOAs’ validity rules eliminates the ability of 

users to express their transactions more succinctly via features such as transaction 
atomicity and batching, and transaction delegation.  

 
c.​ Self-sustainability - Everyone's had their fair share of “i ran out of gas” moments in the 

middle of a transaction. This is due to the requirement that EOAs settle the gas for their 
transactions by themselves, which wouldn’t be much of an ask if ether (ETH) wasn't the 
only acceptable gas currency. While this is a general issue with account-based state 
machines (and even UTXO-based ones), Ethereum always intended to be different. 
Not everyone wants to (or would be able to) always hold ETH (i mean look at that price 
action), so the viable solutions would be to either allow multiple gas currencies (too hard, 
breaks too many invariants as described in the “Currency” section here), or to allow gas 
payments to be settled by another account that isn't the transaction's origin. 

https://blog.ethereum.org/2015/07/05/on-abstraction


 
On the other end of the account spectrum, CAs target developers and a more technical user 
base. They serve as vehicles for smart contracts (i.e. we consider smart contracts to be their 
contained logic or code content) and so can implement novel transaction formats as enabled by 
the EVM. 
 
However, for all these features they are glorified second-class accounts since they have no 
autonomy. Some of their drawbacks are as follows: 
 

a.​ Total lack of autonomy - CAs cannot begin a transaction, they can only send out 
transactions in response to being invoked in a very particular manner. 

 
b.​ Susceptibility to human error in their logic - The lack of rigidity often leads to 

incorrect definition of invariants and other such logic, which has led to billions of dollars 
in losses due to smart contract exploits and hacks. However, this is almost an entirely 
different topic which is beyond our scope here. 

 
Having reviewed the design choices which led to the issues defined in this subsection, we can 
now proceed to evaluate the proposed solutions. 
 
The concept of account abstraction (via smart accounts at least) has always been an integral 
part of Ethereum's roadmap. The lore is that the complexity surrounding its implementation 
threatened to further delay Ethereum's launch, and so it was scrapped for the current design 
with different accounts offering different functionalities. It was delayed again by Ethereum's 
focus on The Merge, and is now resurfacing as a principal part of the network's next major 
upgrade- Pectra. However, its complexity is still considered a significant drawback preventing its 
enshrinement, especially as Ethereum has pivoted to a rollup-centric roadmap. 
 
The requirements are now two-fold: 
 

a.​ Account standards have to be more expressive, but without loss of autonomy. A new 
standard that seals the divide between the EOA and CA standards. 

b.​ The new standard has to bridge the gap between EOAs and CAs, while remaining 
thoroughly compatible across Ethereum and its L2 ecosystems. 

 
Intuitively this concept plays a bigger role in the context of chain abstraction and interoperability, 
however our scope throughout this report is limited to the technical initiatives taken to achieve 
account abstraction itself. 
 
Account abstraction aims to combine the best features of EOAs and CAs into a new account 
standard- smart accounts, which allow full or partial separation of any account's validity rules 
into a validation logic and an execution one; so that accounts can define their own validity rules 
–as permitted by the EVM– just like contract accounts, while remaining fully autonomous just 
like externally-owned accounts. 



 
There is often confusion around the differences between both smart accounts and smart 
contract wallets; let us explicitly describe what these differences are below: 
 

-​ Smart accounts are Ethereum accounts that are conceptualized to provide equal parts 
of programmability and autonomy. The idea is that both EOAs and CAs can become 
smart accounts simply by utilizing some mechanism (e.g. ERC 4337) that allows them to 
replace their network-imposed validity rules with bespoke validity rules, as they see fit. 

-​ Smart contract wallets on the other hand, are simply wallets providers that serve as 
interfaces to contract accounts (yep, a wallet isn't an account). 

 
The commercialisation of smart contract wallets eased the adoption of CAs by a wider market, 
allowing less technical users to take advantage of the features they offer. However, they still 
face the pitfalls associated with CAs. 
 
Back to the conversation; we had previously discussed the parameters which are used to define 
the validity rules of transactions of accounts: 
 

-​ Authentication 
-​ Authorization  
-​ Nonce logic 
-​ Gas payment logic 
-​ Execution logic 

 
The values of the first four parameters may collectively be referred to as an account's 
validation logic, which are checks that occur before a transaction's execution begins. 
The last parameter defines how the execution of the transaction is to proceed. 
 
In the introduction, we provided a high-level overview of the current AA landscape in the form of 
a classification of sorts for the various proposed designs. We will now focus on the first class of 
solutions to Ethereum's account dilemma- EOA programmability. 
 

Programmable EOAs 
Ethereum's biggest appeal is its young but vibrant DeFi ecosystem which features a variety of 
decentralized applications that are its primary liquidity sinks. Most of these DApps are optimized 
to serve EOAs, thus they are hard to interface with CAs, and eventually smart accounts. While 
smart contract wallets do help CAs in this case, they come with their own limitations and an 
entirely different UX. 
 
An interim solution being explored while both DApps and wallet providers get used to the smart 
account standard, is to provide temporary enhancements to EOAs that enable them to 
overcome most of their imposed restrictions, be it their validation or execution logic.  



 
Below, we go over the specifications of three major EIPs which provide actionable routes to 
EOA programmability; from the less known EIP 5806, to the ambitious EIP 3074, and then 
finally to the record-breaking EIP 7702. 

Programmability via EIP-5806 
This proposal seeks to bring more functionality to the EOA standard by allowing it to perform 
delegate calls to a contract account's logic (its smart contract). This effectively causes the smart 
contract to be executed in the context of the caller EOA, i.e., the EOA remains in control of its 
validation logic, while its execution logic is handled by the corresponding CA's logic. 
 
Before we proceed any further, let us take a trip down the Ethereum evolution memory lane to 
EIP-7. 
 
EIP-7 proposed the creation of the 0xf4/DELEGATECALL opcode, which is used to send 
message calls into a primary account with a secondary account's logic, while maintaining the 
values of the primary account's [sender] and [value] fields. 
In other words, the primary account “inherits” (or borrows if you prefer) the logic of the 
secondary account for some duration as specified in the message call, so that the latter's logic 
is executed in the context of the former. 
 
This opcode allowed DApp developers to split their application's logic into multiple smart 
contracts while maintaining interdependence, so that they could easily skirt around code size 
barriers and gas barriers. 
 

 
EIP-5806 summarized 

 
Okay, so what delegate calls allow CAs to be interdependent? EIP-5806 uses EIP-7 as an 
inspiration to propose the expansion of the delegate call functionality to EOAs as well, i.e., let us 
allow EOAs to also be interdependent with CAs because why not. 

https://eips.ethereum.org/EIPS/eip-5806
https://eips.ethereum.org/EIPS/eip-3074
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-7702.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-7.md


 
Specifications 
EIP 5806 introduces a new EIP-2718-compliant transaction type which is packed as follows: 
 
rlp([chainID, nonce, max_priority_fee_per_gas, max_fee_per_gas, 
gas_limit, destination, data, access_list, signature_y_parity, 
signature_r, signature_s]). 
 
These transactions are designed so that the [to] field – which represents the recipient's address 
– can only accept addresses as 20-byte inputs, disabling the sender from using the CREATE 
opcode. 
 
The motivation behind each component of the RLP scheme are as follows: 
 

-​ chainID: The current chain's EIP-115-compliant identifier padded to 32 bytes. This value 
provides replay attack protection, so that transactions on the original chain aren't trivially 
replicated on alternate EVM chains with a similar history and less economic security. 

-​ nonce: A unique identifier for each transaction which also provides replay attack 
protection.  

-​ max_priority_fee_per_gas and max_fee_per_gas: The values of the gas fee that an 
EIP-5806 transaction is to pay for ordering and inclusion respectively. 

-​ gas_limit: The maximum amount of gas a single 5806-type transaction can consume. 
-​ destination: The transaction recipient 
-​ data: The executable code content 
-​ access_list: Agents who are conditionally authorized to execute EIP-5806 transactions. 
-​ signature_y_parity, signature_r, and signature_s: three values that together 

represent a secp256k1 signature over the message - keccak256 (TX_TYPE || rlp 
([chainID, nonce, max_priority_fee_per_gas, max_fee_per_gas, 
gas_limit, destination, data, access_list])). 

 
While the packing of EIP-5806 transactions in EIP-2718 envelopes allows them to be greatly 
backwards compatible, EOAs aren't equivalent to CAs. So certain restrictions must be defined in 
the way an EOA utilizes delegate calls to prevent invariant breakage. 
 
These restrictions are targeted at the following opcodes: 
 

-​ SSTORE/0x55: This opcode allows an account to save a value to storage. It is restricted 
in 5806 transactions to prevent EOAs from setting/accessing storage using delegate 
calls, thus preventing potential issues that may arise in the future due to account 
migration. 

-​ CREATE/0xF0, CREATE2/0xF5, and SELFDESTRUCT/0xFF: Access to these are 
restricted to prevent alteration of an EOA's nonce in a different execution frame (contract 
creation/destruction in this case) while it is performing an EIP-5806 transaction. 

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-2718.md


 
Potential Applicability/Use Cases 
The primary applicability of EIP 5806 is execution abstraction for EOAs. Allowing EOAs to 
trustlessly interact with smart contracts beyond simple calls to their logic grants them features 
such as: 
 

-​ Conditional execution of transactions 
-​ Transaction batching 
-​ Multicall transactions (e.g. approve and call) 

 
Criticisms 
The changes proposed by EIP-5806,while enabling a lot of features, aren't particularly novel; its 
existence is mostly predicated on an already functional EIP-7. This allows it to bypass many 
potential hurdles to acceptance. 
 
One of the major concerns voiced in its early days was the potential risk of allowing EOAs to 
access storage and change it, just like CAs currently do. This breaks a lot of network-enshrined 
invariants concerning how EOAs are to transact, and so was dealt with by introducing the 
restrictions mentioned in the previous subsection. 
 
A second criticism (which is a bit of a double-edged sword) is the simplicity of EIP-5806; there's 
some sentiment that the rewards due to accepting EIP-5806 might not be worth the cost, since it 
only enables execution abstraction and not much else. Every other validity restriction remains 
network-defined for EOAs which opt in to EIP-5806, in contrast to other somewhat similar EIPs 
which we discuss in the following sections. 

Programmability via EIP-3074 
The EIP-3074 initiative is currently the most discussed proposal for introducing programmability 
to EOAs, and enabling them to behave a bit more like smart accounts. 
It proposes to allow EOAs to delegate most of their validation logic to specialized contract 
accounts, referred to as invokers,  by superimposing the latter's authorization logic over theirs 
for specific forms of transactions. 
 
This EIP proposes the addition of two new opcodes to the EVM: 
 

-​ [AUTH] which sets a context-variable [authorized] account to act on behalf of a second 
[authority] account, based on the latter's ECDSA signature.  

-​ [AUTHCALL] which sends/implements calls for the [authority] account from/as the 
[authorized] account. 

 
These two opcodes allow an EOA to delegate control to a pre-established CA, and thus, act as 
one through it, without having to deploy a contract and incur the costs and externalities 
associated with that. 



 
Specifications 
EIP-3074 allows transactions to use a [MAGIC] signing format to prevent collisions with other 
transaction signing formats. The active account to which [AUTHCALL] instructions are passed is 
implemented as a context-variable field named [authorized], which only persists through a single 
transaction and must be redefined for every new [AUTHCALL]. 
 
Before addressing the complexities of each opcode, these are the entities involved in a 
EIP-3074 transaction: 
 

-​ [authority]: The primary signing account (an EOA) that delegates access/control to a 
second account, which is typically a contract account. 

-​ [authorized]: The account to which [AUTHCALL] instructions are to be passed for 
execution. In other words, it is the account in which the logic of an [AUTHCALL] is 
executed, on behalf of the [authority], using constraints defined by an [invoker]. 

-​ [invoker]: A subsidiary contract meant to manage the interactions between the 
[authorized] account and the logic of the [AUTHCALL], especially in cases where the 
primary logic of the latter's contract code is gas sponsorship. 
 
Invoker contracts receive [AUTH] messages with a [COMMIT] value from [authority]; this 
value defines the restrictions the account wishes to place on [authorized]’s execution of 
[AUTHCALL] instructions. 
Thus, invokers are responsible for ensuring that the [contract_code] defined in an 
[authorized] account is not malicious and has the ability to satisfy the invariants placed 
by the primary signing account in a [COMMIT] value. 

 
The [AUTH] opcode has three stack element inputs; or more simply – it is defined by three 
inputs which compute a single output. These inputs are: 
 

a.​ authority: which is the address of the EOA which generates the signature 
b.​ offset 
c.​ length 

 
The last two inputs are used to describe a range of modifiable memory from 0 to 97, where: 
 

a.​ [memory(offset : offset+1)] – [yParity] 
b.​ [memory(offset+1 : offset+33] – [r] 
c.​ [memory(offset+33 : offset+65)] – [s] 
d.​ [memory(offset+65 : offset+97)] – [COMMIT] 

 
The variables [yParity], [r] and [s] are collectively interpreted as an ECDSA signature, [magic], 
on the secp256k1 curve over the message: 
 
[keccak256 (MAGIC || chainID || nonce || invoker address || COMMIT)]  



 
where: 
 

-​ [MAGIC] is an ECDSA signature resulting from the combination of the variables: 
-​ [chainID] which is the current chain's EIP 115-compliant identifier used to provide 

replay attack protection on alternate EVM chains with a similar history and less 
economic security. 

-​ [nonce] which is the transaction signer's address’ current nonce, left-padded to 
32 bytes. 

-​ [invokerAddress] which is the address of the contract which contains the logic 
for [AUTH]’s execution. 

-​ [COMMIT] is a 32-byte value used to specify additional transaction validity conditions in 
the invoker's pre-processing logic. 

 
If the computed signature is valid and the signer's address equal to [authority], the [authorized] 
field is updated to the value provided by [authority]. If any of these requirements aren't satisfied, 
the [authorized] field remains unchanged in its previous state, or as an unset value. 
 
The gas cost for this opcode is computed as the sum of: 
 

a.​ A fixed fee for the [ecrecover] precompile and extra for a keccak256 hash and some 
additional logic, valued at 3100 units 

b.​ A memory expansion fee which is calculated similarly to the [RETURN] opcode, and 
applied when memory is expanded past the specified range of the current allocation (97 
units) 

c.​ A fixed cost of 100 units incurred for a warm [authority] and 2600 units for a cold one to 
prevent attacks due to mispricing of state-accessing opcodes. 

 
[AUTH] is implemented to not modify memory, and takes [authority]’s value as an argument so 
that it is trivial to verify its value from the provided signature.  
 
The [AUTHCALL] opcode has seven stack element inputs which are used to compute a single 
stack element output. 
It has the same logic as the [CALL] opcode, i.e.; it is used to send message-calls into an 
account and trigger specific logic in its contracts. The only deviation in their logic is that 
[AUTHCALL] is designed to set the [CALLER]’s value before proceeding with execution. 
 
Thus, [AUTHCALL] is used by the [authority] to trigger context-specific behavior in [authorized] 
with logical checks proceeding as follows: 
 

a.​ Check for [authorized]’s value. If unset, the execution is deemed invalid and the frame is 
immediately exited. This helps prevent unfair charges due to unprecedented failures. 

b.​ Checks for the gas cost of [authorized]’s intended behavior. 
c.​ Checks for the [gas] operand's EIP 150 compliant-value. 



d.​ Checks for the availability of the total gas cost –[value]– in [authority]’s balance. 
e.​ Execution occurs after deduction of [value] from the balance of [authority]’s account. If 

[value] is greater than their balance, the execution is invalidated.  
 
The gas cost for [AUTHCALL] is computed as the sum of: 
  

-​ A fixed cost for calling [warm_storage_read] 
-​ A memory expansion cost [memory_expansion_fee]; which is calculated similarly to the 

gas cost for the [CALL] opcode 
-​ A dynamic cost [dynamic_gas] 
-​ The execution cost of the subcall [subcall_gas] 

 
The data returned from an [AUTHCALL] is accessed through:​
 

-​  [RETURNDATASIZE] – which pushes the size of the return data buffer onto the output 
stack 

-​ [RETURNDATACOPY] - which copies the data from the return data buffer to memory. 
 
To bring it all together with much less of the tech-speak; Ethereum transactions typically specify 
two values: 
 

1.​ tx.origin - which provides authorization for the transaction. 
2.​ msg.sender - in which the transaction actually occurs. 

In EOAs, as previously mentioned, authorization is tightly coupled with execution, i.e.; (tx.origin 
== msg.sender). This simple invariant is the biggest deterrent to most of the issues we 
explained in the “Accounts and Transaction Validity” subsection of this report. 
 
[AUTH] messages from [authority] allows it to offset the tx.origin function to [authorized], while 
remaining the msg.sender. It also allows it to define restrictions to this privilege using a 
[COMMIT] value. 
[AUTHCALL] then allows [authorized] to access a contract's logic, using an [invoker] as an 
intermediary to ensure the contract it wishes to access is harmless. That is, for every 
[AUTHCALL], [authorized] is to specify a particular [invoker] for their [COMMIT]. 
 
Potential Applicability/Use Cases 
EIP 3074 is primarily responsible for allowing EOAs to delegate their authorization logic to a 
different account, however its open design enables a lot more in different contexts. 
The entire validation logic of an EOA can be abstracted by applying various 
constrictions/innovations to the invoker as necessary, some of the possible designs based on 
their target logic include: 
 

-​ Nonce logic: EIP-3074 allows the EOAs nonce to remain untouched after sending an 
[AUTH] message, meanwhile its nonce for every [AUTHCALL] depends on what invoker 



it is interacting with. In this way, it enables nonce parallelism for EOAs, so that they can 
send out multiple non-overlapping [AUTHCALL]s as they wish to. 

 
-​ Gas payment logic: As specified in the EIP, invokers can be designed to allow gas 

sponsorship. As such, the gas fees for a user's [COMMIT] could be deducted from the 
transaction's origin, or from any supportive account, whether a personal one or a 
service-based relay (gas sponsorship services). 

 
Also, execution logic is intuitively abstracted; after all the invoker (which is a CA) is now 
responsible for sending transaction requests behalf of the EOA. 
 
Criticisms 

-​ Invoker Centralisation 
-​ Quoting one of its authors: “I would not expect wallets to expose functionality 

to sign over arbitrary invokers …”. 
-​ Perhaps the biggest problem poised by the 3074 initiative is that innovation atop 

it will very easily tend to permissioned and proprietary deal flows; just like the 
current iterations of Ethereum's MEV and PBS markets. By default, invoker 
contracts need to be greatly audited in order to prevent even worse attacks than 
are currently possible. This will inevitably tend to an ecosystem where only a 
handful of invoker contracts developed by influential figures will be adopted as 
the default for wallet developers. Thus, it boils down to a tradeoff between taking 
the hard decentralized pathway of constantly auditing and supporting invoker 
contracts at the risk of users’ security; and simply adopting invoker contracts from 
established and reputable sources with better guarantees for user security and 
less oversight on the contract's safety. 

-​ Another aspect of this point is the cost function associated with designing, 
auditing, and marketing a functional and safe invoker. Smaller teams will almost 
always be outdone by bigger organizations –especially on the marketing front– 
which already have some established reputation, even if their product is better. 

 
-​ Forward-Compatibility Issues 

-​ EIP-3074 entrenches the ECDSA signature scheme, since it is still considered 
more valid than the authorization scheme introduced via the invoker. While there 
are arguments that quantum-resistance isn't currently a definitive problem, and 
that there's much worse at stake in a future where ECDSA is corruptible; 
Ethereum's somewhat unstated aim is to always be ahead of such problems. 
Potentially sacrificing quantum- and censorship-resistance for marginal 
improvements in UX might not be the best of choices in the near future. 

-​ Another point on the forward-compatibility argument is that while the benefits of 
3074 were still being assessed, ERC-4337 (which doesn't require any protocol 
changes) now has a great market, so you have to be compatible with it too to 
avoid compartmentalisation of ecosystems. 

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-3074.md#another-sponsored-transaction-eip
https://ethereum-magicians.org/t/eip-3074-auth-and-authcall-opcodes/4880/43


-​ Even with the native account abstraction roadmap, the [AUTH] and [AUTHCALL] 
opcodes would eventually become obsolete in the EVM, introducing a great deal 
of technical debt to Ethereum in order to deliver a marginal amount of UX 
improvement. 

 
-​ ECDSA Scheme Irrevocability 

-​ After sending an [AUTH] message and delegating control, the EOA is expected 
to avoid the usual private key authorization scheme, as sending out a “normal” 
transaction causes the authorization it delegated to every invoker to be revoked. 

-​ The ECDSA scheme remains strictly superior to any other scheme which the 
associated contracts might use, meaning that a loss of private keys would result 
in a total loss of the account's assets. 

 

Programmability via EIP-7702 
This proposal had initially set out as a somewhat minimalistic variation of EIP 3074, and was 
even meant to be an update to it. It was birthed to address the supposed inefficiencies of EIP 
3074, especially the concerns around its incompatibility with the already flourishing 4337 
ecosystem and the native account abstraction proposal– RIP 7560. 
 
Its approach is the addition of a new EIP 2718-compliant transaction type 
–[SET_CODE_TX_TYPE]– which allows an EOA to behave as a smart account for specified 
transactions. 
 
This design enables the same features as EIP 5806 and some more, while remaining 
compatible with the native account abstraction roadmap and existing initiatives. 
 
Specifications 
EIP-7702 allows an EOA to “import” the code content of a contract through a 
[SET_CODE_TX_TYPE] 2718-compliant transaction of the format: 
 
rlp([chain_id, nonce, max_priority_fee_per_gas, max_fee_per_gas, 
gas_limit, destination, value, data, access_list, authorization_list, 
signature_y_parity, signature_r, signature_s]) 
 
This payload is entirely similar to that of EIP 5806, except that it introduces an “authorization 
list”. This list is an ordered sequence of values of format: 
 
[[chain_id, address, nonce, y_parity, r, s], ...] 
where each tuple defines the [address]’ value.  
 
Before proceeding, the parties involved in a SET_CODE_TX_TYPE are: 

https://x.com/adietrichs/status/1787886844689916300?s=19


-​ [authority]: which is the EOA/primary signing account  
-​ [address]: which is the address of an account containing delegatable code. 

 
When [authority] signs a SET_CODE_TX_TYPE specifying [address], a delegation designator is 
created. This is a “pointer programme” which causes all code retrieval requests due to the 
[authority]’s actions at any instant to be channeled to [address]’ observable code. 
 
For each [chain_id, address, nonce, y_parity, r, s] tuple, the logic flow of a 
7702-type transaction is as follows: 
 

a.​ Verification of [authority]’s signature from the provided hash using: authority = 
ecrecover(keccak(MAGIC || rlp([chain_id, address, nonce])), 
y_parity, r, s] 

b.​ Prevention of cross-chain replay attacks and other attack vectors by verification of the 
chain's ID. 

c.​ Checking whether [authority] already has code content. 
d.​ Nonce check to ensure [authority]’s nonce is equal to the nonce included in the tuple. 
e.​ If the transaction is [authority]’s first SET_CODE_TX_TYPE transaction, it is charged a 

PER_EMPTY_ACCOUNT_COST fee. In the case that its balance is less than the value 
of this fee, the operation is abandoned. 

f.​ Delegation designation occurs, wherein the code of [authority] is set to the a pointer of 
the [address]. 

g.​ The nonce of the signer –[authority]– is increased by one. 
h.​ [authority] is added to a list- accessed addresses, which (oversimplified) is a set of 

addresses which are made such that the reversion of a scope of a transaction from them 
causes them (the address) to be set back to their previous state, before the reverted 
scope was entered. This is as defined in EIP-2929 to enable caching of reusable values 
and prevent unnecessary charges. 

 
Phew! To tie it all back; this EIP allows EOAs to send transactions which set a pointer to a 
contract's code, allowing them to implement this logic as their own in subsequent transactions. 
In this way it is strictly stronger than EIP 5806, because it allows EOAs to actually have code 
content (as opposed to EIP 5806 which simply allows EOAs to send delegate-calls). 
 
 
Potential Applicability/Use cases  

-​ Execution Abstraction 
-​ While it could be argued that it isn't an abstraction anymore since the EOA 

actively takes in the logic it wishes to execute, it still isn't the “primary owner” of 
said logic. Also, it doesn't directly contain logic, it simply specifies a pointer to 
the logic (in order to reduce computational complexity). So we're going with 
execution abstraction! 

 
-​ Gas Sponsorship 

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-7702.md#code-pointer
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-2929.md


-​ While the require(msg.sender == tx.origin) invariant is broken to allow 
self-sponsorship, the EIP still allows the integrations of sponsored transaction 
relayers. However, the caveat is that such relayers need a reputation- or 
stake-based system in order to prevent griefing attacks. 

 
-​ Conditional Access Policies 

EOAs can point only to a specific portion of the account's code, so that only the logic of that 
portion is executable in their context. 
 

-​ Cross-chain Smart Contract Deployment 
-​ Due to its non-restrictive nature, a EIP-7702 transaction could allow a user to 

access the CREATE2 opcode and use it to deploy bytecode to an address 
without any other restrictive parameters such as fee market logic (e.g. EIP-1559 
and EIP-4844). This allows the address to be recovered and used across multiple 
state machines, with the same bytecode, where its account on each chain is then 
responsible for defining the other context-variable parameters. 

  
Criticisms 

-​ Lack of backwards-compatibility 
-​ As EIP-7702 is still very recent, there hasn't been a lot of prototyping and testing 

for its dependencies and potential disadvantages, but its minimalistic model 
guarantees it a lot of flexibility, and thus utility, in different contexts. However it 
breaks way too many invariants and isn't backwards compatible. 

-​ Some of its logic includes: 
1.​ Mid-transaction EOA nonce alteration: EIP-7702 doesn't limit any 

opcodes in a bid to ensure consistency. This means an EOA can 
implement opcodes such as CREATE, CREATE2 and SSTORE while 
executing a EIP-7702 transaction, allowing its nonce to be increased. 

2.​ Allowing accounts with a non-zero codeHash value to be transaction 
originators: EIP-3607 was implemented to decrease the potential fallout of 
an “address collision” between EOAs and CAs. An address collision 
occurs when the 160-bit value of an EOA’s address is wholly equivalent to 
that of a CA's address. Most users aren't savvy to the actual contents of 
an account (or even the difference between an account and an address!), 
allowing address collisions means that an EOA could masquerade as a 
CA and attract user funds in a long-winded bit to eventually steal it all. 
EIP-3607 addressed this by stipulating that accounts which contain code 
should not be able to spend their balance using their own authorization 
logic. However, EIP 7702 breaks this invariant in order to enable EOAs to 
remain autonomous even after gaining some programmability.  

 
-​ Resemblance to EIP-3074 

-​ Signing over an account's address instead of its code content is basically just like 
3074's scheme with invokers. It doesn't provide strict guarantees around 



cross-chain code content consistency, since an address could take on a different 
code content on different chains. This means that an address whose code 
content contains the same logic on one chain could be predatory or outright 
malicious on another chain, and this could lead to loss of user funds. 

 
 
Allowing EOAs to execute code in any manner comes with pitfalls and potential blindsides; but it 
comes with unchallenged benefits to UX, if done well. 
Ethereum's culture of open discussion makes it a great testing ground for such innovations 
since almost every implication of every design is thoroughly deconstructed by subject experts. 
 
EIP-7702 is currently the poster child for mechanisms that seek to bring EVM programmability to 
EOAs, having been marked as a replacement for EIP 3074's slot in the Pectra upgrade. It 
inherits the open design of 3074's mechanism while greatly restricting what the logic an EOA 
chooses to execute can do or not. It also enables a lot more by avoiding 3074's restrictions to 
certain classes of opcodes. 
 
While there's still some trivial amount of work to be done on the proposal's design, it has already 
garnered a lot of goodwill and support from developers, especially since it directly has Vitalik 
backing it. 
 
While there are claims that this approach to account abstraction might be even better than 
smart accounts, since it requires less changes and isn't as complex, and EOAs are already 
enshrined; we must not forget the ultimate goal of quantum resistance at every level of the 
Ethereum network, which is currently infeasible at its very core due to its utilization of 
ECDSA-based signature schemes for EOA authorization. 
 
Thus, EOA programmability is to be seen as a stop in the path and not the destination. It 
supercharges EOAs and enables better UX while remaining compatible with the ultimate 
account abstraction goal of smart accounts. 
 
In our next report, we will be diving into EOA migration schemes to see how well they fit on the 
account abstraction roadmap, stay tuned! 
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