
Project brief

Ultimate Obby
Creator
Documentation

Owners and Varun Aiyar dylanhulin.focus@gmail.com

Welcome to the Documentation for the Ultimate Obby Creator [Remixable
Framework]!

This documentation is structured in the following way:

●​ General Overview: An explanation of what the Framework provides
right out of the box.

●​ Manual: How to use this framework to create a Competitive Obby
game without touching a single line of code!

●​ General QnA: Answers to what we think would be common questions
from creators using this framework that do NOT know how to code.

●​ Technical Overview: An explanation of what the Scripts inside the
Framework do and ideas on how to expand on them.

General Overview
The Obby Framework comes with 4 Example Obby Stages.
It includes the following Script components:

mailto:risheekaiyar10@gmail.com
mailto:dylanhulin.focus@gmail.com

-​ ObbyGameManager.ts
-​ EventRegistry.ts
-​ LocalComponents.ts
-​ ObbyUI.ts
-​ ObbyUIComponents.ts
-​ Persistence.ts
-​ QuestsManager.ts
-​ TriggerComponents.ts
-​ MoveAndRotate.ts (special thanks to Scott Slater (SlaterBBurn) for the

MoveAndRotate script from his Animation package!)
It includes the following UI Components:
UI Components:

-​ StageHUD

-​
-​ StageProgressHUD

-​
-​ RaceTimerHUD

-​
-​ NotificationsHUD - Shows an animated Text Notification to the Player

You do not need to worry about what each of these scripts do to use this framework. In
fact, you don’t need to touch a single line of code!

(Note: These scripts will be explained in greater detail in the Technical Overview section)

Manual

How the Example Stages are created (and how you
can create your own Stages!)
Each Stage in the framework needs the following things as its children:

●​ Start Spawn Point Gizmo
●​ Start Trigger
●​ Checkpoint Triggers (as many as you need)
●​ Finish Trigger

These elements are what define a Stage for the framework. Otherwise, it is not
registered. We shall now explain how to add each of these elements for your own Stage.

(You can watch this video https://youtu.be/oAv4dAKNXBk for a quick timelapse of the
process described in the following steps)

When you create an Empty Object in the editor as a Parent entity to start building your
Stage, add a Spawn Point Gizmo that is named according to the following convention:
Stage_{yourStageIndex}_StartPoint
So if you are creating Stage 10, it would be Stage_10_StartPoint

https://youtu.be/oAv4dAKNXBk

​
​
To create a Start Trigger, simply place a normal Trigger Gizmo wherever you want the
starting line of your Stage to be, and attach the
TriggerComponent:ObbyStageStartTrigger Script component to it.

To create a Checkpoint, first create an Empty Object and name it according to the
following convention: Stage_{stageIndex}_Checkpoint_{checkpointIndex}

So if you are creating the 5th checkpoint for Stage 5, it would be Stage_5_Checkpoint_5

Inside this Empty but now renamed Object, place a simple Trigger Gizmo and rename it
whatever you like. Let’s say CheckpointTrigger for clarity’s sake. Now, the important part
is to attach the TriggerComponent:CheckpointTrigger Script component to it.

Remember to set the correct Stage ID and Checkpoint ID in the Script’s properties
panel on the right side to match your Checkpoint’s name!

Now, you need a Spawn Point for the Checkpoint so the player automatically respawns
at a checkpoint if they die after crossing it. Simply create a Spawn Point Gizmo inside
your Checkpoint Parent and name it according to the convention:
Stage_{stageIndex}_Checkpoint_{checkpointIndex}_SP

(Note that you must not stray away from these conventions!)

Now, you just need a Finish Trigger for your Stage. Simply add a new Trigger Gizmo
under your Main Stage parent and attach the
TriggerComponent:ObbyStageFinishTrigger Script component to it.

The important part here is to mention the correct stage ID for the Finish Trigger in the
Properties panel on the right.

Lastly, but most importantly, select the OBBY_GAME_MANAGER under the SCRIPTS
entity in the Hierarchy and change the totalStagesInWorld property to match the number
of Stages you now have in the World.

And that’s it!

Now you can add any meshes or other art elements you want to add to your Stage
available from the framework’s ASSETS entity (or add your own!)

Hit Preview! If you followed the above steps correctly to create your own Stage 5, you
should be able to navigate to it upon completing Stage 4 using the Stage Navigation
Buttons at the top of the UI.

General QnA

1)​How do I add a Leaderboard for my new Stage?
A: Create a new Leaderboard from the Editor’s Systems menu. If this is a Best
Time leaderboard, make sure the order is Ascending (since lower times are better
in this case), name it whatever you want. In the Persistence.ts script, add your
leaderboard entry in these two places.

(Under these as LB_STAGE_5 or whatever you like)

And in the switch statement here in the GetLeaderboardKey() function

2)​ Is there a limit to the number of stages I can add in the game using
this framework?
A: No, however, you need to stay within the recommended vertex count of
Horizon Worlds to provide a smoother experience to players.

3)​ Is there a limit to the number of checkpoints I can add in the game
using this framework?
A: No, however the CUI_StageProgressHUD will dynamically construct flag icons
on the UI based on the number of Checkpoints you add in the stage. So, make
sure to have a reasonable amount. Or if you want to get rid of the flag icon or
make it smaller, edit the code in StageProgressHUD inside ObbyUIComponents.ts
here

4)​How can I add a Quest?
A: Create the type of Quest you want and add it in the QuestsManager.ts script.
You will need to write custom logic to update Quest Progress based on the type
of Quest you want to add.

5)​ I don’t want players to be automatically teleported to the next Stage.
What should I do?
A: Select the OBBY_GAME_MANAGER entity in the Hierarchy and set the
autoTeleportToNextStage boolean property to false. Now you either place your
own Trigger Gizmo at the end of a Stage with a
TriggerComponents:ObbyStageTeleportTrigger script attached with the correct
stageID and use your own custom logic.

6)​How do I create my own Traps?
A: Just design your own Trap asset and add a Trigger Gizmo with the
TriggerComponents:KillTrigger script attached to it. The player will respawn to
the Stage Start Point or Checkpoint based on their progress in that Stage.

Technical Overview
Back to the Scripts and UI Components! We shall now explain what each of these do.
Script components:

-​ ObbyGameManager.ts - This script performs several crucial tasks.
-​ It dynamically finds all Start Spawn Points and Checkpoints for each Stage

in the World based on a regex that looks for entities named based on the
naming conventions we followed in the previous section of the
documentation.

-​ It keeps track of the stage any given player is actively playing
-​ It handles teleporting Players to the Stages they select using the Stage

Navigation Buttons in the Stage HUD and from ObbyStageTeleportTrigger
calls

-​ It calls functions from Persistence to save Player Progress at appropriate
places in the gameplay loop and also updates Leaderboards and Quests
via calls to Persistence and QuestsManager respectively

-​ It keeps track of which stage any given player is actively playing.
-​ It respawns the player at their most recent checkpoint on the stage they

are actively playing
-​ EventRegistry.ts

-​ This script is a simple registry of Network Events that are sent and
received across the codebase

-​ LocalComponents.ts
-​ This script is where all Local Scripts that run on the Player’s device locally,

should be defined. It contains the LocalRaceTimeManager, which itself is
spawned from the ObbyUIManager for each player as an owner, so that
their race time can be calculated locally.

-​ ObbyUI.ts
-​ This script contains the ObbyUIManager class which holds references to

all the UI Gizmos in the World and retrieves their UI Components on start()
so that it can call functions on these UI Components

-​ ObbyUIComponents.ts
-​ This script mainly contains the visual elements of the various UI in the

game. It is where ALL the UI Components are defined.
-​ Persistence.ts

-​ This script contains references to all Persistent Variables and
Leaderboards in the World and functions to update them, that are called
from ObbyGameManager

-​ QuestsManager.ts
-​ This script contains references to all Quests in the World and a function to

check whether those Quests were completed
-​ TriggerComponents.ts

-​ If you’ve read this far, you know this Script contains all script components
that are supposed to be attached to a Trigger Gizmo in the game World.
The component names are self explanatory.

-​ MoveAndRotate.ts (special thanks to Scott Slater (SlaterBBurn) for the
MoveAndRotate script from his Animation package!)

-​ We recommend reading his package documentation Animation Pack |
Devpost to understand how to use it.

UI Components:
-​ StageHUD

-​
-​ StageProgressHUD

-​
-​ RaceTimerHUD

https://devpost.com/software/animation-pack
https://devpost.com/software/animation-pack

-​
-​ NotificationsHUD - Shows an animated Text Notification to the Player

	Project brief
	Ultimate Obby Creator Documentation
	General Overview
	Manual
	How the Example Stages are created (and how you can create your own Stages!)
	General QnA
	1)​How do I add a Leaderboard for my new Stage?
	2)​Is there a limit to the number of stages I can add in the game using this framework?
	3)​Is there a limit to the number of checkpoints I can add in the game using this framework?
	4)​How can I add a Quest?
	5)​I don’t want players to be automatically teleported to the next Stage. What should I do?
	6)​How do I create my own Traps?

	Technical Overview

