
POSIX Compliance

Google Summer of Code Program 2020 Project Proposal

Eshan Dhawan
eshandhawan51@gmail.com

Jaypee Institute of Information Technology, Noida
NCR, India

+91 9897368739
#rtems IRC: eshandhawan51

Project Abstract.

Portable Operating System Interface (POSIX) is a set of standards that are defined by the
IEEE society. It defines various APIs along with command-line interfaces and utility
interfaces to maintain software compatibility between various operating systems.
POSIX Compliance provides maximum flexibility to write applications that can be executed
on various platforms and increases the portability of code. The RTEMS developers
community has kept it well compliant with various standards. But with the advancement of
time and technology, its up-gradation becomes an interminable task.
POSIX Compliance will require to add various APIs and different interfaces as specified by
the POSIX IEEE Standard 1003.1TM. They can either be ported from other platforms with a
compatible license or will be written from scratch as required. There would be a need to
write architecture-specific code as well.
 In RTEMS, Newlib provides the C library including libm, so for improving POSIX Compliance,
we would also be required to add various functions and headers to Newlib as well. Newlib
also requires math headers also

Project Description.

With the advancement of technology there comes an indefinite task of keeping up with the
latest standards. The developers’ community of the Real-Time Executive for Multiprocessor
Systems (RTEMS), has kept the systems well compliant with various standards like POSIX
IEEE Standard 1003.1TM, C99, C11, and various profiles of FACE and SCA. This enables
RTEMS to execute on various devices, architectures and environments.

But with non-stop advancements in technology, it becomes an interminable task, these
standards keep updating and hence creates a need for up-gradation of their compliance
status too.

 Different embedded systems have different sets of capabilities, some real-time embedded
systems like small embedded systems need a limited set of operating system functionality
while others use a surprising set of methods and reusable libraries. Having more POSIX
increases the ease of porting libraries. Which eases building the systems. That's the goal --
“Make it easier to port software”. The stronger the software base, the easier it is to port
software.

The goal of the project is to update the compliance status of RTEMS with POSIX IEEE and

FACE general purpose profile. This shall require the addition of various functions, headers,
documentation and test-suites. They shall be added as the project advances.

Header files and related functions that are yet to be implemented

●​ fenv.h:-This header is designed to support the floating-point exception status flags
and directed-rounding control modes required by the IEC 60559:1989 standard, and
other similar floating-point state information. It has an architecture-specific
implementation and its current implementation status can be found here
#https://docs.google.com/document/d/1uKyFjzfTyUTd-CBtc0LgEiE5xSsUjTBzaV_8F3
Ri7cs/edit?usp=sharing

●​ File descriptor functions​ :- All *at() functions need to be implemented,
RTEMS has its own File Descriptor Implementation. It cannot be ported from other
systems. It has to be implemented from scratch. List of missing functions can be
found at List of missing RTEMS File descriptors ​
Some implementation can be taken from ​
https://github.com/lattera/freebsd/blob/master/contrib/openbsm/bin/auditdistd​

●​ wordexp.h:- It contains definitions for word-expansion types. It contains two
functions.Since the header cant be completely supported by RTEMS. So it can either
be ported with tweaks in FreeBSD,musl or be written from scratch.Depending on
what is favourable.​

●​ ftw.h:- It contains the definition of File tree traversal. This defines the functions
‘ftw()’ and ‘nftw()’. ftw() was declared obsolete by POSIX-2008 but still needs to be
added for backward compatibility. Its implementation can be taken from musl.
musl implementation:
ftw.h : https://git.musl-libc.org/cgit/musl/tree/include/ftw.h
ftw.c: https://git.musl-libc.org/cgit/musl/tree/src/legacy/ftw.c
nftw.c: https://git.musl-libc.org/cgit/musl/tree/src/misc/nftw.c​

●​ confstr() from <unistd.h>​ - Method to get configurable variables. It is missing
from FACE GPP. It can be ported from
https://github.com/udp/freebsd-libc/blob/master/gen/confstr.c​.​

●​ Port aio.h to Newlib:- This header defines real-time asynchronous input and
output. The header has been already implemented completely in RTEMS (present in
cpukit/include/aio.h) but now needs to be added to Newlib.

●​ Add functions to math.h:- Most of the functions are implemented in math.h but

still some functions need to be ported. The functions can be ported from FreeBSD
The list of missing functions can be found here: Math.h missing functions​

●​ Add tests for clock_nanosleep() and timer_create():- These functions are
defined in time.h . They are already implemented but tests need to be added for
them.There need to be tests added for timer_create() and clock_nanosleep() with
CLOCK_MONOTONIC. I will also add tests for other supported functions of time.h
whose tests are not present in the test suite.

●​ fmtmsg.h​ - Contains definitions for message display structures. fmtmsg is the only
method under this header file. It will be ported from FreeBSD.

https://docs.google.com/document/d/1uKyFjzfTyUTd-CBtc0LgEiE5xSsUjTBzaV_8F3Ri7cs/edit?usp=sharing
https://docs.google.com/document/d/1uKyFjzfTyUTd-CBtc0LgEiE5xSsUjTBzaV_8F3Ri7cs/edit?usp=sharing
https://docs.google.com/document/d/1n-JOFUbFn6V1kViAGWsEGbVHL9MxlMyKP0BbZhEA1Rs/edit?usp=sharing
https://github.com/lattera/freebsd/blob/master/contrib/openbsm/bin/auditdistd
https://git.musl-libc.org/cgit/musl/tree/include/ftw.h
https://git.musl-libc.org/cgit/musl/tree/src/legacy/ftw.c
https://git.musl-libc.org/cgit/musl/tree/src/misc/nftw.c
https://github.com/udp/freebsd-libc/blob/master/gen/confstr.c
https://docs.google.com/document/d/1xwbbkFkwBpVY7AKrP6zkzuDwOspN3tloVvAF4oHoBDQ/edit?usp=sharing
https://docs.google.com/document/d/1xwbbkFkwBpVY7AKrP6zkzuDwOspN3tloVvAF4oHoBDQ/edit?usp=sharing

https://github.com/freebsd/freebsd/blob/master/include/fmtmsg.h​
https://github.com/freebsd/freebsd/blob/master/lib/libc/gen/fmtmsg.c ​

●​ search.h​ - I will ensure that all search capabilities in newlib are enabled
(newlib/libc/search) and will review the search.h capabilities against POSIX for
completeness and compliance.

●​ sys/ipc.h - Contains definitions for XSI interprocess communication access
structure. ‘ftok()’ is the only method in this header file. It will be ported from
FreeBSD. ​
https://github.com/freebsd/freebsd/blob/master/sys/sys/ipc.h
https://github.com/freebsd/freebsd/blob/master/lib/libc/gen/ftok.c​

Project Deliverables​

​​ GSoC Timeline: https://developers.google.com/open-source/gsoc/timeline​

June 1 (coding begins) :
 When the coding period begins I will ensure :
➢​ All the Required BSP’s build with completed hello world task
➢​ I will have all the appropriate sources identified from where the code is to be ported​

 or be written from scratch (as required)
➢​ I would make myself well versed with the coding conventions to be followed in

RTEMS and Newlib.
➢​ Will have the necessary repositories forked on GitHub where my mentors can track

my progress.
➢​ Get well versed with git commands
➢​ Add a few tests for present headers

June 29 - July 3 (Phase 1 Evaluation) –
➢​ Implement fenv.h for ARM and AARCH64
➢​ Implement fenv.h to SPARC (Will require implementation from the base since

there is no related folder in libm/machine)
➢​ Add confstr() from unistd.h
➢​ Implementation of fmtmsg.h​

July 27-31(Phase 2 Evaluation) –
➢​ Implement ftw.h
➢​ Add file descriptor functions (List of missing RTEMS File descriptors)
➢​ Enable the search.h features

August 24-31 (Final Evaluation) -
➢​ Port or write from scratch various Math.h functions.

(detailed plan is shared in project schedule)
➢​ Implement wordexp.h
➢​ Add sys/ipc.h

September 8 (Final Results Announced)​

➢​ Refine my code with the mentor's feedback.
➢​ Update documentation for the changes I have made.
➢​ Update my blog and share my experience with others. ​

https://github.com/freebsd/freebsd/blob/master/include/fmtmsg.h
https://github.com/freebsd/freebsd/blob/master/lib/libc/gen/fmtmsg.c
https://github.com/freebsd/freebsd/blob/master/sys/sys/ipc.h
https://github.com/freebsd/freebsd/blob/master/lib/libc/gen/ftok.c
https://developers.google.com/open-source/gsoc/timeline
https://docs.google.com/document/d/1n-JOFUbFn6V1kViAGWsEGbVHL9MxlMyKP0BbZhEA1Rs/edit?usp=sharing

Post GSOC - I have a keen interest in OS and kernel and RTEMS has everything related to
it. I will continue my work with this community and try to gain more knowledge. I will get
more involved with old and new projects and will try to help new developers join in future.

Proposed Schedule

March 16 – March 31 (Application Period)

➢​ Join RTEMS developers mailing list.
➢​ Build and Install RTEMS for required architectures.
➢​ Complete ‘HELLO WORLD’ task for those architectures.
➢​ Draft Proposal for the summer and ask the experts to review it.
➢​ Set deliverables and project schedule as well as complete the pending parts
➢​ Further, improve the proposal as per the suggestions from the community
➢​ Set up my GitHub account for development and fork the required repositories.

March 31 - May 4 (Acceptance Waiting Period)

➢​ Learn how to port code from FreeBSD as well as repositories with a compatible

license
➢​ Learn how to port architecture-specific code
➢​ Also, learn how to write architecture-specific codes from scratch
➢​ Get familiar with the RTEMS Coding Conventions.
➢​ Go through the previous project related work
➢​ Take a rough idea about various standards from their documentation.
➢​ Also, go through their implementation in FreeBSD and NetBSD.

May 4 - June 1 (Community Bonding Period)
➢​ Join RTEMS and Newlib mailing lists and get involved with the mentors and other

experts present.
➢​ Get familiar with the process of contribution to the organizations.
➢​ Plan my complete day to day tasks after complete discussion with the mentors.
➢​ Implement some basic Macros, constants and integers to Newlib

June 1- July 3 (Phase 1

Fenv.h will be implemented for ARM, AARCH, SPARC and PowerPC and other available
architectures. I will need to set up toolchains of the BSPs’ for the purpose of testing the
implementation.fenv has an architecture-specific implementation. So I will go through
FreeBSD, NetBSD and musl to port code to Newlib.
I will also be implementing missing functions such as confstr() from unistd.h and which
can be ported from FreeBSD or musl as well.It will be added to RTEMS libbsd. ​
I will also add fmtmsg.h both can potentially be ported from FreeBSD. fmtmsg.h has as
single-function fmtmsg() that is not present in Newlib and need to be added. ​

July 3 – July 31 (Phase 2)
After the first phase, I plan to implement File Descriptor functions such as fstat(), fcmod()
and other missing functions whose list can be found here: List of missing RTEMS File
descriptors.
Since RTEMS has its own File Descriptor implementation. the functions have to be written
from scratch.
Also,I plan to implement ftw.h it contains functions like ftw() and nftw(). They can be ported
from various potential sources like FreeBSD, NetBSD and musl. its implementation also

https://docs.google.com/document/d/1n-JOFUbFn6V1kViAGWsEGbVHL9MxlMyKP0BbZhEA1Rs/edit?usp=sharing
https://docs.google.com/document/d/1n-JOFUbFn6V1kViAGWsEGbVHL9MxlMyKP0BbZhEA1Rs/edit?usp=sharing

contains a lot of dependencies among headers, which I would try to decrease as much as
possible.​
I will also ensure to enable the search.h functionality in Newlib (newlib/libc/search). I will
review the search.h capabilities against POSIX for completeness and compliance.

July 31 – August 31 (Final Phase)

In this phase, I will implement methods missing from math.h which are not present in
Newlib. Firstly I will add the function prototype of missing to math.h then they can be
ported to newlib from various sources. For the list of missing functions and there sources
details can be seen in the document: Math.h missing functions.
I also plan to implement wordexp.h it can’t be completely supported by RTEMS but if we
remove a few test cases then it might work. For that, it either needs to be implemented
from scratch or be ported with major tweaks.
Newlib also lacks ipc.h implementation it can be ported from FreeBSD or musl to Newlib.​

Future Improvements

➢​ Enhance support for POSIX mutex types
➢​ Support for sigaction() sa_flags Values
➢​ mq_open lacks the support of the “mode" argument
➢​ sem_open lacks the support of the “mode" argument​

Continued Involvement

I have a keen interest in kernel and OS as well as like to study various computer
architectures and embedded systems.

I would definitely like to continue to contribute and learn from the RTEMS community. I
believe I can do this by keeping track with the ongoing mailing lists and submitting
patches as well.

I would also be delighted to get involved and learning and developing hardware proximity
code and device drivers.

Eventually, I would also be interested in being on the mentoring side of GSOC Projects
mentoring future students, Once I have learned enough.

Conflict of Interests or Commitment

I might have final exams in the month of May but the dates cannot be confirmed due to the
recent outbreak of COVID-19 virus. Other than that I don't have any engagement during the
project period.

Major Challenges foreseen

●​ Understanding the FreeBSD and NetBSD and musl code ​

●​ Understanding the header dependencies among header files ​

●​ Time Management​

●​ Categorization of feasible functions and priority

References

●​ Linux man pages

https://docs.google.com/document/d/1xwbbkFkwBpVY7AKrP6zkzuDwOspN3tloVvAF4oHoBDQ/edit?usp=sharing

●​ POSIX Wikipedia
●​ https://pubs.opengroup.org/onlinepubs/9699919799/
●​ https://devel.rtems.org/wiki/GSoC/GettingStarted
●​ RTEMS Documentation
●​ https://lists.rtems.org/pipermail/devel/

Relevant Background Experience

●​ I made a project to manage a criminal database written completely in C. Also I
made a project to calculate cab fares using data structures and algorithms in C.​

●​ RTEMS contributions:​
→ https://lists.rtems.org/pipermail/devel/2020-March/058727.html : being
reviewed ​
→ https://lists.rtems.org/pipermail/devel/2020-March/058755.html​

Personal
I am Eshan Dhawan, I am a Second-year student pursuing Bachelors in Computer Science
Engineering from JIIT (Jaypee Institute of Information Technology), Noida, INDIA.
I was introduced to RTEMS by one of my seniors who had previously contributed to the
organization. I have some theoretical knowledge related to operating systems and
embedded systems. Also have worked with the raspberry pi and Arduino nano for various
college projects.

Experience
Free Software Experience/Contributions (optional):

●​ I am an active member of JIIT OPEN-SOURCE DEVELOPERS CIRCLE (JODC) the
open-source society of our college. I am also one of the few volunteers of the society​
 https://github.com/JIITODC/JODC-TEAM/tree/master/2019-2020​

●​ I also have been a part of the open-source community and have contributed to other
projects as well​

○​ CCEXTRACTOR Contributions (core software), contributed in c. ​
Solved issues in code ​
https://github.com/CCExtractor/ccextractor/pulls?q=is%3Apr+author%3Aesh
andhawan51​

○​ Sample-Platform (Test platform for CCEXTRACTOR),contributed in shell script​
Solved an issue in installation which led to an infinite loop, as well as helped
enhance the login. ​
https://github.com/CCExtractor/sample-platform/pulls?q=is%3Apr+is%3Aclo
sed+author%3Aeshandhawan51​

Language Skill Set

●​ C/C++(4 years, advanced)
●​ JAVA (5 years , advanced)
●​ LINUX SHELL SCRIPTING (6 months, beginners)
●​ PYTHON (2 years , intermediate)

https://en.wikipedia.org/wiki/POSIX
https://pubs.opengroup.org/onlinepubs/9699919799/
https://devel.rtems.org/wiki/GSoC/GettingStarted
https://docs.rtems.org/branches/master/
https://lists.rtems.org/pipermail/devel/
https://lists.rtems.org/pipermail/devel/2020-March/058727.html
https://lists.rtems.org/pipermail/devel/2020-March/058755.html
https://github.com/JIITODC/JODC-TEAM/tree/master/2019-2020
https://github.com/CCExtractor/ccextractor/pulls?q=is%3Apr+author%3Aeshandhawan51
https://github.com/CCExtractor/ccextractor/pulls?q=is%3Apr+author%3Aeshandhawan51
https://github.com/CCExtractor/sample-platform/pulls?q=is%3Apr+is%3Aclosed+author%3Aeshandhawan51
https://github.com/CCExtractor/sample-platform/pulls?q=is%3Apr+is%3Aclosed+author%3Aeshandhawan51

Reference Links and Web URLs (optional):

●​ GitHub : https://github.com/eshandhawan51
●​ LinkedIn : https://www.linkedin.com/in/eshan-dhawan-798359192/
●​ Freenode IRC : eshandhawan51 @ #rtems

https://github.com/eshandhawan51
https://www.linkedin.com/in/eshan-dhawan-798359192/

	POSIX Compliance
	

	Personal
	Experience

