
IoT Smart Fan for Personal Comfort Hub

Andrew Politz, Eric Du, Miles Nash​
 andrewpolitz@berkeley.edu , ericdu@berkeley.edu, miles.r.nash@berkeley.edu

1 Motivation

This project aims to create a “smart fan” that

adjusts its cooling based on room occupancy and

environmental conditions, allowing for more efficient

climate control. HVAC systems are notably inefficient

with the end result being only a slight majority of

workers in an office space being comfortable which is not

only energy inefficient but also harmful to worker

productivity [1]. The HVAC system of a commercial office

building works on the kiloWatt scale and constant

dynamic adjustments to temperature are not as efficient

as single settings. By utilizing smaller module climate

comfort devices like our fan, the office space can make

climate adjustments on an individual scale with energy

consumption on the Watt scale. Additionally by including

wifi and network connection capabilities with a

microprocessor such as the ESP32, these modules can

communicate with the larger network and inform the

building wide control of individual preferences. An

example of this aggregation would be through a

thermostat system such as HomeAssistant [2] or NEST.

​ This project was conducted in partnership with

the Center for the Built Environment (CBE) and

Electrical Engineering and Computer Science

department at the University of California, Berkeley as

part of their ongoing research into smarter HVAC control

systems and personal comfort devices. Previous research

has developed a suite of personal comfort devices (PCDs)

which interface with Home Assistant, an open source

home automation platform, to remotely monitor

workstation temperature conditions and enable building

scale automations.

This next-generation HVAC control system aims

to reduce energy use and improve overall comfort by

aggregating multiple data streams from individual

workstations to make more informed decisions on the

HVAC temperature. The system helps to modernize

existing HVAC systems, as the aggregator (home

assistant in this case) can integrate wirelessly with PCDs

and other modern inputs, analyze them, and present a

single control temperature to legacy HVAC systems

without the need to upgrade the entire system. In the

case of HomeAssistant, a single Raspberry Pi can

perform the needed computations and can be scaled up

for additional computation needs. The Smart Fan PCD

system aims to empower users to improve their personal

comfort through either manual or automatic control of a

5V desk fan to achieve their desired temperature, while

capturing and transmitting ambient temperature, body

temperature (through thermal imaging), and occupancy

data, over MQTT for integration into a building

automation system such as Home Assistant.

2 Design

The design of this project can be divided into

essentially two categories, the circuit components and

the state machine software logic. The circuit design

began with the ideal goal to be able to control any USB

fan with a PWM signal from our microcontroller.

However, the design space for this task is large as fans

on the market run at many varying voltage levels 5V, 9V,

12V, etc. and incorporating these varying voltages into

our design would be a difficult task. The decision was

made to focus on a 5V USB fan. This implementation

includes an Adafruit HUZZAH32 ESP32 Feather, a NPN

transistor, MPC9808 temperature sensor, AMG8833 8x8

thermal camera, rotary encoder, 12 LED NeoPixel ring,

Passive Infrared (PIR) sensor, a 12V to 5V converter, a

5V to 3.3V converter, and a 12V power supply with a

barrel jack.

Figure 1. Circuit schematic for ESP32 and peripheral

connections for fan control.

The ESP32 requires a 3.3V input which is

handled by the 5V to 3.3V converter, while the fan input

is connected to the 5V line via the NPN transistor which

is modulated by a ESP32 signal via the base of the

EECS 149/249A, December 19, 2024, UC Berkeley Andrew Politz, Eric Du, Miles Nash

transistor and outputs an effective voltage based on the

PWM duty cycle. The temperature sensor and thermal

camera are both read by the I
2
C lines of the ESP32 with

the thermal sensor at address 0x18 and the thermal

camera at 0x69. The PIR sensor is declared as an input

pin and placed in trigger mode, which then reads high

whenever a presence is detected.

The logic portion of the ESP32 and the

automation of the fan is controlled by a program with

state machine logic in the Arduino IDE with libraries for

both the AMG8833 and the MPC9808 imported to help

read values from the sensors.

The program logic is organized into three states,

off, manual, and automatic with the default state being

off. In off mode, the fan remains inactive, awaiting user

input to switch to a different state. A press of the rotary

encoder prompts the finite state machine (FSM) to switch

states.

When in manual mode, turning the rotary

encoder in manual mode adjusts the speed of the fan on a

scale from 0% to 100%, with each click yielding 10%

change in speed. The speed is then translated to the

PWM duty cycle of the fan. The state machine begins

polling the sensors to check the desired power input and

whether the person is still present. The present signal is

composed with a combination of the PIR sensor and the

thermal camera. The PIR camera acts as an initial

present signal which then flags the thermal camera to

start capturing images and check the max temperature.

If the max temperature is greater than the background

temperature, the user is considered still present.

Otherwise, the camera flag turns off and the PIR sensor

is once again the main determination of presence. An

edge case arises when the user’s temperature is cooler

than the background, potentially causing the thermal

camera to fail in detecting presence. In this scenario, the

system defaults to relying on the PIR sensor, which

provides robust detection of motion. For enhanced

reliability, a future implementation could integrate an

edge detection algorithm for the 8x8 thermal pixel grid to

improve presence verification.

When in the automatic state, the state machine

continues to poll for presence with the same system logic,

and then the fan’s power is determined by the distance

from the user's preferred temperature for proportionality

control, stepping up or down as seen in Fig. 2.

Figure 2. Demonstration of open and closed loop control

logic for the fan with the PWM signal.

In both the manual and automatic states, the

system actively gathers and publishes critical

environmental and status data via the MQTT protocol.

This includes ambient room temperature, the maximum

temperature detected by the IR camera, and user’s

presence status. These data points are transmitted

wirelessly to a designated MQTT broker, enabling

seamless integration with the advanced home

automation systems like HomeAssistant or Google NEST.

By subscribing to the ESP32’s MQTT feed, these systems

continuously monitor updates in real time. This ensures

they can make informed decisions or trigger automated

responses, such as adjusting room-wide HVCA settings

or sending notifications to the user. The use of MQTT as

the communication backbone provides a robust, efficient,

and scalable mechanism for sharing key data across the

smart home ecosystem, enhancing functionality and user

experience.

Finally when re-entering the off state, all of the

sensor polling timers are turned off and only the button

is checked for additional inputs.

Figure 3: Hierarchical State Machine design for the

ESP32 logic execution.

2

IoT Smart Fan for Personal Comfort Hub EECS 149/249A, December 19, 2024, UC Berkeley

3 Implementation

This project initially aimed to create

automations strictly in the ESPHome framework to

control a fan with a temperature sensor, thermal camera,

and rotary encoder. However, defining state and adding

more specific automations for unsupported sensors in the

.yaml file that ESPHome uses became difficult and as a

result the project was transferred into the Arduino IDE

and largely written in C++. The sensors in the system

are periodically polled using timers, while the fan’s

operation can be controlled wirelessly through

MQTT-triggered interrupts. This design allows for

efficient sensor data collection and real-time remote

control of the fan, ensuring seamless integration with the

smart home ecosystem and responsive adjustments based

on the user commands or environmental changes. The

main framework revolves around a setup() and loop()

function with initializations of the libraries used and

variables handled in setup() such as ensuring the I
2
C

connections for the sensors are found. The main

structure of the program focuses on void functions which

alter the main global variables of the program which are

power, temperature, presence, and the camera max

temperature.

The circuit was first developed on a breadboard

and smaller programs written for each component to test

the functionality. Notably the rotary encoder and

NeoPixel light ring posed problems, even with

demonstration programs provided by the Arduino

libraries. Once each component demonstrated proper

functionality, each component was added to the larger

state machine logic.

First the encoder logic was built to control the

PWM with the input from the user which mapped an

encoder increase or decrease to an increase or decrease in

the duty cycle of the PWM. Next the PIR sensor was

placed in trigger mode with the PIR reading in a high

signal whenever motion was detected. The MCP9808

temperature sensor uses a library to read in the

temperature data as well as the AMG8833 thermal

camera which were both implemented with the help of

these libraries. The PIR sensor was calibrated manually

by physically turning the potentiometers to adjust the

trigger timer duration and sensitivity. The encoder was

digitally debounced by setting a minimum interval

between button presses and additionally the range was

set to {0,100} and step size was set to 10. The

temperature sensor calibration and logic was handled by

its own on board controller and was read in by the

MCP9808.

The thermal camera calibration was the most

involved. The camera was calibrated by first reading in

the 8x8 pixel array and capturing pictures in bursts of

three. From there, we checked each picture by plotting it

as an 8x8 temperature gradient and then observing if the

fan had any noticeable effect on the user and the

environment when turned on, otherwise a closed loop

feedback design would not be possible or effective. To test

the theory of observing a person with the thermal

camera, we created a small program that took three sets

of three pictures and modulated the fan on and off which

resulted in the images seen in Fig. 4.

Figure 4. Images taken with the thermal camera with a

person present and no fan (top), a person present and the

fan on (middle), and no person present (bottom).

​

​ The difference between background and a person

present is noticeable with a clear person shaped blob

showing up in the image. Additionally, the fan appears to

make a noticeable change in the user's temperature with

the few degree difference in the hottest point of the

camera. A more robust method for object detection would

need to be set up to get a formally significant result,

likely taking a distribution of images over different

temperature profiles or a static test object to calibrate

the temperature. However for this project, we simplified

the control to take the max temperature pixel on the

screen for basic controls as this indicates the presence of

a hot object and likely person, prompting the fan to turn

3

EECS 149/249A, December 19, 2024, UC Berkeley Andrew Politz, Eric Du, Miles Nash

on if motion is jointly detected. More involved methods

for calculation were considered such as upsampling the

image and then downsampling to an odd index matrix to

be able to take the center point an better averaged value,

or using a linear interpolation or nearest neighbor

approach to attempt to increase camera resolution.

However, this ultimately was ruled out due to the

limiting storage on the ESP32 chip thus a simpler

method was favored.

​ All the components were then placed in a 3D

printed PLA housing, including the temperature sensor

and thermal camera. While the temperature sensor is not

largely affected by this change, the thermal camera

encounters challenges. The enclosure, which featured a

small slit for the camera’s field of view but limited

airflow, caused the PLA housing to heat up during

operation. This heating altered the camera’s readings,

resulting in skewed data within the frame of interest. To

address this issue, the camera was then calibrated to

understand the effects of the PLA housing seen in Fig. 5.

The same calibration method mentioned above was used.

Figure 5: side view of smartfan enclosure with 30° wedge

for AMG8833 IR camera mounting.

Figure 6. Images taken with the effects of thermal

housing in the same calibration scheme as Fig. 4.

Following this calibration with temperature

effects from the thermal housing, the max temperature

reading was reduced to a 4 pixel array in rows 5 and 6

and columns 3 and 4. The effect is still similar and there

is a noticeable change in temperature in the 4 pixels

identified.

Following the implementation of all of the

sensors to be properly read into the ESP32, we then

implemented an MQTT protocol to publish the state of

our device to an identified topic in this case IoTFan/esp32

and published to the MQTT broker. The MQTT broker for

HomeAssistant is Mosquitto, but for the purpose of

readability and demonstration, we decided to use

MQTTX to visualize the MQTT publications made by our

device. To fully integrate our design back into

HomeAssistant, the HomeAssistant library can be

imported onto our device and the main host node can

subscribe to the desired topics such as temperature and

presence.

Finally, all of the sensor polling was then set at

desired intervals through digital timers from the Ticker

library. The system state and temperature was published

by MQTT and read in every 10 seconds with the encoder

turn input polled every 100 microseconds and presence

checked every 5 seconds. For a production level program,

these values could likely be made significantly higher as

the state of the system is likely not as dynamic and an

interrupt set up to handle reading in the PIR sensor

4

IoT Smart Fan for Personal Comfort Hub EECS 149/249A, December 19, 2024, UC Berkeley

could minimize operations on the ESP32. However, for

demonstration purposes the polling provides a more

reliable interval.

4 Evaluation

Over the course of this multi-week project, our

team encountered a number of challenges, some of which

may need to be further addressed in a future iteration of

this system.

Our initial software development took place

using ESPHome, a tool for integrating ESP32 devices

with Home Assistant. The tool automatically generates

firmware from YAML text based instructions to allow

those unfamiliar with programming to add smart home

devices to the system. Unfortunately we found working

with this system to be limiting when attempting to

implement our state machine, integrate with more

complex sensors (AMG8833 IR Camera), and build more

complex automations such as our open loop fan control.

For this reason, we switched over to Arduino based C++

halfway through the development process.

As this was the first time building embedded

systems projects for a few of us, we ran into some

development process challenges which will act as lessons

learned for future projects. Unlike software development,

embedded systems projects can have long iteration lead

times. When faced with burnt-out LEDs, ill-fitting

enclosures, and a BJT rated for the wrong operating

voltage, replacement parts typically took at least a day to

arrive. This bottlenecked software bring-up and added

cascading schedule pressure to complete this project by

its intended deadline.

Our team also faced some difficulties with

prioritization of features. Due to scheduling pressure and

conflicts with other obligations, we were forced to do a lot

of work in parallel. Most of us were very eager to get

working on the more complicated parts of the project:

implementing the state machine, sending MQTT signals,

and presence detection logic, which unfortunately left

some of the core functionalities (PWM control of our fan

using encoder input) non-functional on demo day. We

plan to take a more strict bottom up approach in future

projects, where priority doesn’t shift away from core

features until they are fully implemented and thoroughly

tested.

A final general lesson would be to allocate as

much time for iteration as possible. Some specific

unexpected roadblocks we came up against included two

days worth of encoder debugging, an enclosure which

interfered with our IR camera output, hotspot issues on

demo day, and unanticipated cold weather which

interfered with our control algorithm. More time

would’ve allowed us ample time to respond to these

roadblocks and do some more testing in our target setting

(Cory courtyard) to find issues earlier.

Figure 7. Image of the finished IoT fan with a protoboard

placed in its enclosure.

Demo and Further Documentation

A demo of the final project can be found at:

https://youtu.be/wrTCJ09Sp-4?si=6bHBTaggRPFq7RjZ

Code and further documentation can be found at:

https://github.com/andrewpolitz/ee149FinalProject.git

ACKNOWLEDGMENTS

Sponsored by the U.C. Berkeley Center for the Built

Environment, California Institute for Energy and

Environment, California Energy Commision, and the

Citrus and the Banatao Institute[8]. Special thanks to

Dr. Tobias Kramer and Professor Prabal Dutta for their

help with this project.

REFERENCES

[1]​ “The never-ending battle over the best office temperature,”

BBC, 2016.

https://www.bbc.com/worklife/article/20160617-the-never-en

ding-battle-over-the-best-office-temperature.

[2]​ Home Assistant. (2024) https://www.home-assistant.io

[3] Christensen, J. (2021) MPC9808 (V1.2.0) [Library].

https://docs.arduino.cc/libraries/mcp9808

[4] Adafruit. (2022) Adafruit AMG88xx Library (V1.3.2)

[Library].

https://docs.arduino.cc/libraries/adafruit-amg88xx-library

[5] O’Leary, N. (2020) PubSubClient (V2.8.0) [Library].

https://docs.arduino.cc/libraries/pubsubclient

[6] Adafruit. (2024) NeoPixel (V1.12.3) [Library].

https://docs.arduino.cc/libraries/adafruit-neopixel

[7] Staub, S. (2021) Ticker (V4.4.0) [Library].

https://docs.arduino.cc/libraries/ticker

[8] “Mainstreaming Personal Comfort Devices with Modular

Controls”

https://uc-ciee.org/projects/mainstreaming-personal-comfort-

devices-with-modular-controls/

5

https://youtu.be/wrTCJ09Sp-4?si=6bHBTaggRPFq7RjZ
https://github.com/andrewpolitz/ee149FinalProject.git

