IoT Smart Fan for Personal Comfort Hub

Andrew Politz, Eric Du, Miles Nash
andrewpolitz@berkeley.edu , ericdu@berkeley.edu, miles.r.nash@berkeley.edu

1 Motivation

This project aims to create a “smart fan” that
adjusts its cooling based on room occupancy and
environmental conditions, allowing for more efficient
climate control. HVAC systems are notably inefficient
with the end result being only a slight majority of
workers in an office space being comfortable which is not
only energy inefficient but also harmful to worker
productivity [1]. The HVAC system of a commercial office
building works on the kiloWatt scale and constant
dynamic adjustments to temperature are not as efficient
as single settings. By utilizing smaller module climate
comfort devices like our fan, the office space can make
climate adjustments on an individual scale with energy
consumption on the Watt scale. Additionally by including
wifi and network connection capabilities with a
microprocessor such as the ESP32, these modules can
communicate with the larger network and inform the
building wide control of individual preferences. An
example of this aggregation would be through a
thermostat system such as HomeAssistant [2] or NEST.

This project was conducted in partnership with
the Center for the Built Environment (CBE) and
Electrical Engineering and Computer Science
department at the University of California, Berkeley as
part of their ongoing research into smarter HVAC control
systems and personal comfort devices. Previous research
has developed a suite of personal comfort devices (PCDs)
which interface with Home Assistant, an open source
home automation platform, to remotely monitor
workstation temperature conditions and enable building
scale automations.

This next-generation HVAC control system aims
to reduce energy use and improve overall comfort by
aggregating multiple data streams from individual
workstations to make more informed decisions on the
HVAC temperature. The system helps to modernize
existing HVAC systems, as the aggregator (home
assistant in this case) can integrate wirelessly with PCDs
and other modern inputs, analyze them, and present a
single control temperature to legacy HVAC systems
without the need to upgrade the entire system. In the
case of HomeAssistant, a single Raspberry Pi can

perform the needed computations and can be scaled up
for additional computation needs. The Smart Fan PCD
system aims to empower users to improve their personal
comfort through either manual or automatic control of a
5V desk fan to achieve their desired temperature, while
capturing and transmitting ambient temperature, body
temperature (through thermal imaging), and occupancy
data, over MQTT for integration into a building
automation system such as Home Assistant.

2 Design

The design of this project can be divided into
essentially two categories, the circuit components and
the state machine software logic. The circuit design
began with the ideal goal to be able to control any USB
fan with a PWM signal from our microcontroller.
However, the design space for this task is large as fans
on the market run at many varying voltage levels 5V, 9V,
12V, etc. and incorporating these varying voltages into
our design would be a difficult task. The decision was
made to focus on a 5V USB fan. This implementation
includes an Adafruit HUZZAH32 ESP32 Feather, a NPN
transistor, MPC9808 temperature sensor, AMG8833 8x8
thermal camera, rotary encoder, 12 LED NeoPixel ring,
Passive Infrared (PIR) sensor, a 12V to 5V converter, a
5V to 3.3V converter, and a 12V power supply with a
barrel jack.

Figure 1. Circuit schematic for ESP32 and peripheral
connections for fan control.

The ESP32 requires a 3.3V input which is
handled by the 5V to 3.3V converter, while the fan input
is connected to the 5V line via the NPN transistor which
is modulated by a ESP32 signal via the base of the

EECS 149/249A, December 19, 2024, UC Berkeley

transistor and outputs an effective voltage based on the
PWM duty cycle. The temperature sensor and thermal
camera are both read by the I?C lines of the ESP32 with
the thermal sensor at address 0x18 and the thermal
camera at 0x69. The PIR sensor is declared as an input
pin and placed in trigger mode, which then reads high
whenever a presence is detected.

The logic portion of the ESP32 and the
automation of the fan is controlled by a program with
state machine logic in the Arduino IDE with libraries for
both the AMG8833 and the MPC9808 imported to help
read values from the sensors.

The program logic is organized into three states,
off, manual, and automatic with the default state being
off. In off mode, the fan remains inactive, awaiting user
input to switch to a different state. A press of the rotary
encoder prompts the finite state machine (FSM) to switch
states.

When in manual mode, turning the rotary
encoder in manual mode adjusts the speed of the fan on a
scale from 0% to 100%, with each click yielding 10%
change in speed. The speed is then translated to the
PWM duty cycle of the fan. The state machine begins
polling the sensors to check the desired power input and
whether the person is still present. The present signal is
composed with a combination of the PIR sensor and the
thermal camera. The PIR camera acts as an initial
present signal which then flags the thermal camera to
start capturing images and check the max temperature.
If the max temperature is greater than the background
temperature, the wuser 1is considered still present.
Otherwise, the camera flag turns off and the PIR sensor
is once again the main determination of presence. An
edge case arises when the user’s temperature is cooler
than the background, potentially causing the thermal
camera to fail in detecting presence. In this scenario, the
system defaults to relying on the PIR sensor, which
provides robust detection of motion. For enhanced
reliability, a future implementation could integrate an
edge detection algorithm for the 8x8 thermal pixel grid to
improve presence verification.

When in the automatic state, the state machine
continues to poll for presence with the same system logic,
and then the fan’s power is determined by the distance
from the user's preferred temperature for proportionality
control, stepping up or down as seen in Fig. 2.

Andrew Politz, Eric Du, Miles Nash

Error Signal Fan PWM
User Temp

Preference

* Proportional
Ambient Controller

Temperature

Ei

User . rror Signal Fan PWM
BodyTemp System
Preference

+ Proportional
Controller

Body Temperature

Figure 2. Demonstration of open and closed loop control
logic for the fan with the PWM signal.

In both the manual and automatic states, the
system actively gathers and publishes critical
environmental and status data via the MQTT protocol.
This includes ambient room temperature, the maximum
temperature detected by the IR camera, and user’s
presence status. These data points are transmitted
wirelessly to a designated MQTT broker, enabling
seamless integration with the advanced home
automation systems like HomeAssistant or Google NEST.
By subscribing to the ESP32’s MQTT feed, these systems
continuously monitor updates in real time. This ensures
they can make informed decisions or trigger automated
responses, such as adjusting room-wide HVCA settings
or sending notifications to the user. The use of MQTT as
the communication backbone provides a robust, efficient,
and scalable mechanism for sharing key data across the
smart home ecosystem, enhancing functionality and user
experience.

Finally when re-entering the off state, all of the
sensor polling timers are turned off and only the button
is checked for additional inputs.

Click/0

Click / Click /
oft Manual Automatic

present / power

temp < pref_temp /0
power:=0

_tick A ~e_ir # power > 0 / power - 10 e _tick \e_dir " power <100/ power + 10
power i=power - 10 poweer := power +

temp - pref_temp >= 20/ 100
power:= 100

0<temp - pref_temp < 20
power:= 5°(tmp - pref_temp)

Figure 3: Hierarchical State Machine design for the
ESP32 logic execution.

TIoT Smart Fan for Personal Comfort Hub

3 Implementation

This project initially aimed to create
automations strictly in the ESPHome framework to
control a fan with a temperature sensor, thermal camera,
and rotary encoder. However, defining state and adding
more specific automations for unsupported sensors in the
.yaml file that ESPHome uses became difficult and as a
result the project was transferred into the Arduino IDE
and largely written in C++. The sensors in the system
are periodically polled using timers, while the fan’s
operation can be controlled wirelessly through
MQTT-triggered interrupts. This design allows for
efficient sensor data collection and real-time remote
control of the fan, ensuring seamless integration with the
smart home ecosystem and responsive adjustments based
on the user commands or environmental changes. The
main framework revolves around a setup() and loop()
function with initializations of the libraries used and
variables handled in setup() such as ensuring the I*C
connections for the sensors are found. The main
structure of the program focuses on void functions which
alter the main global variables of the program which are
power, temperature, presence, and the camera max
temperature.

The circuit was first developed on a breadboard
and smaller programs written for each component to test
the functionality. Notably the rotary encoder and
NeoPixel light ring posed problems, even with
demonstration programs provided by the Arduino
libraries. Once each component demonstrated proper
functionality, each component was added to the larger
state machine logic.

First the encoder logic was built to control the
PWM with the input from the user which mapped an
encoder increase or decrease to an increase or decrease in
the duty cycle of the PWM. Next the PIR sensor was
placed in trigger mode with the PIR reading in a high
signal whenever motion was detected. The MCP9808
temperature sensor uses a library to read in the
temperature data as well as the AMGS8833 thermal
camera which were both implemented with the help of
these libraries. The PIR sensor was calibrated manually
by physically turning the potentiometers to adjust the
trigger timer duration and sensitivity. The encoder was
digitally debounced by setting a minimum interval
between button presses and additionally the range was
set to {0,100} and step size was set to 10. The
temperature sensor calibration and logic was handled by
its own on board controller and was read in by the
MCP9808.

EECS 149/249A, December 19, 2024, UC Berkeley

The thermal camera calibration was the most
involved. The camera was calibrated by first reading in
the 8x8 pixel array and capturing pictures in bursts of
three. From there, we checked each picture by plotting it
as an 8x8 temperature gradient and then observing if the
fan had any noticeable effect on the user and the
environment when turned on, otherwise a closed loop
feedback design would not be possible or effective. To test
the theory of observing a person with the thermal
camera, we created a small program that took three sets
of three pictures and modulated the fan on and off which
resulted in the images seen in Fig. 4.

Infrared Heatmap

PersonReadout1 (°C) PersonReadout2 (“C) PersonReadout3 (°C)

I

S

o 1 2 3 a4 5 6 7T
FanOnReadout1 (°C)

o 1 2 3 4 5 & 7

s o 1 oz 3 4 s
FanOnReadout2 (°C)

FanOnReadout3 (°C)

o 1 o2 3 4 5 & 7
RoomReadout3 (°C)

o 1 2 3 4 5 6 7
RoomReadout1 (“C)

7 s s 4 3 2

Figure 4. Images taken with the thermal camera with a

person present and no fan (top), a person present and the
fan on (middle), and no person present (bottom).

o 1 2 3 4 5 & 7 o 1 2 3 4 5 & 7 o 1 2z 3 4 5 & 7

The difference between background and a person
present is noticeable with a clear person shaped blob
showing up in the image. Additionally, the fan appears to
make a noticeable change in the user's temperature with
the few degree difference in the hottest point of the
camera. A more robust method for object detection would
need to be set up to get a formally significant result,
likely taking a distribution of images over different
temperature profiles or a static test object to calibrate
the temperature. However for this project, we simplified
the control to take the max temperature pixel on the
screen for basic controls as this indicates the presence of
a hot object and likely person, prompting the fan to turn

3

EECS 149/249A, December 19, 2024, UC Berkeley

on if motion is jointly detected. More involved methods
for calculation were considered such as upsampling the
image and then downsampling to an odd index matrix to
be able to take the center point an better averaged value,
or using a linear interpolation or nearest neighbor
approach to attempt to increase camera resolution.
However, this ultimately was ruled out due to the
limiting storage on the ESP32 chip thus a simpler
method was favored.

All the components were then placed in a 3D
printed PLA housing, including the temperature sensor

and thermal camera. While the temperature sensor is not

largely affected by this change, the thermal camera
encounters challenges. The enclosure, which featured a
small slit for the camera’s field of view but limited
airflow, caused the PLA housing to heat up during
operation. This heating altered the camera’s readings,
resulting in skewed data within the frame of interest. To
address this issue, the camera was then calibrated to
understand the effects of the PLA housing seen in Fig. 5.
The same calibration method mentioned above was used.

O O

Gt

Figure 5: side view of smartfan enclosure with 30° wedge
for AMG8833 IR camera mounting.

Andrew Politz, Eric Du, Miles Nash

Infrared Heatmap

PersonReadout? (°C)

Figure 6. Images taken with the effects of thermal
housing in the same calibration scheme as Fig. 4.

Following this calibration with temperature
effects from the thermal housing, the max temperature
reading was reduced to a 4 pixel array in rows 5 and 6
and columns 3 and 4. The effect is still similar and there
is a noticeable change in temperature in the 4 pixels
identified.

Following the implementation of all of the
sensors to be properly read into the ESP32, we then
implemented an MQTT protocol to publish the state of
our device to an identified topic in this case IoTFan/esp32
and published to the MQTT broker. The MQTT broker for
HomeAssistant is Mosquitto, but for the purpose of
readability and demonstration, we decided to use
MQTTX to visualize the MQTT publications made by our
device. To fully integrate our design back into
HomeAssistant, the HomeAssistant library can be
imported onto our device and the main host node can
subscribe to the desired topics such as temperature and
presence.

Finally, all of the sensor polling was then set at
desired intervals through digital timers from the Ticker
library. The system state and temperature was published
by MQTT and read in every 10 seconds with the encoder
turn input polled every 100 microseconds and presence
checked every 5 seconds. For a production level program,
these values could likely be made significantly higher as
the state of the system is likely not as dynamic and an
interrupt set up to handle reading in the PIR sensor

TIoT Smart Fan for Personal Comfort Hub

could minimize operations on the ESP32. However, for
demonstration purposes the polling provides a more
reliable interval.

4 Evaluation

Over the course of this multi-week project, our
team encountered a number of challenges, some of which
may need to be further addressed in a future iteration of
this system.

Our initial software development took place
using ESPHome, a tool for integrating ESP32 devices
with Home Assistant. The tool automatically generates
firmware from YAML text based instructions to allow
those unfamiliar with programming to add smart home
devices to the system. Unfortunately we found working
with this system to be limiting when attempting to
implement our state machine, integrate with more
complex sensors (AMG8833 IR Camera), and build more
complex automations such as our open loop fan control.
For this reason, we switched over to Arduino based C++
halfway through the development process.

As this was the first time building embedded
systems projects for a few of us, we ran into some
development process challenges which will act as lessons
learned for future projects. Unlike software development,
embedded systems projects can have long iteration lead
times. When faced with burnt-out LEDs, ill-fitting
enclosures, and a BJT rated for the wrong operating
voltage, replacement parts typically took at least a day to
arrive. This bottlenecked software bring-up and added
cascading schedule pressure to complete this project by
its intended deadline.

Our team also faced some difficulties with
prioritization of features. Due to scheduling pressure and
conflicts with other obligations, we were forced to do a lot
of work in parallel. Most of us were very eager to get
working on the more complicated parts of the project:
implementing the state machine, sending MQTT signals,
and presence detection logic, which unfortunately left
some of the core functionalities (PWM control of our fan
using encoder input) non-functional on demo day. We
plan to take a more strict bottom up approach in future
projects, where priority doesn’t shift away from core
features until they are fully implemented and thoroughly
tested.

A final general lesson would be to allocate as
much time for iteration as possible. Some specific
unexpected roadblocks we came up against included two
days worth of encoder debugging, an enclosure which
interfered with our IR camera output, hotspot issues on

demo day, and unanticipated cold weather which

EECS 149/249A, December 19, 2024, UC Berkeley

interfered with our control algorithm. More time

would’'ve allowed us ample time to respond to these
roadblocks and do some more testing in our target setting
(Cory courtyard) to find issues earlier.

Figure 7. Image of the finished IoT fan with a protoboard
placed in its enclosure.

Demo and Further Documentation

A demo of the final project can be found at:
-428i=

Code and further documentation can be found at:

https://github.com/andrewpolitz/ee149FinalProject.git

ACKNOWLEDGMENTS

Sponsored by the U.C. Berkeley Center for the Built
Environment, California Institute for Energy and
Environment, California Energy Commision, and the
Citrus and the Banatao Institute[8]. Special thanks to
Dr. Tobias Kramer and Professor Prabal Dutta for their
help with this project.

REFERENCES

[1] “The never-ending battle over the best office temperature,”
BBC, 2016.
https://www.bbc.com/worklife/article/20160617-the-never-en
ding-battle-over-the-best-office-temperature.

[2] Home Assistant. (2024) https://www.home-assistant.io

[3] Christensen, J. (2021) MPC9808 (V1.2.0) [Library].
https://docs.arduino.cc/libraries/mcp9808

[4] Adafruit. (2022) Adafruit AMG88xx Library (V1.3.2)
[Library].
https://docs.arduino.cc/libraries/adafruit-amg88xx-library

[6] O’Leary, N. (2020) PubSubClient (V2.8.0) [Library].
https://docs.arduino.cc/libraries/pubsubclient

[6] Adafruit. (2024) NeoPixel (V1.12.3) [Library].
https://docs.arduino.ce/libraries/adafruit-neopixel

[7] Staub, S. (2021) Ticker (V4.4.0) [Library].
https://docs.arduino.cc/libraries/ticker

[8] “Mainstreaming Personal Comfort Devices with Modular
Controls”
https://uc-ciee.org/projects/mainstreaming-personal-comfort-
devices-with-modular-controls/

5

https://youtu.be/wrTCJ09Sp-4?si=6bHBTaggRPFq7RjZ
https://github.com/andrewpolitz/ee149FinalProject.git

