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1 Motivation 

This project aims to create a “smart fan” that 

adjusts its cooling based on room occupancy and 

environmental conditions, allowing for more efficient 

climate control. HVAC systems are notably inefficient 

with the end result being only a slight majority of 

workers in an office space being comfortable which is not 

only energy inefficient but also harmful to worker 

productivity [1]. The HVAC system of a commercial office 

building works on the kiloWatt scale and constant 

dynamic adjustments to temperature are not as efficient 

as single settings. By utilizing smaller module climate 

comfort devices like our fan, the office space can make 

climate adjustments on an individual scale with energy 

consumption on the Watt scale. Additionally by including 

wifi and network connection capabilities with a 

microprocessor such as the ESP32, these modules can 

communicate with the larger network and inform the 

building wide control of individual preferences. An 

example of this aggregation would be through a 

thermostat system such as HomeAssistant [2] or NEST.  

​ This project was conducted in partnership with 

the Center for the Built Environment (CBE) and 

Electrical Engineering and Computer Science 

department at the University of California, Berkeley as 

part of their ongoing research into smarter HVAC control 

systems and personal comfort devices. Previous research 

has developed a suite of personal comfort devices (PCDs) 

which interface with Home Assistant, an open source 

home automation platform, to remotely monitor 

workstation temperature conditions and enable building 

scale automations. 

This next-generation HVAC control system aims 

to reduce energy use and improve overall comfort by  

aggregating multiple data streams from individual 

workstations to make more informed decisions on the 

HVAC temperature. The system helps to modernize 

existing HVAC systems, as the aggregator (home 

assistant in this case) can integrate wirelessly with PCDs 

and other modern inputs, analyze them, and present a 

single control temperature to legacy HVAC systems 

without the need to upgrade the entire system. In the 

case of HomeAssistant, a single Raspberry Pi can 

perform the needed computations and can be scaled up 

for additional computation needs. The Smart Fan PCD 

system aims to empower users to improve their personal 

comfort through either manual or automatic control of a 

5V desk fan to achieve their desired temperature, while 

capturing and transmitting ambient temperature, body 

temperature (through thermal imaging), and occupancy 

data, over MQTT for integration into a building 

automation system such as Home Assistant. 

2 Design 

The design of this project can be divided into 

essentially two categories, the circuit components and 

the state machine software logic. The circuit design 

began with the ideal goal to be able to control any USB 

fan with a PWM signal from our microcontroller. 

However, the design space for this task is large as fans 

on the market run at many varying voltage levels 5V, 9V, 

12V, etc. and incorporating these varying voltages into 

our design would be a difficult task. The decision was 

made to focus on a 5V USB fan. This implementation 

includes an Adafruit HUZZAH32 ESP32 Feather, a NPN 

transistor, MPC9808 temperature sensor, AMG8833 8x8 

thermal camera, rotary encoder, 12 LED NeoPixel ring, 

Passive Infrared (PIR) sensor, a 12V to 5V converter, a 

5V to 3.3V converter, and a 12V power supply with a 

barrel jack.  

 

 

Figure 1. Circuit schematic for ESP32 and peripheral 

connections for fan control. 

 

The ESP32 requires a 3.3V input which is 

handled by the 5V to 3.3V converter, while the fan input 

is connected to the 5V line via the NPN transistor which 

is modulated by a ESP32 signal via the base of the 
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transistor and outputs an effective voltage based on the 

PWM duty cycle. The temperature sensor and thermal 

camera are both read by the I
2
C lines of the ESP32 with 

the thermal sensor at address 0x18 and the thermal 

camera at 0x69. The PIR sensor is declared as an input 

pin and placed in trigger mode, which then reads high 

whenever a presence is detected. 

The logic portion of the ESP32 and the 

automation of the fan is controlled by a program with 

state machine logic in the Arduino IDE with libraries for 

both the AMG8833 and the MPC9808 imported to help 

read values from the sensors.  

The program logic is organized into three states, 

off, manual, and automatic with the default state being 

off. In off mode, the fan remains inactive, awaiting user 

input to switch to a different state. A press of the rotary 

encoder prompts the finite state machine (FSM) to switch 

states.  

When in manual mode, turning the rotary 

encoder in manual mode adjusts the speed of the fan on a 

scale from 0% to 100%, with each click yielding 10% 

change in speed. The speed is then translated to the 

PWM duty cycle of the fan. The state machine begins 

polling the sensors to check the desired power input and 

whether the person is still present. The present signal is 

composed with a combination of the PIR sensor and the 

thermal camera. The PIR camera acts as an initial 

present signal which then flags the thermal camera to 

start capturing images and check the max temperature. 

If the max temperature is greater than the background 

temperature, the user is considered still present. 

Otherwise, the camera flag turns off and the PIR sensor 

is once again the main determination of presence. An 

edge case arises when the user’s temperature is cooler 

than the background, potentially causing the thermal 

camera to fail in detecting presence. In this scenario, the 

system defaults to relying on the PIR sensor, which 

provides robust detection of motion. For enhanced 

reliability, a future implementation could integrate an 

edge detection algorithm for the 8x8 thermal pixel grid to 

improve presence verification.  

When in the automatic state, the state machine 

continues to poll for presence with the same system logic, 

and then the fan’s power is determined by the distance 

from the user's preferred temperature for proportionality 

control, stepping up or down as seen in Fig. 2. 

 

 

Figure 2. Demonstration of open and closed loop control 

logic for the fan with the PWM signal. 

 

In both the manual and automatic states, the 

system actively gathers and publishes critical 

environmental and status data via the MQTT protocol. 

This includes ambient room temperature, the maximum 

temperature detected by the IR camera, and user’s 

presence status. These data points are transmitted 

wirelessly to a designated MQTT broker, enabling 

seamless integration with the advanced home 

automation systems like HomeAssistant or Google NEST. 

By subscribing to the ESP32’s MQTT feed, these systems 

continuously monitor updates in real time. This ensures 

they can make informed decisions or trigger automated 

responses, such as adjusting room-wide HVCA settings 

or sending notifications to the user. The use of MQTT as 

the communication backbone provides a robust, efficient, 

and scalable mechanism for sharing key data across the 

smart home ecosystem, enhancing functionality and user 

experience.  

Finally when re-entering the off state, all of the 

sensor polling timers are turned off and only the button 

is checked for additional inputs.  

 

 

Figure 3: Hierarchical State Machine design for the 

ESP32 logic execution. 
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3 Implementation 

This project initially aimed to create 

automations strictly in the ESPHome framework to 

control a fan with a temperature sensor, thermal camera, 

and rotary encoder. However, defining state and adding 

more specific automations for unsupported sensors in the 

.yaml file that ESPHome uses became difficult and as a 

result the project was transferred into the Arduino IDE 

and largely written in C++. The sensors in the system 

are periodically polled using timers, while the fan’s 

operation can be controlled wirelessly through 

MQTT-triggered interrupts. This design allows for 

efficient sensor data collection and real-time remote 

control of the fan, ensuring seamless integration with the 

smart home ecosystem and responsive adjustments based 

on the user commands or environmental changes. The 

main framework revolves around a setup() and loop() 

function with initializations of the libraries used and 

variables handled in setup() such as ensuring the I
2
C  

connections for the sensors are found. The main 

structure of the program focuses on void functions which 

alter the main global variables of the program which are 

power, temperature, presence, and the camera max 

temperature.  

The circuit was first developed on a breadboard 

and smaller programs written for each component to test 

the functionality. Notably the rotary encoder and 

NeoPixel light ring posed problems, even with 

demonstration programs provided by the Arduino 

libraries. Once each component demonstrated proper 

functionality, each component was added to the larger 

state machine logic.  

First the encoder logic was built to control the 

PWM with the input from the user which mapped an 

encoder increase or decrease to an increase or decrease in 

the duty cycle of the PWM. Next the PIR sensor was 

placed in trigger mode with the PIR reading in a high 

signal whenever motion was detected. The MCP9808 

temperature sensor uses a library to read in the 

temperature data as well as the AMG8833 thermal 

camera which were both implemented with the help of 

these libraries. The PIR sensor was calibrated manually 

by physically turning the potentiometers to adjust the 

trigger timer duration and sensitivity. The encoder was 

digitally debounced by setting a minimum interval 

between button presses and additionally the range was 

set to {0,100} and step size was set to 10. The 

temperature sensor calibration and logic was handled by 

its own on board controller and was read in by the 

MCP9808.  

The thermal camera calibration was the most 

involved. The camera was calibrated by first reading in 

the 8x8 pixel array and capturing pictures in bursts of 

three. From there, we checked each picture by plotting it 

as an 8x8 temperature gradient and then observing if the 

fan had any noticeable effect on the user and the 

environment when turned on, otherwise a closed loop 

feedback design would not be possible or effective. To test 

the theory of observing a person with the thermal 

camera, we created a small program that took three sets 

of three pictures and modulated the fan on and off which 

resulted in the images seen in Fig. 4.  

 
Figure 4. Images taken with the thermal camera with a 

person present and no fan (top), a person present and the 

fan on (middle), and no person present (bottom). 

​  

​ The difference between background and a person 

present is noticeable with a clear person shaped blob 

showing up in the image. Additionally, the fan appears to 

make a noticeable change in the user's temperature with 

the few degree difference in the hottest point of the 

camera. A more robust method for object detection would 

need to be set up to get a formally significant result, 

likely taking a distribution of images over different 

temperature profiles or a static test object to calibrate 

the temperature. However for this project, we simplified 

the control to take the max temperature pixel on the 

screen for basic controls as this indicates the presence of 

a hot object and likely person, prompting the fan to turn 
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on if motion is jointly detected. More involved methods 

for calculation were considered such as upsampling the 

image and then downsampling to an odd index matrix to 

be able to take the center point an better averaged value, 

or using a linear interpolation or nearest neighbor 

approach to attempt to increase camera resolution. 

However, this ultimately was ruled out due to the 

limiting storage on the ESP32 chip thus a simpler 

method was favored.  

​ All the components were then placed in a 3D 

printed PLA housing, including the temperature sensor 

and thermal camera. While the temperature sensor is not 

largely affected by this change, the thermal camera 

encounters challenges. The enclosure, which featured  a 

small slit for the camera’s field of view but limited 

airflow, caused the PLA housing to heat up during 

operation.  This heating altered the camera’s readings, 

resulting in skewed data within the frame of interest. To 

address this issue, the camera was then calibrated to 

understand the effects of the PLA housing seen in Fig. 5. 

The same calibration method mentioned above was used. 

               

Figure 5: side view of smartfan enclosure with 30° wedge 

for AMG8833 IR camera mounting. 

 

Figure 6. Images taken with the effects of thermal 

housing in the same calibration scheme as Fig. 4. 

 

Following this calibration with temperature 

effects from the thermal housing, the max temperature 

reading was reduced to a 4 pixel array in rows 5 and 6 

and columns 3 and 4. The effect is still similar and there 

is a noticeable change in temperature in the 4 pixels 

identified.  

Following the implementation of all of the 

sensors to be properly read into the ESP32, we then 

implemented an MQTT protocol to publish the state of 

our device to an identified topic in this case IoTFan/esp32 

and published to the MQTT broker. The MQTT broker for 

HomeAssistant is Mosquitto, but for the purpose of 

readability and demonstration, we decided to use 

MQTTX to visualize the MQTT publications made by our 

device. To fully integrate our design back into 

HomeAssistant, the HomeAssistant library can be 

imported onto our device and the main host node can 

subscribe to the desired topics such as temperature and 

presence.  

Finally, all of the sensor polling was then set at 

desired intervals through digital timers from the Ticker 

library. The system state and temperature was published 

by MQTT and read in every 10 seconds with the encoder 

turn input polled every 100 microseconds and presence 

checked every 5 seconds. For a production level program, 

these values could likely be made significantly higher as 

the state of the system is likely not as dynamic and an 

interrupt set up to handle reading in the PIR sensor 
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could minimize operations on the ESP32. However, for 

demonstration purposes the polling provides a more 

reliable interval.  

          

4 Evaluation 

Over the course of this multi-week project, our 

team encountered a number of challenges, some of which 

may need to be further addressed in a future iteration of 

this system. 

Our initial software development took place 

using  ESPHome, a tool for integrating ESP32 devices 

with Home Assistant. The tool automatically generates 

firmware from YAML text based instructions to allow 

those unfamiliar with programming to add smart home 

devices to the system. Unfortunately we found working 

with this system to be limiting when attempting to 

implement our state machine, integrate with more 

complex sensors (AMG8833 IR Camera), and build more 

complex automations such as our open loop fan control. 

For this reason, we switched over to Arduino based C++ 

halfway through the development process. 

As this was the first time building embedded 

systems projects for a few of us, we ran into some 

development process challenges which will act as lessons 

learned for future projects. Unlike software development, 

embedded systems projects can have long iteration lead 

times. When faced with burnt-out LEDs,  ill-fitting 

enclosures, and a BJT rated for the wrong operating 

voltage, replacement parts typically took at least a day to 

arrive. This bottlenecked software bring-up and added 

cascading schedule pressure to complete this project by 

its intended deadline.  

Our team also faced some difficulties with 

prioritization of features. Due to scheduling pressure and 

conflicts with other obligations, we were forced to do a lot 

of work in parallel. Most of us were very eager to get 

working on the more complicated parts of the project: 

implementing the state machine, sending MQTT signals, 

and presence detection logic, which unfortunately left 

some of the core functionalities (PWM control of our fan 

using encoder input) non-functional on demo day.  We 

plan to take a more strict bottom up approach in future 

projects, where priority doesn’t shift away from core 

features until they are fully implemented and thoroughly 

tested. 

A final general lesson would be to allocate as 

much time for iteration as possible. Some specific 

unexpected roadblocks we came up against included two 

days worth of encoder debugging, an enclosure which 

interfered with our IR camera output, hotspot issues on 

demo day, and unanticipated cold weather which 

interfered with our control algorithm. More time 

would’ve allowed us ample time to respond to these 

roadblocks and do some more testing in our target setting 

(Cory courtyard) to find issues earlier. 

 

 

Figure 7. Image of the finished IoT fan with a protoboard 

placed in its enclosure.  

Demo and Further Documentation 

A demo of the final project can be found at: 

https://youtu.be/wrTCJ09Sp-4?si=6bHBTaggRPFq7RjZ 

Code and further documentation can be found at:   

https://github.com/andrewpolitz/ee149FinalProject.git  
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