Spring 2023 Cross-Root ARIA F2F

https://qgithub.com/WICG/webcomponents/issues/1005

Attendees

Anne van Kesteren (webkit @ apple)

Benny Powers (design systems @ redhat, open-wc)

Nolan Lawson (lightning web components @ salesforce, AOM)

Brian Kardell (Igalia)

Chris Holt (FAST @ microsoft, openui)

Ryosuke Niwa (webkit @ apple)

Westbrook Johnson (spectrum design system @ adobe, wccg, open-wc)

Agenda

Can we use CSS ::part ?
What about encapsulation-preserving element references and semantic delegate?
What about a global ID?
Preventing "friendly fire" vs strong encapsulation — are they distinct use cases?
Exporting a proxy/wrapper instead of the element itself
Spillover topics from F2F:
o Custom delegation attributes leobalter/cross-root-aria-delegation#5
o Generic proposal (Potentially expand beyond aria?)
leobalter/cross-root-aria-delegation#13
Reflection as a counterpart to delegation leobalter/cross-root-aria-delegation#14
Delegate something that isn't provided leobalter/cross-root-aria-delegation#21
Delegation proposal syntax leobalter/cross-root-aria-delegation#22
Reflection proposal: Expose internal elements to be referenced from the outside
leobalter/cross-root-aria-delegation#23
o Delegation attributes modification timing leobalter/cross-root-aria-delegation#24
There is no way to navigate to a fragment inside a shadow tree #924
Add delegatesLabel and a content attribute to specify the label element within a shadow
tree #916
e Supporting <noscript> when FACE is in play #1004

o O O O

Can we use CSS ::part

Brian: Open Ul were looking at a native element using parts.
Benny: Why not parts?

https://github.com/WICG/webcomponents/issues/1005
https://github.com/leobalter/cross-root-aria-delegation/blob/main/explainer.md#22-parts
https://github.com/WICG/aom/issues/195
https://gist.github.com/alice/54108d8037f865876702b07755f771a5#reify-the-idea-of-a-semantic-delegate
https://github.com/leobalter/cross-root-aria-delegation/issues/5
https://github.com/leobalter/cross-root-aria-delegation/issues/13
https://github.com/leobalter/cross-root-aria-delegation/issues/13
https://github.com/leobalter/cross-root-aria-delegation/issues/14
https://github.com/leobalter/cross-root-aria-delegation/issues/21
https://github.com/leobalter/cross-root-aria-delegation/issues/22
https://github.com/leobalter/cross-root-aria-delegation/issues/23
https://github.com/leobalter/cross-root-aria-delegation/issues/23
https://github.com/leobalter/cross-root-aria-delegation/issues/24
https://github.com/WICG/webcomponents/issues/924
https://github.com/WICG/webcomponents/issues/916
https://github.com/WICG/webcomponents/issues/916
https://github.com/WICG/webcomponents/issues/1004
https://github.com/leobalter/cross-root-aria-delegation/blob/main/explainer.md#22-parts

Chris: Open Ul was looking at using parts in native elements, which may be a different
consideration.

Anne: Would leveraging part give an aria value that would need special semantics

Anne: A part should have no special meaning

Anne: The value is completely in use land. Claiming that back is weird for such an API.

Benny: Imperatively listing parts for applying aria might not have that issue?

Anne: depends on what you're exposing. Wouldn’t want to expose elements.

Benny: but parts expose this

Anne: but not the elements, just placing them for applying styles

Nolan: the subject comes up as the application of styling and the application of aria around the
same time.

Benny: not all aria targetted items should be stylable...

Ryosuke: Expands on this in the context of a calendar element

Nolan: Points to a quality response that they are similar and some times overlap, but shouldn’t
be the right answer because they are not always the same.

Using CSS Parts for applying Aria: consensus these are not 100% the same use case, let’s
not conflate.

What about encapsulation-preserving element references and
semantic delegate?

Nolan: “semantic delegate” already in experimentation in Chromium

Nolan: explains the larger API proposal

Nolan: a subset of cross-root aria, in a way

Nolan: proposed to break through the boilerplate of the cross-root aria proposal and focus on
the use case where the custom element has a one to one relationship with a child in its shadow
root.

Nolan: shares example code

Ryosuke: does the focus here make it not workable?

Chris: sees it as an initial offering, specifically for teams focusing on design systems

Ryosuke: should these be separate?

Chris: How can we delegate everything? Reduce pains for devs.

Benny: If we relax the rule that focusable elements may not be aria-hidden, then there is a path
to doing some of this imperatively with Element Internals. Advantage of not adding new things
and being able to continue to iterate of CrossRoot aria.

Brian: Focuses on a large numer of element that have this focus.

Nolan: Wants to know more about Benny’s point.

Benny: Input in Element that is form associated. Even with aria-hidden=true/role=presentation
the browser will assume the input is required to be part of the accessibility tree. This would work
because the host is form associated and the input in the shadow doesn’t need to be related to
the form/logo around element.

Anne: not sure how we’d be able to get there. It needs to focus.

Benny: The host _might_ take this role/respoonsibility rather than shipping a role=input inside a
role=input.

https://github.com/WICG/aom/issues/195
https://gist.github.com/alice/54108d8037f865876702b07755f771a5#reify-the-idea-of-a-semantic-delegate

Brain: Is there a bug for this?

Benny: Not yet, but it's a feature request. (editor: bug filed on WICG/webcomponents #1014)
Benny: browser doesn’t allow this because the input _should_ be surfaced, but the custom
element does surface it instead.

Westbrook: brings back to “semantic delegate”

Westbrook: outlines a little clearer that “semantic delegate” builds up to “cross-root aria” so that
the two APIs don’t diverge

Ryosuke: yes, but we’'d need to start from the complex place and work back, rather than starting
from the simple place and working up

Nolan: we’re getting close to an agreement of starting from the complex API spec and the taking
the simplified path to get started

Anne: unless there is some other form of Elementinternals usage we could unlock here

Nolan: that makes sense, Ben (Chromium implementor) started with the simple because it
seemed to unlock some discussion and capability sooner

Chris: yes, that’s the basis of his approach.

Anne: FACE can be target of label, already?

Chris: yes, but it's the internals that cause issue

Anne: presumable the host can delegate to active a child?

Nolan: seems like FACE and Elementinternals are specifically target towards owning and
building everything and the APIs are really already there.

Nolan: If | don’t want to rebuild the world, that’s where we really run into the needs for the aria
passing work.

Nolan: the mix is difficult but often comes to brear in actual development

Chris: agrees

Anne: does it need to be FACEsemeanticDelegate then semanticDelegate is very generic
Brian: I'll take the feedback to Alice

Chris: Focus here makes sense, would that allow for it to get there faster?

Chris: what non-FACE elements would this happen with?

Anne: possibly with composite controls

Brian: composite controls are why things get scary and are interested in something simple
Westbrook: composite controls will come, do we want to over scope this API so that it can’t build
up to something.

Brian: no API answers all the problems, to date.

Anne: we do have the face API already, so it might align, but we have yet to lock down the
scope

Brian: Good feedback about the scope to FACE in some way for continuing exploration.

Chris: The only thing with FACE is that | can't delegate to an <a> which would seems like it
would also have the same considerations as the other elements which can be Form Associated
Ryosuke: super simple versions of this are solved with “is="

Benny: “is=" doesn’t give us shadow roots on all the things

Anne: so no facy

Brian: so maybe it’s time to get back to 2014 and mixins!

Table “semantic delegate”

https://github.com/WICG/webcomponents/issues/1014

encapsulation-preserving element references

Nolan: overview of the proposal

Nolan: setting "aria...Element’ with an element in a deeper shadow root

Nolan: setting “works” but getting returns the “retargetted” element (in shared document)

RN: so this is totally imperative

Nolan: declarative syntax may be tbd

Ryosuke: status quo? Element Internals?

Nolan: El is for defaults, this allows for consumers to set values on top of that. - given two
references across different roots this allows me to imperatively hook them up

RN: we need a declarative syntax to solve cross root aria in the long term, let’s not invest in a
script-only solution when other proposals may address html as well

NL: long term yes, but short term: we rely on javascript 100% (spa). If we had this imperative
access it would solve all our problems today and allow us to drop our bespoke ShadyDOM-like
polyfill. We would like to solve a declarative syntax eventually. Both alternatives suffer from the
bottleneck effect, whereas this proposal isn’t limited to the shadow host’s mediating across
roots.

AVK: similar to part, in cross-root aria we had named retargetting. A CE could be the target for
multiple aria props, but b/c they were named, the delegations can be targetted at fine grain. RN
and i discussed this some months back. (in other words, bottle neck problem is overstated). As
well, this proposal does not allow you to refactor encapsulated content because highly coupled
external dependencies are at play. We also have these newly-valueless attrs like
“aria-activedescendant’ which might break pages backwards [sic]

WJ: doesn’ existing use of ariaFooElement and other IDL APIs leave dangling attrs? True we
can’t yet cross boundaries. If we set one of those with the element IDL, it will reflect with a
valueless attr, no?

AVK: correct we have no html syntax reflection yet, but on the API side it works fine

NL: most recent HTML spec: when you set an IDL prop, the element sprouts an attr, but without
trying to infer the ID - empty string. This was a compromise. Alice proposed this so that
selectors can target it, but there’s no id mapping to the declarative syntax.

AVK: i was talking about the IDL attribute hanging, not the content attr

WJ: on line 2 of the second snippet in the proposal, it's returns the currently assigned element
AVK: ok this isn’'t as bad as i initially felt, but it's not great as it doesn’t allow you to change the
shadow tree without breaking consumers. You need a global view to make shadow changes.
This breaks encapsulation.

WJ: ok, so 2nd question: wrt to the custom option list, where values will be changing, what way
does this empower the consumer of custom-option-list to make the connections with this api?
NL: currently our shadow dom polyfill lets users pass ids around. Outside of web components,
in framework land, this is how web developers typically do these things. We’d probably want to
set up a mediator that handles the relationships between shadow dom and light dom

AVK: so then let’s standardize the mediator in the platform

WJ: agreed, rather than running a bunch of imperative IDL at each ‘change” event. We'd rather
the browser do those mappings. The “implied simplicity” here is tempting, but i'm not convinced
this fully “makes native” the things we want to make native here.

https://github.com/WICG/aom/issues/195

NL: happy to talk about a mediator or proxy primitive. Instead of passing the option element,
maybe the platform passes a proxy for the developer.
RN, WJ: let’s timebox and move on

Global ID

NL: it's easy to pass references in an imperative API. declarative needs namespaces
(unpopular), but maybe we should just introduce global ids.
WJ: as Brian (the champion) is not on the call, let's move on

Friendly Fire

NL: Brian not on call

Proxy

W(J: let’s create an issue for this subject.
NL: graciously agrees to be volunteered for this.

Custom delegation attributes

BP: ideas from this issue have been addressed elsewhere, let’'s move on

Generics Proposal

NL: spec covers role + aria*, but doesn’t cover other idref attrs e.g. “for’, “popuptoggletarget’,
‘list” on input, svg use and href

RN: whichever solution we come up with, if we can extend it to other idrefs, that’s a good idea,
but we should be careful of scope creep or else we’ll be unable to solve anything.

NL: what about constraining the discussion to “for’

RN: sounds like a FACE issue

AVK: yeah but if we had a generic cross-root solution, ‘for’ as well as the rest could be brought
in.

AVK: let’s solve aria first and then see if that solution works here

RN: agreed

AVK: and if not we can fall-back on FACE to clean up the remaining cases. FACE is nice, except
painful to set up.

Reflection as a counterpart to delegation

AVK: only about 8 aria properties reflect to attributes. Let’'s determine first why those act the way
they do before we move on.

NL: when this was first proposed, there were 2 separate explainers. They’ve now been
combined into one explainer. delegate/reflect is also called import/export.

https://github.com/leobalter/cross-root-aria-delegation/issues/5
https://github.com/leobalter/cross-root-aria-delegation/issues/13
https://github.com/leobalter/cross-root-aria-delegation/issues/14

WJ: the longer we discussed it, the less realistic it felt to solve either delegation or reflection
without its counterpart. (see proposal snippets). Alternatives to a proliferation of autoariafoo
autoariabar could be autoaria="foo,bar”
AVK: how does this work in many-to-many relationships? You’d need something like named
parts, with some kind of mapping on the boundary, perhaps in Elementinternals or as a public
api on the element.
AVK: generally this example makes sense to me. I'd prefer to see this on element internals not
on shadowroot
WJ: to clarify: attrs shown on #shadow-root are assumed to either be on the
template[shadowrootmode] or imperatively in Elementinternals.
AVK: in other words,if we have the declarative api, what does the imperative api look like?
WJ: in attachShadow({ delegatesAriaAttributes }))
AVK: still very declarative. How do you set the internal semantics of the host element to which
the shadow tree belongs? Consider ARIAMixin, which is mixed in the El. the difference between
setting stuff on El and on the element itself is that El is internal, but “<h1 role=heading>" (for
example) is a public api. El corresponds to “native semantics” in ARIA.
AVK: perhaps because it's ‘delegated’, then it’s not ‘native’ - since they are relationships, we can
go about it by focusing on what is delegated
Benny: something like "this.internals.delegatesAriaTarget = this.shadowRoot’
Nolan: not really convinced that Element Internals is the place for this. The Combobox example
show a dual purpose element that might have all of these things rather than a specific role as
would be applied via Element Internals. There would be internal semantics but not host
semantics.
RN: let’s review scenarios in which CEs participate in the AX tree

1. “fancy-button’. Same as button but fancy

2. ‘combo-box’. Host has a specific role, shadow root contains multiple elements within.

Needs to hook up specific aria props across roots

3. “novo-element’: Novel concept where there even isn’t an established role
AVK: with fancy-input and fancy-listbox, which compose as siblings to form a combobox,
wouldn’t we want the public api to be “for’ and use an imperative api to hook up the
relationships?
NL: if i was using El, i'd set a group or region role.
AVK: ARIA shouldn’t *really* be a public api, it should be a behind-the-scenes implementation
detail. “Aria” is seen as a gap in html. Custom-elements should be custom, and not expose the
workaround that is aria. We don’t want end users to have to deal with those things. It gets ugly
and unwieldy fast.

Conclusions

RN: we need to continue at a separate session. I'll be in US in JULY, but if the rest can join in, ¥’ll
join then, or alternatively schedule with EU hours.

NL: counter proposals don’t have so much interest, we conclude that cross-root aria proposal is
most interesting.

https://github.com/leobalter/cross-root-aria-delegation/issues/14#issue-1289314212

AVK: yes let’s design nicer bridges on top of aria

Not Covered:

Delegate something that isn't provided

Delegation proposal syntax

Reflection proposal: Expose internal elements to be referenced from the outside
Delegation attributes modification timing

https://github.com/leobalter/cross-root-aria-delegation/issues/21
https://github.com/leobalter/cross-root-aria-delegation/issues/22
https://github.com/leobalter/cross-root-aria-delegation/issues/23
https://github.com/leobalter/cross-root-aria-delegation/issues/24

	Spring 2023 Cross-Root ARIA F2F
	Attendees
	Agenda
	Can we use CSS ::part
	What about encapsulation-preserving element references and semantic delegate?
	encapsulation-preserving element references
	Global ID
	Friendly Fire
	Proxy
	Custom delegation attributes
	Generics Proposal
	Reflection as a counterpart to delegation

	Conclusions
	Not Covered:

