Pluggable Shuffle Manager

Zhijiang Wang Andrey Zagrebin

Status

Current state: IN DISCUSSION

Discussion thread:
https://lists.apache.org/thread.html/73d7c62a6c6dc7d3fddda79701¢c71b921e635766737c1b
33b84df234@%3Cdev.flink.apache.org%3E

JIRA: ELINK-10653
Released: Flink 1.9+
FLIP

Motivation

Shuffle is the process of data transfer between stages, which involves in writing outputs on
producer side and reading inputs on consumer side. The shuffle architecture and behavior in
Flink are unified for both streaming and batch jobs. It can be improved in two dimensions:

o Lifecycle of TaskExecutor (TM)/Task/ResultPartition: TM starts an internal shuffle
service for transporting partition data to consumer side. When task enters FINISHED
state, its produced partition might not be fully consumed. Therefore TM container
should not be freed until all the internal partitions consumed. It is obvious that there
exists coupled implicit constraints among them, but has no specific mechanism for
coordinating them work well.

e Extension of writer/reader: ResultPartition can only be written into local memory for
streaming job and single persistent file per subpartition for batch job. It is difficult to
extend partition writer and reader sides together based on current architecture. E.g.
ResultPartition might be written in sort&merge way or to external storage. And
partition might also be transported via external shuffle service on YARN, Kubernetes
etc in order to release TM early.

Proposed Change

We propose a pluggable ShuffleManager architecture for managing partitions on JobMaster
(JM) side and extending adaptive writer/reader on TM side.

https://lists.apache.org/thread.html/73d7c62a6c6dc7d3fddda79701c71b921e635766737c1b33b84df234@%3Cdev.flink.apache.org%3E
https://lists.apache.org/thread.html/73d7c62a6c6dc7d3fddda79701c71b921e635766737c1b33b84df234@%3Cdev.flink.apache.org%3E
https://issues.apache.org/jira/browse/FLINK-10653
https://cwiki.apache.org/confluence/display/FLINK/FLIP-31%3A+Pluggable+Shuffle+Manager

(1) Shuffle Manager

public interface ShuffleManager {
ShuffleMaster createMaster(Configuration flinkConfig);

ShuffleService createService(Configuration flinkConfig);

ShuffleManager acts as a factory for creating ShuffleMaster (JM side) and
ShuffleService (TM side). Flink config could also contain specific shuffle configuration
like port etc.

Specific ShuffleManager implements how to communicate interactively between
ShuffleMaster and ShuffleService. If shuffle is channel-based it can behave in a
similar way as now.

We could support cluster level config for ShuffleManager class name in the first
version. Later we could further support job or edge level config by introducing
predefined ShuffleType. Cluster config could contain all provided ShuffleManager
implementations for each supported ShuffleType or fallback to default for some
types.

(2) Shuffle Master (JM side)

JM process creates ShuffleMaster from configured ShuffleManager per cluster, and is thus
responsible for its lifecycle. ShuffleMaster is a global manager for partitions which means
decoupling partition’s lifecycle from task. So it could bring natural benefits for the following
improvements.

TM release: If TM is responsible for transporting partition data to consumer side, it
could be released only when all internal tasks are in FINISHED state and all
produced partitions are consumed. ShuffleMaster could provide the information
whether the producer TM can be released before partition consumption is done.

Task failover: If the consumer task fails or TM crashes, JM could ask ShuffleMaster
whether producer’s partition is still available. If partition is available for consuming,
the producer task might not need be restarted which narrows down the failover
region to reduce failover cost.

Partition cleanup: When all the consumer tasks are in FINISHED state, the
producer’s partition is to deregister and cleanup with the ShuffleMaster. In case of
external storage, partitions are at risk to linger after job/cluster failures. TTL
mechanism is one option for handling this issue. ShuffleMaster could also provide an
explicit way for manually triggering remove unused partitions.

In the first version, we only focus on migrating current existing process based on new

ShuffleMaster architecture. So we define the most basic necessary methods below, and the
above mentioned improvements might be forwarded step by step in priority by extending
more features in ShuffleMaster.

public interface ShuffleMaster extends AutoClosable {
ShuffleDeploymentDescriptor registerPartitionProducer(PartitionShuftfleDescriptor psd);

void deregisterPartitionProducer(PartionShuffleDescriptor psd);

——

producer execution

Schedule

Result Partition
Deployment Descriptor

Partition Shuffle
Descriptor

Shuffle Deployment
Descriptor

Register
partition producer

Shuffle Manager

lCreate master

v

Input Gate
Deployment Descriptor

Return

Shuffle Master

Partition Info

Submit producer
task

———————————————————————————————————————

e PartitionShuffleDescriptor is introduced for wrapping all abstract information which

task

Submit consumer

Update partition
info

———————————————————————————————————————

JM can provide from job/execution graph, such as JobID, ExecutionAttemptID,

TaskManagerLocation of producer, ResultPartitionType, ResultPartitionLocation etc.

ResultPartitionType and ResultPartitionLocation are derived from graph and
execution mode, so they are rather general parameters and do not belong to
particular shuffle implementation.
e When producer execution is scheduled to deploy, PartitionShuffleDescriptor is

created to register producer’s partition with ShuffleMaster. ShuffleMaster transforms
the abstract PartitionShuffleDescriptor into a specific ShuffleDeploymentDescriptor
which would also be cached for consumer vertex if the consumer is not deployed yet.

e ShuffleDeploymentDescriptor is then put into ResultPartitionDeploymentDescriptor
for submitting producer task and as a known producer inside
InputGateDeploymentDescriptor for submitting consumer task. It can contain specific
partition config for ShuffleService on TM side to serve partition writer and reader.

e Special UnknownShuffleDeploymentDescriptor could be used in
InputGateDeploymentDescriptor if producer location is unknown during the
deployment of consumer. JM can update it on consumer side by sending the specific
ShuffleDeploymentDescriptor in partition infos when producer is deployed.

(3) Shuffle Service (TM side)

TM process creates ShuffleService from configured ShuffleManager per cluster, and is thus
responsible for its lifecycle. Considering future ShuffleType config on job/edge level, TM
could keep a registry of ShuffleService per ShuffleType.

public interface ShuffleService extends AutoClosable {
ResultPartitionWriter createResultPartition Writer(ResultPartitionDeploymentDescriptor rpdd);
InputGate createlnputGate(InputGateDeploymentDescriptor igdd);
void updatePartitionInfos(Iterable<PartitionInfo> partitionInfos);

””””””” JobMaster |
‘ Execution Graph
Notify partition consumable Update partition info
iTaskExecutor T T T T T TaskExecutor
I
! 1
————————————————————————— i ! e
Task ! i\ | Task
i ! i
i i I
Shuffle Manager ! ! i ! Shuffle Manager
i ' i i
i
P i
| | Create service Ulpldal-e | Create service: |
H partition info, v [
Create !
| partition writer .) ' I !
Shuffle Service T > Result Partition Writer !) Input Gate p T Shuffle Service
' I reate |
input gate |
,,,

__

e ShuffleService is responsible for creating ResultPartitionWriter for producer task and
creating InputGate for consumer task. Therefore this architecture can support extend
matched writer and reader sides together. It might be useful for current
ResultPartitionWriter/InputGate interfaces extending AutoClosable.

e Similar to how it is implemented currently, the scheduler/EG in JM can decide
whether and when to update partition info on consumer side. E.g. always for
pipelined partitions and when task is finished for blocking partitions. The producer
task can also send the notification to JM when something has been produced in

pipelined partition, as now. The consumer’s ShuffleService provides the way of
updating internal input gate for known partition infos.

e ShuffleService should also consider the transport way between producer and
consumer, e.g. via netty-based network as current default way. So ShuffleService
might substitute NetworkEnvrionment in TaskManagerServices.

Future Improvement

Current ResultPartitionWriter and InputGate both operate on buffer unit with serialized record
data. Certain ShuffleService implementation might benefit from operating on serialized
record or even raw record directly (e.g. partial sort merge partition data).

e Abstract RecordWriter/RecordReader interfaces for handling serialized/raw record.
e ShuffleService could be further refactored to return RecordWriter/RecordReader.

New or Changed Public Interfaces

e In the first version, class name which implements ShuffleManager interface is
configured for shuffle.manager parameter in Flink cluster level.

e In the second version, it might support job/edge level ShuffleType config for specific
ShuffleManager implementation.

Migration Plan and Compatibility

e In the first version, the default ShuffleManager implementation is compatible with
current existing behavior.

e In the second or later version, we can extend other implementations like
YarnShuffleManager/KubernetesShuffleManager to be configured based on cluster
environment and user requirements.

Rejected Alternatives

None so far.

Implementation Plan

All the mentioned related work could be done in at least two versions. The first version
realizes the most basic architecture so that the following versions strictly build upon it.

First MVP: Refactoring to Shuffle API (preliminarily for Flink

1.8)

Introduce ShuffleMaster in JM (ELINK-11391)

Implement PartitionShuffleDescriptor for covering necessary abstract info.
Implement ShuffleDeploymentDecriptor generated from PartitionShuffleDecriptor.
Define ShuffleMaster interface and create a simple implementation on JM side which
relies on currently implemented NetworkEnvironment on TM side.

Define ShuffleManager interface for creating ShuffleMaster.

Introduce a Flink configuration option for ShuffleManager implementation. Default
value for it could be <none> which serves as a feature flag at the moment to use
current code paths.

Introduce ShuffleService in TM (ELINK-11392)

Define ShuffleService interface and give a default implementation on TM side.
Reuse shuffle related components from NetworkEnvironment in ShuffleService.

Add ShuffleService factory method to ShuffleManager interface.

Respect feature flag in Flink configuration option for ShuffleManager
notifyPipelinedConsumers from outside of ResultPartitionWriter to make it not shuffle
specific

Activate default shuffle implementation and remove legacy code

(FLINK-11393)

Set shuffle implementation config parameter to default netty-based implementation from
FLINK-11391 and FLINK-11392, instead of <none> which meant feature flag to use previous
non-pluggable legacy implementation. The legacy and feature flag code should be removed.

Next steps

Implement partition deregister and cleanup logic via ShuffleMaster.

Improve TM release by checking partition consumed via ShuffleMaster.

Improve task failover by checking producer’s partition available via ShuffleMaster.
Support job/edge level config for Shuffle Type.

Abstract RecordWriter/Reader interface for handing raw records.

Refactor ShuffleService interface for returning RecordWriter/Reader.

Adjust the processes in StreaminputProcessor and StreamRecordWriter based on
Writer/Reader interfaces.

Extend to Yarn/KubernetesShuffleManager implementations based on new
interfaces.

https://issues.apache.org/jira/browse/FLINK-11391
https://issues.apache.org/jira/browse/FLINK-11392
https://issues.apache.org/jira/browse/FLINK-11393

	Pluggable Shuffle Manager
	Zhijiang Wang Andrey Zagrebin
	Status
	Current state: IN DISCUSSION
	Discussion thread: https://lists.apache.org/thread.html/73d7c62a6c6dc7d3fddda79701c71b921e635766737c1b33b84df234@%3Cdev.flink.apache.org%3E
	JIRA: FLINK-10653
	Released: Flink 1.9+
	Motivation
	Proposed Change
	(1) Shuffle Manager
	(2) Shuffle Master (JM side)
	(3) Shuffle Service (TM side)
	Future Improvement

	New or Changed Public Interfaces
	Migration Plan and Compatibility
	Rejected Alternatives
	Implementation Plan
	First MVP: Refactoring to Shuffle API (preliminarily for Flink 1.8)
	Introduce ShuffleMaster in JM (FLINK-11391)
	Introduce ShuffleService in TM (FLINK-11392)
	Activate default shuffle implementation and remove legacy code (FLINK-11393)

	Next steps

