
Supplementary Material 1:  Technical Algorithms and Mathematical Formulations 
 
Random Forest 
Algorithm Steps: 

1. Draw T bootstrap samples from the training data.​
2. For each tree, at each split, select the feature j that minimizes the Gini impurity, 
given by: 
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where pi is the proportion of classi in node D that belong to class i, for 
i=1,2,..,C 

3. Grow each tree to maximum depth or until a stopping criterion is met.​
4. Each tree predicts a class; the Random Forest prediction is by majority vote.​
5. Feature importance is calculated as the average decrease in Gini impurity: 
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where Ij,t is the importance of feature j in tree t. 

 
Multi-Layer Perceptron (MLP) Neural Network 
Algorithm Steps: 

1. Each layer computes a weighted sum followed by an activation function: 

                                                                                   (3) ℎ𝑙 =  σ(𝑊(𝑙)ℎ(𝑙−1) + 𝑏(𝑙))

                       where σ is the activation function  

2. The output layer uses the softmax function: 
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                     where z_k is the logit for class k. 

3. The loss function is categorical cross-entropy: 

                                                                  (5)   𝐿 =   
𝑖=1

𝑁

∑
𝑘=1

𝐾

∑ 𝑦
𝑖,𝑘

𝑙𝑜𝑔 𝑃(𝑦 = 𝑘|𝑥
𝑖
)

 
     4. Network weights are updated by backpropagation using the Adam optimizer. 
 



 
 

Hybrid Stacking Ensemble 
Algorithm Steps: 

1. Train multiple base learners (Random Forest, SVM, XGBoost, MLP) on the training 
data.​
2. Each base learner outputs predictions (usually class probabilities).​
3. Collect base learner predictions as input features for the meta-learner.​
4. The meta-learner (XGBoost) is trained to map base predictions to the final class 
label: 

                       ŷ = fmeta(f₁(x), f₂(x), f₃(x), f₄(x))                                                             (6) 

                      where fk(x) are the predictions of the k-th base model. 

5. The final prediction is made by the meta-learner combining all base outputs. 
 

SHAP Values (Feature Interpretability) 
The SHAP value for feature j is: 
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where  is the contribution of feature j, S is a subset of features, and fs is the model ϕ
𝑗

trained on features S. 
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