Supplementary Material 1: Technical Algorithms and Mathematical Formulations

Random Forest

Algorithm Steps:

- 1. Draw T bootstrap samples from the training data.
 - 2. For each tree, at each split, select the feature j that minimizes the Gini impurity, given by:

$$Gini(D) = 1 - \sum_{i=1}^{C} p_i^2,$$
 (1)

where p_i is the proportion of class_i in node D that belong to class i, for i=1,2,...,C

- 3. Grow each tree to maximum depth or until a stopping criterion is met.
 - 4. Each tree predicts a class; the Random Forest prediction is by majority vote.
 - 5. Feature importance is calculated as the average decrease in Gini impurity:

$$Importace(j) = \frac{1}{T} \sum_{t=1}^{T} I_{j,t}$$
 (2)

where $I_{i,t}$ is the importance of feature j in tree t.

Multi-Layer Perceptron (MLP) Neural Network

Algorithm Steps:

1. Each layer computes a weighted sum followed by an activation function:

$$h^{l} = \sigma(W^{(l)}h^{(l-1)} + b^{(l)})$$
(3)

where σ is the activation function

2. The output layer uses the softmax function:

$$P(x) = \frac{exp(zk)}{\sum\limits_{j=1}^{k} exp(zj)}$$
(4)

where z_k is the logit for class k.

3. The loss function is categorical cross-entropy:

$$L = \sum_{i=1}^{N} \sum_{k=1}^{K} y_{i,k} \log P(y = k | x_i)$$
 (5)

4. Network weights are updated by backpropagation using the Adam optimizer.

Hybrid Stacking Ensemble

Algorithm Steps:

- 1. Train multiple base learners (Random Forest, SVM, XGBoost, MLP) on the training data.
 - 2. Each base learner outputs predictions (usually class probabilities).
 - 3. Collect base learner predictions as input features for the meta-learner.
 - 4. The meta-learner (XGBoost) is trained to map base predictions to the final class label:

$$\hat{\mathbf{y}} = \mathbf{f}_{\text{meta}}(\mathbf{f}_1(\mathbf{x}), \, \mathbf{f}_2(\mathbf{x}), \, \mathbf{f}_3(\mathbf{x}), \, \mathbf{f}_4(\mathbf{x})) \tag{6}$$

where $f_k(x)$ are the predictions of the k-th base model.

5. The final prediction is made by the meta-learner combining all base outputs.

SHAP Values (Feature Interpretability)

The SHAP value for feature j is:

$$\phi_{j} = \sum_{S \subseteq F\{j\}} \frac{|S|!(|F|-|S|-1)!}{|F|!} [f_{S \cup \{j\}}(S \cup \{j\}) - f_{s}(X_{s})]$$
 (7)

where ϕ_j is the contribution of feature j, S is a subset of features, and f_s is the model trained on features S.