
Refactoring private name lookup

Author: Joyee Cheung (joyee@igalia.com)

Background

https://bugs.chromium.org/p/v8/issues/detail?id=7468

We need to separate the lookup of private names from normal variables to speed them up
and to avoid expensive creation of synthetic strings.

Strategy

ClassScope

Create a subclass ClassScope with an optional list of unresolved private names and a
private name map:

 class ClassScope : public Scope {
 struct RareData : public ZoneObject {
 explicit RareData(Zone* zone) : private_name_map(zone) {}
 base::ThreadedList<VariableProxy, VariableProxy::UnresolvedNext>
 unresolved_private_names;
 VariableMap private_name_map;
 };

 RareData* rare_data_ = nullptr;
 }

Here we put the private name map and unresolved private names in RareData to save
memory for classes without private members.

Declare private names

https://bugs.chromium.org/p/v8/issues/detail?id=7468

When a private name declaration is encountered, create a VariableProxy and add it to the
private name map of the class scope. If there is already a VariableProxy with the same
name in the map, throw an error. Note that private names declared in inner classes can
shadow those with the same name in the outer classes.

Tracking unresolved private names

Whenever a private name access is encountered, find the closest outer class scope, and
push a variable proxy to its unresolved_private_names .

If there are no class scope in the scope chain, throw an error.

Resolving private names

Updating Scope::AnalyzePartially for preparsed functions

Updating Parser::SkipFunction for preparsed methods

Because the preparser resets the zone where unresolved private name proxies may be
created after preparsing a method, we need make sure that when resolving the private
names after parsing the class literal later, the variable proxies in the unresolved list of the
class scope are still all in the correct zone.

When Scope::AnalyzePartially is called during parsing, since the outer class scope may
not be complete yet, we simply find the closest enclosing class scope, and copy all the
unresolved private names to the correct zone, then save the new list in the closest class
scope.

When preparsing methods in Parser::SkipFunction, we save the current tail of the
unresolved private name list. After the method is preparsed, if there is an error, we reset the
tail to the previous state. If the method is preparsed successfully, we migrate the private
names added between the save tail and the new tail to the correct zone.

Updating DeclarationScope::Analyze during code generation

When

●​ A previously preparsed method is reparsed to generate code because it’s called
●​ eval is called to access private names

We need to resolve the private names from the class scope closest to the
DeclarationScopes of these methods/evaled code.

When DeclarationScope::Analyze is called, which calls
DeclarationScope::AllocateVariables to resolve variables parsed from the method.

1.​ Find the closest outer class scope of the DeclarationScope
2.​ If there are unresolved private names in the closest class scope, then it should come

from current method (because we are not doing a full reparse of the entire class, just
this method alone)

3.​ Resolve all unresolved private names in this class scope recursively using the scope
info of all class scopes in the scope chain.

Question: is it okay to add unresolved private names again in the deserialized scope when
doing a full parse of the function for code generation? It is fine to push unresolved private
names to the closest class scope during a full parse, because we are not doing a full reparse
of the entire class, just this method alone, so all unresolved private names should come from
the current method.

Eager resolution when parsing class literals

Whenever a class literal finishes parsing, we can eagarly resolve all unresolved private
names inside. For names that cannot be resolved in the current class scope, push them to
the closest outer class scope - note that since the outer class scope is not yet complete, the
private name may still be resolvable later.

If there are no more outer class scopes, throw an error.

Questions:

1.​ Will we encounter lazily parsed functions inside the class scopes whose unresolved
proxies need to be migrated to a new zone later? It is possible and can be solved by
saving the tail of the unresolved private names before preparsing a method, then
migrate every private names added after that to the correct zone after the method is
preparsed.

2.​ Is it safe to just store the remaining unresolved private names that cannot be
resolved in this class scope in the outer class scope? It is safe to just push the
unresolved private names to the outer scope.

Analysis of examples
(In the following examples, when we refer to a class name e.g. C, we are referring to its
associated ClassScope. And when we refer to a function, we may be referring to its
DeclarationScope)

Private names declared after access in methods & declared
before access in initializer

class C {
 getB() { return this.#b; }
 #a = 1;
 #b = this.#a;
}
new C().getB();

With lazy parsing

1. When parsing getB(), add unresolved #b to C
2. After preparsing getB(), migrate #b in C's unresolved private names to the correct zone
(This is why we need to update Parser::SkipFunction())
3. When parsing #a = 1, declare #a in C
4. When parsing #b = this.#a, declare #b in C, add unresolved #a to C
5. After parsing the class literal, resolve #b and #a with the private name map of C
6. After preparsing, save the local variables (#a and #b) of C in scope info
7. new C().getB() triggers a full parse of getB (This is why we need to update
DeclarationScope::Analyze)
8. When allocating variables for getB, resolved #b is pushed to the closest class scope C,
find it in the scope info, and redeclare it in C's private name map

Without lazy parsing

1, 3, 4, 5 above but all done in the full parser

Accessing already declared private names

class C {
 #b = 1;

 getB() { return this.#b; }
}

new C().getB();

With lazy parsing

1. When parsing #b = 1, declare #b in C
2. When parsing getB(), add #b to C's unresolved private names
3. After preparsing getB(), migrate #b in C's unresolved private names to the correct zone.
4. After parsing the class literal, resolve #b in getB()
5. After preparsing, save the local variable #b in C’s scope info
6. new C().getB() triggers a full parse of getB(). When parsing getB(), add #b to C's
unresolved private names
7. When allocating variables for getB(), resolve #b pushed to the closest class scope C, find
it in the scope info, and redeclare it in C's private name map

Without lazy parsing

1, 2, 4 above but done in the full parser instead.

Accessing undeclared private names

class C {
 getB() { return this.#b; }
 #a = 1;
}

With lazy parsing

1. When parsing getB(), add unresolved #b to C
2. After preparsing getB(), migrate #b in C's unresolved private names to the correct zone
3. When parsing #a = 1, declare #a in C
4. After parsing the class literal, resolve #b, we could not find it in C's private name map and
there's no outer class scope, so throw an error.

Without lazy parsing

1, 3, 4 above but all done in full parser

Accessing private names when there is an error

class C {
 #a = 1;
 getB() {
 this.#a = class D { #a; #a; }
 }
}

With lazy parsing

1. When parsing the #a = 1 in class C, declare #a in the private name map of C
2. When parsing this.#a in getB(), push #a to C’s unresolved private name list
3. When parsing the first #a in class D, declare #a in the private name map
4. When parsing the second #a in class D, since it can already be found in the private name
map, throw an variable redeclaration error which is unidentifiable by the preparser
5. After preparsing getB() since there is an unidentifiable error, reset the unresolved private
name list to the state before preparsing getB(), so the list is reset to empty
6. Reparse and error

Without lazy parsing

TBD

Accessing private names declared in outer class scope

class X {
 fn() {
 class C {
 getB(obj) { return obj.#b; }
 }
 return (new C).getB(this);
 }
 #b = 1;
}

new X().fn();

With lazy parsing

1. When parsing getB(), add unresolved #b to C
2. After parsing C, try resolving the private names in C, cannot find #b in C, so move it to
 outer class scope X
3. After preparsing fn(), migrate #b in X's unresolved private names to the correct zone
4. When parsing #b = 1, declare #b in X's private name map
5. After parsing X, resolve #b and find it in X's private name map
6. After preparsing, save the local variable #b in X's scope info
6. new X().fn() triggers a full parse of fn(). When parsing getB(), add unresolved #b to C
7. When allocating variables for getB(), resolve #b recursively, and find it in X's scope info.

Without lazy parsing

1, 2, 4, 5 above but all done in full parser

Accessing private names not declared in current or outer class
scope

class X {
 fn() {
 class C {
 getB(obj) { return obj.#b; }
 }
 return (new C).getB(this);
 }
}

new X().fn();

With lazy parsing

1. When parsing getB(), add unresolved #b to C
2. After parsing C, try resolving the private names, cannot find it in C, so move it to
 outer class scope X
3. After preparsing fn(), migrate #b in X's unresolved private names to the correct zone
4. After parsing X, try to resolve #b and throw an error

Without lazy parsing

1, 2, 4 above

Accessing private names declared in outer class scope from
methods inside initializer

class X {
 #a = class { getB(obj) { return obj.#b; } }
 fn() {
 return (new (this.#a)()).getB(this);
 }
 #b = 1;
}

new X().fn();

With lazy parsing

1. When parsing getB(), add unresolved #b to the anonymous class
2. After parsing the anonymous class, try resolving the private names, cannot find it in the
class, so move it to outer class scope X
3. declare #a in X's private name map
4. When parsing fn, add unresolved #a to X
5. After parsing fn, migrate #a to the correct zone
6. When parsing #b = 1, declare #b in X's private name map
7. After parsing X, resolve #b and find it in X's private name map
8. After preparsing, save the local variable #b in X's scope info
9. new X().fn() triggers a full parse of fn().
10. When parsing fn(), add unresolved #a to X
11. Resolve #a from X's scope info
12. .getB(this) triggers a full parse of getB()
13. add unresolved #b to X
14. Resolve #b from X's scope info

Without lazy parsing

1, 2, 3, 4, 6, 7 above but all done in the full parser

Accessing private names from eval()

class C {
 #a = 1;
 getA() { return eval('this.#a'); }
}
(new C).getA();

With lazy parsing

1. When parsing #a = 1, declare #a in C's private name map
2. After parsing C, save the scope info of C
3. When executing eval inside (new C).getA(), parse this.#a
4. Add unresolved #a to the closest class scope C
5. When analyzing the scope of eval()’ed code, we resolve the unresolved private name #a
in the closest class scope C, and find it from C's scope info

Without lazy parsing

Same, but done in full parser

Accessing undeclared private names from eval()

class C {
 getA() { return eval('this.#a'); }
}

(new C).getA();

1. After parsing C, save the scope info of C
2. When executing eval inside (new C).getA(), parse this.#a, add unresolved #a to the
closest class scope C
3. When analyzing the scope of eval, we resolve unresolved the private names in the closest
class scope C, but cannot find it and throw an error

Without lazy parsing

Same, but done in full parser

	Refactoring private name lookup
	Background
	Strategy
	ClassScope
	Declare private names
	Tracking unresolved private names
	Resolving private names
	Updating Scope::AnalyzePartially for preparsed functions
	Updating Parser::SkipFunction for preparsed methods
	Updating DeclarationScope::Analyze during code generation
	Eager resolution when parsing class literals

	Analysis of examples
	Private names declared after access in methods & declared before access in initializer
	With lazy parsing
	Without lazy parsing

	Accessing already declared private names
	With lazy parsing
	Without lazy parsing

	Accessing undeclared private names
	With lazy parsing
	Without lazy parsing

	Accessing private names when there is an error
	With lazy parsing
	Without lazy parsing

	Accessing private names declared in outer class scope
	With lazy parsing
	Without lazy parsing

	Accessing private names not declared in current or outer class scope
	With lazy parsing
	Without lazy parsing

	Accessing private names declared in outer class scope from methods inside initializer
	With lazy parsing
	Without lazy parsing

	Accessing private names from eval()
	With lazy parsing
	Without lazy parsing

	Accessing undeclared private names from eval()
	Without lazy parsing

