Fugu Capability Process

How to move new capability through the design process

Last updated: Sept 2018

The Fugu capability effort is designed to rapidly add new capabilities to the web platform. This
guide should help you figure out the order when considering a new capability and the template
should serve to help you get started on the PRD.

Note this guide is not at all a replacement for the standards process or the blink launch
process. You will still use the Blink process and file bugs as the primary tracker, as shown in
Web Platform Shipping Process Diagram. This guide is just to call out some of the additional
pieces such as customer organizing and permissions model creation.

This is a champion driven process. Due to the highly parallelized nature of this work, it is
important that one person is on top of driving each capability forward. The champion should be
pulling in the others as needed but should be actively keeping tabs on what the next step is and
moving things forward.

Everything should be as public as possible and when something can be public, please
remove any version of it from this doc and instead link to the public resource. This document
should be a place for you to iterate on aspects that aren’t ready for public consumption before
linking out or to have any exploration that can’t be public.

Suggested Reading

[Not all public, apologies]
go/standards-process

Extensible Web Manifesto

‘make me an offer” security model

Control Access to Powerful Web Platform Features

Prioritization Process

Roles/Steps:

API Requester - This may be external customers, internal teams who wishes to add new API
capabilities in the Web Platform. They file requests into Blink>Capabilities|Fugu>Request using
crbug.

https://docs.google.com/document/d/1-y0tVhch3DtPpsvuRL_5YWUJ91TWfo0uDKQHegPW4Iw/edit#
https://www.chromium.org/blink/launching-features
https://www.chromium.org/blink/launching-features
https://docs.google.com/document/d/1-y0tVhch3DtPpsvuRL_5YWUJ91TWfo0uDKQHegPW4Iw/edit#
https://extensiblewebmanifesto.org/
https://docs.google.com/document/d/1QlQVBpIP6iWMfox1Bx7jHSjEzKu_-M8xEJa6ERq2OVA/edit#bookmark=id.uu9at3xbpl4
https://chromium.googlesource.com/chromium/src/+/f384207e04ad27f58287e972907f17ad66acc115/docs/security/permissions-for-powerful-web-platform-features.md

Fugu Leads - TLs for capabilities who meet regularly (bi-weekly) to go over the API request
backlog. The outcome is a prioritized list of bugs with Proj-Fugu labels attached. The leads will
set the bug state as “Available” - to be worked on or Assigned - ready to be worked on. The
assigned bugs will be continued to be worked on by APl Champions.

API Champion - owners for getting API shipped. The APl champion will ensure that the PRD
template has been filled out and updated on the tracking bug. Also, the champion will fill out the
intended OT milestone. Finally, once ready to ship, the champion will file the launch request and
add an entry into chromstatus.com.

Process

Steps

Step 1: Create bare-bones explainer & feature request bug

Everything starts with a feature request which we then turn into generic problem statements.
Requests should come either from customers directly filing a crbug feature request or you filing
one on their behalf. You'll want just enough explanation so people vaguely understand the
scope and you can refine it during the next steps. Do this in a private github repo; public from
the start, but not broadly distributed. The Explainer will be the doc you iterate on most heavily
through the entire process.

At this point you should also send your explainer to emailing chrome-security@,
chrome-permissions-team@), and chrome-privacy-core@.

Apply the following template to the bug description - it can start off with "TBD" placeholders, but
provides consistency and context for others (internal and external) who want to understand the
details of the request:

Summary:
<1-2 sentence description>

Comparable chrome.* APIs:
Public Discussion: TBD
Explainer: TBD

Spec: TBD

ChromeStatus Entry: TBD

https://github.com/w3ctag/w3ctag.github.io/blob/master/explainers.md
https://github.com/w3ctag/w3ctag.github.io/blob/master/explainers.md

Other context (may be Googler-only, sorry!):
<link1>
<link2>

Please leave sections in even if they are TBD/empty - the bug description can be edited later to
fill them in.

Step 2: Get input on your explainer and gather customers & support

Once you have enough clarity in the explainer you will want to publicize it to gather feedback.

Identify specific customers who have the problem the feature will solve and make sure to record
them in this template (below); we’ll want to reach out to them throughout the process. If a
partner wishes to remain anonymous, you can create a restrict-view-google partner bug such as
those in this list and block them against bugs of interest. Note that as a policy we do not
commit to shipping a capability unless we have a customer lined up and committed to
use it once implemented.

You will also want to gather public support in locations that can be linked to or cited. This
sometimes takes place via the WICG Discourse group (example), which is also a place for
shopping the explainer around and getting early feedback. Note that you should have at least
one eager customer who you know for sure will adopt. If the adopting customer is internal, you
should still see if they are willing to post publicly, since it will impact other browser adoption. This
is also the time to file for TAG feedback

Step 3: Commit to a capability

Once there seems to be sufficient reason to do a capability, we prioritize it appropriately in the
backlog. The priority will be evaluated by the champion eng and the fugu leads. When it is time
to start work on that capability, the champion will send an Intent To Implement. At this point you
should also have at least a POC for role, such as PM and devrel. If you have someone already
for the role, just list them directly, but otherwise for each role you can ask this person who the
best suited person is:

PM: Likely Thomas Nattestad

Security: ?

Privacy: Likely Martin Sramek

UX: Likely Hwi Kyoung Lee or Namrata Kannan
BD / Partner manager: Likely Aanchal Bahadur
DevRel: Likely Pete LePage or Thomas Steiner

https://bugs.chromium.org/p/chromium/issues/list?can=2&q=proj-fugu-efforts&colspec=ID+Pri+M+Stars+ReleaseBlock+Component+Status+Owner+Summary+OS+Modified&num=100
http://discourse.wicg.io/
https://discourse.wicg.io/t/serial-api-moving-from-web-of-sensors-wg-to-web-incubator-cg/2940
https://github.com/w3ctag/design-reviews
https://bit.ly/fugu-api-tracker
https://bit.ly/fugu-api-tracker

Step 4: Define the security and privacy model

Work with the lead eng, PM, security, privacy, and permissions team liaisons to iterate on and
define the conditions under which we will expose this capability. This will follow the “make me an
offer” security model. The Control Access to Powerful Web Platform Features is another guiding
document to steer this phase of development.

A good start to this stage is reaching out to chrome-permissions-team@google.com team to get
their input on what the permission model for the capability would be. You will eventually have to
fill out a TAG security questionair and this can be a good first step.

Note that in May of 2019, we held a permission summit where we discussed many APIs. It is
likely worth your while to see if your APl was discussed here

Step 5: Iterate and evolve the design in public

At this point you are ready to iterate through the standards process. You'll make the API and get
input from others. Make sure to explicitly run it by all your customers to make sure it works for
their use case.

You'll iterate through this process extensively and spend a significant chunk of time before
moving on.

As a final proof-point, an Intent to Experiment and associated Qrigin Trial can help you
demonstrate that the proposal solves the problem while helping to demonstrate use and
interest.

Step 6: Connect with DevRel to organize outreach

Connect with your DevRel to make sure they know about the feature and can plan out the
creation of relevant blog posts and tutorials. As the feature advances make sure your devrel
knows when the materials need to be ready. You can refer to this process document for more
details.

Step 7: Get final approvals and Ship it!

Make sure you have gotten all the approvals specified by blink launch process and then ship it!

Make sure to connect back to customers one last time to make sure they adopt the capability. If
the customer was a Chrome App or Electron app, see if they are now interested in deprecating

their previous app.

https://docs.google.com/document/d/1QlQVBpIP6iWMfox1Bx7jHSjEzKu_-M8xEJa6ERq2OVA/edit#bookmark=id.uu9at3xbpl4
https://docs.google.com/document/d/1QlQVBpIP6iWMfox1Bx7jHSjEzKu_-M8xEJa6ERq2OVA/edit#bookmark=id.uu9at3xbpl4
https://docs.google.com/document/d/1bYdLXh5_6NzRTo1krbkWZP5L7aD-sYs_AdGKcdhLC-E/edit#
mailto:chrome-permissions-team@google.com
https://w3ctag.github.io/security-questionnaire/
https://docs.google.com/document/d/1JJHmUzqhU9fNNX0iW3U6r1kPxFV015_9YmTb4r10R_g/edit#
https://docs.google.com/document/d/1-y0tVhch3DtPpsvuRL_5YWUJ91TWfo0uDKQHegPW4Iw/edit#
https://docs.google.com/document/d/1vlTlsQKThwaX0-lj_iZbVTzyqY7LioqERU8DK3u3XjI/edit#bookmark=id.pygli2e122ic
https://www.chromium.org/blink/origin-trials
https://docs.google.com/document/d/1qy-XmiCIu6QP1bbEAqfCAZQ65q5F9I6OJKvUgYLQ4GU/edit#heading=h.x2awy0gwwmeb
https://www.chromium.org/blink/launching-features

Template:

This template is only meant as one suggestion for how to organize the content necessary as
you go through the process. Note that this template only has some sections as suggestions, but
not everything is required and you can add any sections you think are relevant.

Fugu: <Capability Name>

Champion:

PM:

Security:

Privacy:

UX: namrata

BD / Partner manager: Aanchal
DevRel: Pete

Abstract

Links

Crbug

Explainer

Intent to implement
Intent to ship
Standard / Spec
Others?

Explainer

at a high level

https://github.com/w3ctag/w3ctag.github.io/blob/master/explainers.md

Customers & Statement of Support

Which internal / external customers want this? Have developers publicly stated the need for
this? You can also specify why this capability is important and needed for these customers

Security and Privacy Model

Under what conditions will we expose this capability? If there is ever a public version or another
doc that is the source of truth, delete everything here and link instead

API Structure

Feel free to use this space for the API structure What does the surface of the API look like and
how will developers interface with it? If there is ever a public version or another doc that is the
source of truth, delete everything here and link instead

Eng Design

If you are the eng who will be designing and implementing this capability, feel free to do it in this
area of this document or utilize a separate doc but link from here. If there is ever a public
version or another doc that is the source of truth, delete everything here and link instead

Documentation / DevRel artifacts

If there is ever a public version or another doc that is the source of truth, delete everything
here and link instead

	Fugu Capability Process
	Suggested Reading
	Prioritization Process
	Process
	Steps
	Step 1: Create bare-bones explainer & feature request bug
	Step 2: Get input on your explainer and gather customers & support
	Step 3: Commit to a capability
	Step 4: Define the security and privacy model
	Step 5: Iterate and evolve the design in public
	Step 6: Connect with DevRel to organize outreach
	Step 7: Get final approvals and Ship it!

	Template:
	Fugu: <Capability Name>
	Abstract
	Links
	Explainer
	Customers & Statement of Support
	Security and Privacy Model
	API Structure
	Eng Design
	Documentation / DevRel artifacts

